Hodge and Noether-Lefschetz Loci Seminar

In the Fall 2018 Semester the CMSA will be hosting a seminar on Hodge and Noether-Lefschetz loci, run by Hossein Movasati (IMPA). The seminar will occur weekly on Thursdays at 1:30 in room G10 of the CMSA.

The schedule below will be updated as talks are confirmed.

Date Speaker Title/Abstract
11/7/2018 Hossein Movasati, IMPA Title: Hodge and Noether-Lefschetz loci

Abstract: Hodge cycles are topological cycles which are conjecturally (the millennium Hodge conjecture) supported in algebraic cycles of a given smooth projective complex manifold. Their study in families leads to the notion of Hodge locus, which is also known as Noether-Lefschetz locus in the case of surfaces. The main aim of this mini course is to introduce a computational approach to the study of Hodge loci for hypersurfaces and near the Fermat hypersurface. This will ultimately lead to the verification of the variational Hodge conjecture for explicit examples of algebraic cycles inside hypersurfaces and also the verification of integral Hodge conjecture for examples of Fermat hypersurfaces. Both applications highly depend on computer calculations of rank of huge matrices. We also aim to review some classical results on this topic, such as Cattani-Deligne-Kaplan theorem on the algebraicity of the components of the hodge loci, Deligne’s absolute Hodge cycle theorem for abelian varieties etc.

In the theoretical side another aim is to use the available tools in algebraic geometry and construct the moduli space of projective varieties enhanced with elements in their algebraic de Rham cohomology ring. These kind of moduli spaces have been useful in mathematical physics in order to describe the generating function of higher genus Gromov-Witten invariants, and it turns out that the Hodge loci in such moduli spaces are well-behaved, for instance, they are algebraic leaves of certain holomorphic foliations. Such foliations are constructed from the underlying Gauss-Manin connection. This lectures series involves many reading activities on related topics, and contributions by participants are most welcome.


Related Posts