Hodge and Noether-Lefschetz Loci Seminar

In the Fall 2018 Semester the CMSA will be hosting a seminar on Hodge and Noether-Lefschetz loci, with lectures given by Hossein Movasati (IMPA). The seminar will occur weekly on Wednesday at 1:30 in room G10 of the CMSA.

The schedule below will be updated as talks are confirmed.

Date Title/Abstract


Title: Hodge and Noether-Lefschetz loci

Abstract: Hodge cycles are topological cycles which are conjecturally (the millennium Hodge conjecture) supported in algebraic cycles of a given smooth projective complex manifold. Their study in families leads to the notion of Hodge locus, which is also known as Noether-Lefschetz locus in the case of surfaces. The main aim of this mini course is to introduce a computational approach to the study of Hodge loci for hypersurfaces and near the Fermat hypersurface. This will ultimately lead to the verification of the variational Hodge conjecture for explicit examples of algebraic cycles inside hypersurfaces and also the verification of integral Hodge conjecture for examples of Fermat hypersurfaces. Both applications highly depend on computer calculations of rank of huge matrices. We also aim to review some classical results on this topic, such as Cattani-Deligne-Kaplan theorem on the algebraicity of the components of the hodge loci, Deligne’s absolute Hodge cycle theorem for abelian varieties etc.

In the theoretical side another aim is to use the available tools in algebraic geometry and construct the moduli space of projective varieties enhanced with elements in their algebraic de Rham cohomology ring. These kind of moduli spaces have been useful in mathematical physics in order to describe the generating function of higher genus Gromov-Witten invariants, and it turns out that the Hodge loci in such moduli spaces are well-behaved, for instance, they are algebraic leaves of certain holomorphic foliations. Such foliations are constructed from the underlying Gauss-Manin connection. This lectures series involves many reading activities on related topics, and contributions by participants are most welcome.



Title:  Integral Hodge conjecture for Fermat varieties

Abstract: We describe an algorithm which verifies whether  linear algebraic cycles of the Fermat variety generate the lattice of Hodge cycles. A computer implementation of this  confirms the integral Hodge conjecture for quartic and quintic Fermat fourfolds. Our algorithm is based on computation of the list of elementary divisors of both the lattice of linear algebraic cycles, and the lattice of Hodge cycles written in terms of  vanishing cycles, and observing that these two lists are the same. This is a joint work with E. Aljovin and R. Villaflor.

11/21/2018 Title:  Periods of algebraic cycles

Abstract: The tangent space of the Hodge locus at a point can be described by the so called infinitesimal variation of Hodge structures and the cohomology class of Hodge cycles. For hypersurfaces of dimension $n$ and degree $d$ it turns out that one can describe it without any knowledge of cohomology theories and in a fashion which E. Picard in 1900’s wanted to study integrals/periods. The data of cohomology class is replaced with periods of Hodge cycles, and explicit computations of these periods, will give us a computer implementable description of the tangent space.  As an application of this we show that for examples of $n$ and $d$, the locus of hypersurfaces containing two linear cycles whose intersection is of low dimension, is a reduced component of the Hodge locus in the underlying parameter space.


Related Posts