The workshop on additive combinatorics will take place **April 9-13, 2018 **at the Center of Mathematical Sciences and Applications, located at 20 Garden Street, Cambridge, MA.

This workshop will focus on new developments in coding and information theory that sit at the intersection of combinatorics and complexity, and will bring together researchers from several communities — coding theory, information theory, combinatorics, and complexity theory — to exchange ideas and form collaborations to attack these problems.

Squarely in this intersection of combinatorics and complexity, locally testable/correctable codes and list-decodable codes both have deep connections to (and in some cases, direct motivation from) complexity theory and pseudorandomness, and recent progress in these areas has directly exploited and explored connections to combinatorics and graph theory. One goal of this workshop is to push ahead on these and other topics that are in the purview of the year-long program. Another goal is to highlight (a subset of) topics in coding and information theory which are especially ripe for collaboration between these communities. Examples of such topics include polar codes; new results on Reed-Muller codes and their thresholds; coding for distributed storage and for DNA memories; coding for deletions and synchronization errors; storage capacity of graphs; zero-error information theory; bounds on codes using semidefinite programming; tensorization in distributed source and channel coding; and applications of information-theoretic methods in probability and combinatorics. All these topics have attracted a great deal of recent interest in the coding and information theory communities, and have rich connections to combinatorics and complexity which could benefit from further exploration and collaboration.

Co-organizers of this workshop include Venkat Guruswami, Alexander Barg, Mary Wootters. More details about this event, including participants, will be updated soon.

#### To register to participate in this workshop, please go here.