Quantum entanglement, topological order, and tensor category theory

Xiao-Gang Wen, MIT
Sept., 2014
Topological order – beyond symmetry breaking

• We used to believe that all phases and phase transitions are described by symmetry breaking

• Counter examples:
 - Quantum Hall states \(\sigma_{xy} = \frac{m}{n} \frac{e^2}{h} \)
 - Spin liquid states, Organics \(\kappa-(ET)_2X \) and herbertsmithite

• FQH states and spin-liquid states have different phases with no symmetry breaking, no crystal order, no spin order, ... so they must have a new order – **topological order** [Wen 89]
Long history of (non) topological phases

- **Symmetry breaking phases:**
 - 500(bc) Ferromagnet (exp.)

- **Topologically ordered phases:**
 - 1904 Superconductor (exp.) [Onnes 04] (Z\textsubscript{2} topo. order)
 - 1980 IQH states (exp.) [von Klitzing 80] (with no topo. exc., free fermion)
 - 1982 FQH states (exp.) [Tsui-Stormer-Gossard 82]
 - 1987 Chiral spin liquids (theo.) [Kalmeyer-Laughlin 87, Wen-Wilczek-Zee 89]
 - 1991 \textit{Z}\textsubscript{2}-spin liquids (theo.) [Read-Sachdev 91, Wen 91, Kitaev 97]
 - 1992 all Abelian FQH states (theo.) [Wen-Zee 92] (K-matrix)
 - 2000 p\textit{x}+ip\textit{y}-superconductor (theo.) [Read-Green 00] (√IQH at ν\textit{}=1)
 - 2002 hundreds symmetry enriched topological orders (theo.) [Wen 02] (PSG)
 - 2005 all 2+1D topo. orders with gapped edge (theo.) [Levin-Wen 05] (UFC)
 - 2009 ν\textit{}=\textit{5}/2 non-Abelian FQH states (exp. ?) [Willett etal 09]

- **SPT states** (no topological order and no symmetry breaking):
 - also called topological states dispite having no topological order
 - 1983 Haldane phase (theo.) [Haldane 83]
 - 1988 Haldane phase (exp. CsNiCl\textsubscript{3}) [Morra-Buyers-Armstrong-Hirakawa 88]
 - 2005 Topological insulators (theo.) [Kane-Mele 05, Bernevig-Zhang 06]
 - 2007 Topological insulators (exp.) [Molenkamp etal 07]
 - 2011 SPT states in any dim. for any symm. (theo.) [Chen-Gu-Liu-Wen 11]
Long history of (non) topological phases

- **Symmetry breaking phases:**
 - 500(b) Ferromagnet (exp.) ...

- **Topologically ordered phases:**
 - 1904 Superconductor (exp.) [Onnes 04] (Z_2 topo. order)
 - 1980 IQH states (exp.) [von Klitzing 80] (with no topo. exc., free fermion)
 - 1982 FQH states (exp.) [Tsui-Stormer-Gossard 82]
 - 1987 Chiral spin liquids (theo.) [Kalmeyer-Laughlin 87, Wen-Wilczek-Zee 89]
 - 1991 Z_2-spin liquids (theo.) [Read-Sachdev 91, Wen 91, Kitaev 97]
 - 1992 all Abelian FQH states (theo.) [Wen-Zee 92] (K-matrix)
 - 2000 $p_x + ip_y$-superconductor (theo.) [Read-Green 00] ($\sqrt{\text{IQH}}$ at $\nu = 1$)
 - 2002 hundreds symmetry enriched topological orders (theo.) [Wen 02] (PSG)
 - 2005 all 2+1D topo. orders with gapped edge (theo.) [Levin-Wen 05] (UFC)
 - 2009 $\nu = 5/2$ non-Abelian FQH states (exp. ?) [Willett etal 09]

- **SPT states** (no topological order and no symmetry breaking):
 - also called topological states despite having no topological order
 - 1983 Haldane phase (theo.) [Haldane 83]
 - 1988 Haldane phase (exp. CsNiCl$_3$) [Morra-Buyers-Armstrong-Hirakawa 88]
 - 2005 Topological insulators (theo.) [Kane-Mele 05, Bernevig-Zhang 06]
 - 2007 Topological insulators (exp.) [Molenkamp etal 07]
 - 2011 SPT states in any dim. for any symm. (theo.) [Chen-Gu-Liu-Wen 11]

Xiao-Gang Wen, MIT Sept., 2014
Long history of (non) topological phases

- **Symmetry breaking phases:**
 - 500(bc) Ferromagnet (exp.) ...

- **Topologically ordered phases:**
 1904 Superconductor (exp.) [Onnes 04] (Z_2 topo. order)
 1980 IQH states (exp.) [von Klitzing 80] (with no topo. exc., free fermion)
 1982 FQH states (exp.) [Tsui-Stormer-Gossard 82]
 1987 Chiral spin liquids (theo.) [Kalmeyer-Laughlin 87, Wen-Wilczek-Zee 89]
 1991 non-Abelian FQH states, (theo.) [Moore-Read 91, Wen 91] (CFT, slave)
 1991 Z_2-spin liquids (theo.) [Read-Sachdev 91, Wen 91, Kitaev 97]
 1992 all Abelian FQH states (theo.) [Wen-Zee 92] (K-matrix)
 2000 $p_x + ip_y$-superconductor (theo.) [Read-Green 00] ($\sqrt{\text{IQH}}$ at $\nu = 1$)
 2002 hundreds symmetry enriched topological orders (theo.) [Wen 02] (PSG)
 2005 all 2+1D topo. orders with gapped edge (theo.) [Levin-Wen 05] (UFC)
 2009 $\nu = 5/2$ non-Abelian FQH states (exp. ?) [Willett etal 09]

- **SPT states** (no topological order and no symmetry breaking):
 - *also called topological states dispite having no topological order*
 1983 Haldane phase (theo.) [Haldane 83]
 1988 Haldane phase (exp. CsNiCl$_3$) [Morra-Buyers-Armstrong-Hirakawa 88]
 2005 Topological insulators (theo.) [Kane-Mele 05, Bernevig-Zhang 06]
 2007 Topological insulators (exp.) [Molenkamp etal 07]
 2011 SPT states in any dim. for any symm. (theo.) [Chen-Gu-Liu-Wen 11]
Topological order = patterns of long-range entanglement

For gapped systems with no symmetry:
• According to Landau theory, no symm. to break
 → all systems belong to one trivial phase
For gapped systems with no symmetry:

- According to Landau theory, no symm. to break → all systems belong to one trivial phase

- Thinking about entanglement: [Chen-Gu-Wen 2010]
 - There are long range entangled (LRE) states
 - There are short range entangled (SRE) states

\[|\text{LRE}\rangle \neq \text{product state} = |\text{SRE}\rangle \]

\[\text{local unitary transformation} \]

\[\text{LRE state} \quad \text{SRE product state} \]

\[g_1 g_2 \]

\[\text{topological order} \]

\[\text{phase transition} \]

• All SRE states belong to the same trivial phase
• LRE states can belong to many different phases = different patterns of long-range entanglements = different topological orders [Wen 1989]

• How to (1) characterize and (2) classify topological orders?
Topological order = patterns of long-range entanglement

For gapped systems with no symmetry:

- According to Landau theory, no symm. to break → all systems belong to one trivial phase

- Thinking about entanglement: [Chen-Gu-Wen 2010]
 - There are long range entangled (LRE) states → many phases
 - There are short range entangled (SRE) states → one phase

 \[|LRE\rangle \neq \text{product state} = |SRE\rangle \]

- All SRE states belong to the same trivial phase
- LRE states can belong to many different phases
 = different patterns of long-range entanglements
 = different topological orders [Wen 1989]

- How to (1) characterize and (2) classify topological orders?
A complete characterization of 2+1D topo. order [Wen 1990]

To characterize topo. order = To label topo. order
To label topo. order = To find topo. inv. for topo. order

- **Topological ground state degeneracy** D_g which is robust against any perturbations that can break any symmetry, but depends on the topology of space. [Wen 1989]
To characterize topo. order = To label topo. order
To label topo. order = To find topo. inv. for topo. order

- **Topological ground state degeneracy** D_g which is robust against any perturbations that can break any symmetry, but depends on the topology of space. [Wen 1989]

- The shape of a torus is described by $\tau \in M = \frac{\text{upper-half plane}}{PSL(2, Z)}$

Ground states \rightarrow a $U(D_1)$ vector bundle over the moduli space M.
- The local curvature is only $U(1)$: $B_{\tau_x \tau_y} = -(c_2 N^2 + c_1 N + c) \frac{1}{4 \tau_y^2}$

- **Non-Abelian geometric phase** of Dehn twist for thin-tall torus:
 $|\Psi_\alpha\rangle \rightarrow |\Psi'_\alpha\rangle = e^{ia_2 N^2 + a_1 N} T_{\alpha\beta} |\Psi_\beta\rangle$

- 90° rotation \hat{S} for square torus:
 $|\Psi_\alpha\rangle \rightarrow |\Psi'_\alpha\rangle = e^{ia_2 N^2 + a_1 N} S_{\alpha\beta} |\Psi_\beta\rangle$

- (T, S, c) are topological invariant robust against any perturbations. [Wen 2012]
(T, S, c) completely characterize 2+1D topological order

- We have shown how to extract topo. invariants $(T_{\alpha\beta}, S_{\alpha\beta}, c)$ from the physical ground state wave functions $\Psi(\vec{r}_1, \vec{r}_2, \cdots)$.

- The edge states of 2+1D topological order are described by “conformal field theories” [Wen, 1989], which chiral central charge is given by c (the universal part of the $U(1)$ curvature).

- The Dehn twist and the 90° rotation generate the $MCG \ PSL(2, \mathbb{Z})$ of torus. T, S generate a projective representation of $PSL(2, \mathbb{Z})$.

 - $\dim(T, S) \rightarrow$ number quasiparticle types
 - Eigenvalues of $T_{\alpha\beta} \rightarrow$ quasiparticle fractional statistics.
 - $S_{\alpha\beta} \rightarrow$ quasiparticle fusion $\alpha \otimes \beta = \bigoplus \gamma N_{\alpha\beta}^{\gamma}$,

$$N_{\alpha\beta}^{\gamma} = \sum_{\rho} \frac{S_{\rho\alpha} S_{\rho\beta} S_{\rho\gamma}^*}{S_{\rho1}}$$

Conjecture: (T, S, c) completely characterize 2+1D topological order
Example of topological order: the dance of electrons

- Local dancing rules of a FQH liquid:
 1. Every electron dances around clock-wise
 \(\Phi_{\text{FQH}} \) only depends on \(z = x + iy \)
 2. Takes exactly two steps to go around any others
 \(\Phi_{\text{FQH}} \) ’s phase change \(4\pi \)
 → Global dancing pattern
 \[\Phi_{\text{FQH}}(\{z_1, \ldots, z_N\}) = \prod (z_i - z_j)^2 \]
 (for bosonic electrons)

- \(T = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \quad S = 2^{-1/2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad c = 1 \).
Example of topological order: the dance of electrons

• Local dancing rules of a FQH liquid:
 (1) every electron dances around clock-wise
 \(\Phi_{\text{FQH}} \) only depends on \(z = x + iy \)
 (2) takes exactly two steps to go around any others
 \(\Phi_{\text{FQH}} \)'s phase change \(4\pi \)
→ Global dancing pattern \(\Phi_{\text{FQH}}(\{z_1, \ldots, z_N\}) = \prod (z_i - z_j)^2 \)
 (for bosonic electrons)

• \(T = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \quad S = 2^{-1/2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad c = 1. \)

• A general theory of multi-layer Abelian FQH state:
 \[
 \prod_{l<i<j} (z_l^I - z_j^I)^{K_{ll}} \prod_{l<j; i,j} (z_l^I - z_J^I)^{K_{ll}} e^{-\frac{1}{4} \sum_{i,l} |z_l^I|^2}
 \]
 Low energy effective theory is the \(K \)-matrix
 Chern-Simons theory \(L = \frac{K_{IJ}}{4\pi} a_l \, da_j \)

• An integer number of gapless edge modes \(c = \dim(K) = \text{number of layers.} \)
Even (odd) K-matrix classifies all 2+1D bosonic (fermionic) Abelian topological order (but not one-to-one) [Wen-Zee 1992]

- $c =$ the difference in the positive and negative eigenvalues of K
- (T, S) are given by

\[
T_{\vec{\alpha}\vec{\beta}} = e^{i\pi \vec{\alpha}^T K \vec{\alpha}} \delta_{\vec{\alpha}\vec{\beta}}, \quad S_{\vec{\alpha}\vec{\beta}} = \frac{e^{-i2\pi \vec{\beta}^T K \vec{\alpha}}}{\sqrt{|\det(K)|}}
\]

where $K\vec{\alpha} =$ integer vector and $K\vec{\beta} =$ integer vector. $\vec{\alpha} \sim \vec{\alpha}'$ if $\vec{\alpha}' - \vec{\alpha} =$ integer vector.
Even (odd) K-matrix classifies all 2+1D bosonic (fermionic) Abelian topological order (but not one-to-one) [Wen-Zee 1992]

- c = the difference in the positive and negative eigenvalues of K
- (T, S) are given by
 \[
 T_{\vec{\alpha}\vec{\beta}} = e^{i\pi\vec{\alpha}^T K \vec{\alpha}} \delta_{\vec{\alpha}\vec{\beta}}, \quad S_{\vec{\alpha}\vec{\beta}} = \frac{e^{-i2\pi\vec{\beta}^T K \vec{\alpha}}}{\sqrt{|\det(K)|}}
 \]

where $K\vec{\alpha}$ = integer vector and $K\vec{\beta}$ = integer vector. $\vec{\alpha} \sim \vec{\alpha}'$ if $\vec{\alpha}' - \vec{\alpha} = \text{integer vector}$.

- The E_8-FQH state: $\nu = 4$, no non-trivial topological quasiparticle:
 \[
 K^{E_8} = \begin{pmatrix}
 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 2 & 1 & 0 & 0 & 0 & 1 & 0 \\
 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 2 & 1 \\
 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0
 \end{pmatrix}. \quad (T, S, c) = (1, 1, 8).\]
Example of topological order: the dance of spins

- A local dancing rules of spins:
 1. Dance while holding hands (up-spins form loop, no open ends)
 2. $\Phi_{\text{str}}(\text{loop}) = \Phi_{\text{str}}(\text{up-spin})$, $\Phi_{\text{str}}(\text{down-spin}) = \Phi_{\text{str}}(\text{closed loop})$

 \rightarrow Global dancing pattern $\Phi_{\text{str}}(\text{loops}) = 1$

- Another local dancing rules of spins:
 1. Dance while holding hands (up-spins form loop, no open ends)
 2. $\Phi_{\text{str}}(\text{loop}) = \Phi_{\text{str}}(\text{up-spin})$, $\Phi_{\text{str}}(\text{down-spin}) = -\Phi_{\text{str}}(\text{closed loop})$

 \rightarrow Global dancing pattern $\Phi_{\text{str}}(\text{loops}) = (-)^\# \text{ of loops}$

- Two patterns of long-range entanglement \rightarrow two topo. orders: Z_2 topological order [Sachdev Read 91, Wen 91] and double-semion topological order. [Freedman et al 05; Levin-Wen 05]
More general patterns of long-range entanglement

Generslize the Z_2/double-semion dancing rule:

$$\Phi_\text{str} (\square) = \Phi_\text{str} (\square), \quad \Phi_\text{str} (\square \leftrightarrow \square) = \pm \Phi_\text{str} (\square \square)$$

Graphic state:

- More general wave functions are defined on graphs: within the ground state, there are $N + 1$ states on links and $N_v = N_{ij}$ states on vertices:

$$\alpha = \beta \gamma \lambda$$
More general patterns of long-range entanglement

Generlize the \mathbb{Z}_2/double-semion dancing rule:

$\Phi_{str}(\begin{array}{c} \alpha \beta \gamma \\ m \end{array}) = \Phi_{str}(\begin{array}{c} \alpha \beta \\ m \end{array})$, $\Phi_{str}(\begin{array}{c} \alpha \beta \gamma \\ m \end{array}) = \pm \Phi_{str}(\begin{array}{c} \alpha \beta \\ m \end{array})$

Graphic state:

- More general wave functions are defined on graphs: within the ground state, there are $N + 1$ states on links and $N_v = N_k^j$ states on vertices:

More general local rule: F-move

\[
F\text{-move: } \Phi \left(\begin{array}{c} i \\ j \\ k \\ m \\ l \end{array} \right) = \sum_{n=0}^{N} \sum_{\chi=1}^{N_{k\gamma n}} \sum_{\delta=1}^{N_{n\delta l}} F_{i\gamma j\delta; N_{k\gamma n} N_{n\delta l}} \Phi \left(\begin{array}{c} i \\ j \\ \chi \\ k \\ n \\ \delta \\ l \end{array} \right)
\]

- The matrix $F_{i\gamma j\delta; N_{k\gamma n} N_{n\delta l}} \rightarrow (F_{i\gamma j\delta})^m_{n\chi \delta}$

$= \text{local unitary transformation}$

[Levin-Wen, 2005; Chen-Gu-Wen, 2010]
Consistent conditions for $F_{ijk;m\alpha\beta}^{l;n\chi\delta}$: the pentagon identity

The two paths should lead to the same LU trans.:

$$
\sum_{t,\eta,\varphi,\kappa} F_{ijk;m\alpha\beta}^{l;n\chi\delta} F_{itl;n\varphi\chi}^{p;sk\gamma} F_{jkl;t\kappa\eta}^{p;sk\gamma} = \sum_{\epsilon} F_{mkl;n\beta\chi}^{p;q\delta\epsilon} F_{ijq;m\alpha\epsilon}^{p;s\phi\gamma}
$$

Such a set of non-linear algebraic equations is the famous pentagon identity.

- Their solution $N_{ij}^{k}, F_{ijk;m\alpha\beta}^{l;n\chi\delta} \rightarrow \text{Unitary fusion category (UFC)}$
- $\rightarrow \text{string-net states}$
\((T, S, c)\) and projective representation of \(\text{diff(torus)}\)

- For every element \(\hat{W}\) of diffeomorphism group \(\text{diff(torus)}\), we can extract a non-Abelain geometric phase \(W \in U(D_1)\) (up to an \(U(1)\) factor) from the many-body wavefunction \(\Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \cdots)\).

The non-Abelain geometric phase \(\hat{W} \rightarrow W\) form a projective representation of \(\text{diff(torus)}\).
\((T, S, c) \) and projective representation of \(\text{diff(torus)} \)

- For every element \(\hat{W} \) of diffeomorphism group \(\text{diff(torus)} \), we can extract a non-Abelian geometric phase \(W \in U(D_1) \) (up to an \(U(1) \) factor) from the many-body wavefunction \(\Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \cdots) \).

The non-Abelian geometric phase \(\hat{W} \rightarrow W \) form a projective representation of \(\text{diff(torus)} \).

- \(\text{MCG} = \text{diff(torus)}/\text{diff}_0(\text{torus}) \), and \(T, S \) generate the projective representation of \(\text{MCG} \).

- \((T, S, c) \) characterize projective representation of \(\text{diff(torus)} \).
\((T, S, c)\) and projective representation of \(\text{diff}(\text{torus})\)

- For every element \(\hat{W}\) of diffeomorphism group \(\text{diff}(\text{torus})\), we can extract a non-Abelain geometric phase \(W \in U(D_1)\) (up to an \(U(1)\) factor) from the many-body wavefunction \(\Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \cdots)\).

 The non-Abelain geometric phase \(\hat{W} \rightarrow W\) form a projective representation of \(\text{diff}(\text{torus})\).

- \(\text{MCG} = \text{diff}(\text{torus})/\text{diff}_0(\text{torus})\), and \(T, S\) generate the projective representation of \(\text{MCG}\).

- \((T, S, c)\) characterize projective representation of \(\text{diff}(\text{torus})\).

Conjecture: \([\text{Kong-Wen 2014}]\)

The set of (projective) representations of \(\text{diff}(M_{\text{space}})\) for different spaces \(M_{\text{space}}\) form a one-to-one characterization of topological order.

Non-trivial representation \(\leftrightarrow\) non-trivial topological order.

- Assume the space-time = $M \times S^1_t$ (a fiber bundle over S^1_t).
 Such a fiber bundle is described an element in $\hat{W} \in \text{MCG}(M)$.
 So we denote space-time = $M \times \hat{W} S^1_t$

- Volume-ind. (fixed-point) partition function

 [Kong-Wen 14]

 $Z(M \times \hat{W} S^1_t) = Z_{\text{vol-ind}}(M \times \hat{W} S^1_t)e^{-\epsilon_{\text{grnd}} V_{\text{space-time}}}$

 $Z_{\text{vol-ind}}(M \times \hat{W} S^1_t) = \text{Tr}(W)$

 W-twist
• Assume the space-time = $M \times S^1_t$ (a fiber bundle over S^1_t).
 Such a fiber bundle is described an element in $\hat{W} \in \text{MCG}(M)$.
 So we denote space-time = $M \times \hat{W} S^1_t$

• Volume-ind. (fixed-point) partition function

 \[Z(M \times \hat{W} S^1_t) = Z_{\text{vol-ind}}(M \times \hat{W} S^1_t) e^{-\epsilon_{\text{grnd}}} V_{\text{space-time}} \]

 \[Z_{\text{vol-ind}}(M \times \hat{W} S^1_t) = \text{Tr}(W) \]

• $Z_{\text{vol-ind}}(M \times S^1_t) =$ the ground state degeneracy on space M.

 \[Z_{\text{vol-ind}}(S^d \times S^1_t) = 1 \text{ (stability condition)} \]

 \[Z_{\text{vol-ind}}(S^{d-1} \times S^1 \times S^1_t) = \text{number of topological particle types.} \]

The volume-ind. partition function and the non-Abelian geometric phases are the same type of topological invariants for topologically ordered states

Xiao-Gang Wen, MIT Sept., 2014
Consider the low energy boundary effective theory of a topological order in $d+1$-dim. space-time: $Z_{\text{bndry}}(M_1^d \times M_2^d) \approx Z(M^{d+1})$

- Since the bulk is gapped, there is no interaction between the two boundaries at low energies. We expect

$$Z_{\text{bndry}}(M_1^d \times M_2^d) = Z_{\text{bndry}}(M_1^d)Z_{\text{bndry}}^*(M_2^d) \quad \text{W-twist}$$

→ the boundary effective theory is definable in the same dimension
Consider the low energy boundary effective theory of a topological order in $d + 1$-dim. space-time: $Z_{\text{bndry}}(M_1^d \times M_2^d) \approx Z(M^{d+1})$

- Since the bulk is gapped, there is no interaction between the two boundaries at low energies. We expect

$$Z_{\text{bndry}}(M_1^d \times M_2^d) = Z_{\text{bndry}}(M_1^d)Z^*_{\text{bndry}}(M_2^d)$$

\rightarrow the boundary effective theory is definable in the same dimension

- If the bulk topological order is non-trivial

$$Z_{\text{bndry}}(M_1^d \times M_2^d) \neq Z_{\text{bndry}}(M_1^d)Z^*_{\text{bndry}}(M_2^d)$$

\rightarrow the boundary effective theory is NOT definable in the same dimension.
Consider the low energy boundary effective theory of a topological order in \(d + 1\)-dim. space-time: \(Z_{\text{bndry}}(M_1^d \times M_2^d) \approx Z(M^{d+1})\)

- Since the bulk is gapped, there is no interaction between the two boundaries at low energies. We expect

\[
Z_{\text{bndry}}(M_1^d \times M_2^d) = Z_{\text{bndry}}(M_1^d) Z_{\text{bndry}}^*(M_2^d)
\]

→ the boundary effective theory is definable in the same dimension

- If the bulk topological order is non-trivial

\[
Z_{\text{bndry}}(M_1^d \times M_2^d) \neq Z_{\text{bndry}}(M_1^d) Z_{\text{bndry}}^*(M_2^d)
\]

→ the boundary effective theory is NOT definable in the same dimension.

- If the bulk topological order is non-trivial, under a diffeomorphism transformation \(W\) on \(M_1^d\), the change in \(Z_{\text{bndry}}(M_1^d)\) is given by \(Z_{\text{vol-ind}}(M^{d+1})\)

→ the boundary effective theory is NOT invariant under diffeomorphism transformation, and has a gravitational anomaly.
Topo. order classify grav. anomaly in one lower dim.

- gravi. anomaly \leftrightarrow the theory is not definable in the same dimension, but can appear as the boundary to a topo. orde.

There is an one-to-one correspondence between d-dimensional topological orders and $d-1$-dimensional gravitational anomalies

[Wen 2013, Kong-Wen 2014]
Topo. order classify grav. anomaly in one lower dim.

- grav. anomaly \leftrightarrow the theory is not definable in the same dimension, but can appear as the boundary to a topo. ordere.

There is an one-to-one correspondence between

- d-dimensional topological orders and $d-1$-dimensional gravitational anomalies

[Wen 2013, Kong-Wen 2014]

Example 1 (gapless):

- 1+1D chiral fermion $L = i(\psi^\dagger \partial_t \psi - \psi^\dagger \partial_x \psi) \rightarrow \epsilon(k) = \nu k$ has perturbative grav. anomalous. It CANNOT appear as low energy effective theory of any well-definded local 1+1D lattice model.

- But the above chiral fermion theory CAN appear as low energy effective theory for the boundary of a 2+1D topologically ordered state – the $\nu = 1$ IQH state (which has no topological excitations).

- The same bulk \rightarrow many different boundaries of the same gravitational anomaly, e.g. 3 edge modes $(\nu_1 k, -\nu_2 k, \nu_3 k)$
Example 2 (gapless):

- **1+1D chiral boson** (8 modes $c = 8$)
 \[
 L = \frac{K^E_8}{2\pi} \partial_x \phi_I \partial_t \phi_J - V_{IJ} \partial_x \phi_I \partial_x \phi_J.
 \]

- **Gravitational anomalous.**
 Realized as edge of
 8-layer bosonic QH state:
 \[
 \Psi^E_8 = \prod (z^I_i - z^J_j)^{K_{IJ}}.
 \]
 Filling fraction $\nu = 4$
 \[
 \text{det}(K^E_8) = 1 \rightarrow \text{no topo. exc.}
 \]

\[
K^E_8 = \begin{pmatrix}
 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 2 & 1 & 0 & 0 & 1 & 0 & 0 \\
 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 2 & 1 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2
\end{pmatrix}
\]
Example 2 (gapless):

- 1+1D chiral boson (8 modes $c = 8$)
 \[L = \frac{K_{ij}^{E_8}}{2\pi} \partial_x \phi_i \partial_t \phi_j - V_{ij} \partial_x \phi_i \partial_x \phi_j. \]

- Gravitational anomalous.
 Realized as edge of 8-layer bosonic QH state:
 \[\Psi_{E_8} = \prod (z_i^I - z_j^J)^{K_{ij}} \]
 Filling fraction $\nu = 4$
 \[\text{det}(K_{E_8}) = 1 \rightarrow \text{no topo. exc.} \]

Example 3 (gapped):

- 2+1D theory with excitations $(1, e, m, \epsilon)$. Fusion:
 \[e \times e = m \times m = \epsilon \times \epsilon = 1, \quad e \times m = \epsilon. \]
 Braiding: e, m, ϵ have mutual π statistics, e, m are boson ϵ is fermion.

- No gravitational anomaly. Can be realized by the toric code model.
Example 2 (gapless):
- 1+1D chiral boson (8 modes $c = 8$)
 $$L = \frac{K_{IJ}^{E_8}}{2\pi} \partial_x \phi_I \partial_t \phi_J - V_{IJ} \partial_x \phi_I \partial_x \phi_J.$$
- Gravitational anomalous.
 Realized as edge of 8-layer bosonic QH state:
 $$\Psi_{E_8} = \prod (z_i^I - z_j^J)^{K_{IJ}}$$
 Filling fraction $\nu = 4$
 $$\det(K_{E_8}^{E_8}) = 1 \rightarrow \text{no topo. exc.}$$

Example 3 (gapped):
- 2+1D theory with excitations $(1, e, m, \epsilon)$.
 Fusion:
 $$e \times e = m \times m = \epsilon \times \epsilon = 1, \ e \times m = \epsilon.$$
 Braiding: e, m, ϵ have mutual π statistics, e, m are boson ϵ is fermion.
- No gravitational anomaly. Can be realized by the toric code model.

Example 4 (gapped):
- 2+1D theory with excitations $(1, \epsilon)$. $\epsilon \times \epsilon = 1$. ϵ is a fermion.
- Grav. anomalous. Cannot be realized by any 2+1D qubit model.
 But can be realized as the 2D boundary of 3+1D toric code model.
Example 2 (gapless):

- 1+1D chiral boson (8 modes \(c = 8 \))
 \[
 L = \frac{K_{E_8}^{IJ}}{2\pi} \partial_x \phi_I \partial_t \phi_J - V_{IJ} \partial_x \phi_I \partial_x \phi_J.
 \]

 - Gravitational anomalous.
 - Realized as edge of
 - 8-layer bosonic QH state:
 \[
 \Psi_{E_8} = \prod (z_I^I - z_J^J) K_{IJ}
 \]
 - Filling fraction \(\nu = 4 \)
 - \(\det(K_{E_8}^{IJ}) = 1 \rightarrow \) no topo. exc.

\[
K_{E_8}^{IJ} = \begin{pmatrix}
2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2
\end{pmatrix}
\]

Example 3 (gapped):

- 2+1D theory with excitations (1, \(e, m, \epsilon \)). Fusion:
 \(e \times e = m \times m = \epsilon \times \epsilon = 1, \ e \times m = \epsilon \).
 - Braiding: \(e, m, \epsilon \) have mutual \(\pi \) statistics, \(e, m \) are boson \(\epsilon \) is fermion.

- No gravitational anomaly. Can be realized by the toric code model.

Example 4 (gapped):

- 2+1D theory with excitations (1, \(\epsilon \)). \(\epsilon \times \epsilon = 1 \). \(\epsilon \) is a fermion.

- Grav. anomalous. Cannot be realized by any 2+1D qubit model.
 - But can be realized as the 2D boundary of 3+1D toric code model.

Example 5 (gapped):

- 2+1D theory with excitations (1, \(\epsilon \)). \(\epsilon \times \epsilon = 1 \). \(\epsilon \) is a semion.

- No grav. anomaly. Can be realized by \(\nu = 1/2 \) bosonic Laughlin state.
Classify long-range entanglement and topological order

• 1+1D: there is no topological order [Verstraete-Cirac-Latorre 05]

• 2+1D: Abelian topological order are classified by K-matrices
 2+1D: topological orders are classified by $(MTC, c) = (T, S, c)$?
 2+1D: topo. order with gappable edge are classified by unitary fusion categories (UFC): $\mathcal{Z}(UFC) = MTC$ [Levin-Wen 05]

\[
\Phi \left(\begin{array}{c}
 \alpha \\
 \beta \\
 \gamma \\
 \delta \\
 \eta \\
 \iota \\
 \kappa \\
 \lambda \\
 \mu \\
 \nu \\
 \xi \\
 \tau \\
 \phi \\
 \chi \\
 \psi \\
 \omega \\
 \theta \\
 \vartheta \\
 \upsilon \\
 \delta \\
 \gamma \\
 \delta \\
 \gamma
Classify long-range entanglement and topological order

- 1+1D: there is no topological order [Verstraete-Cirac-Latorre 05]
 1+1D: anomalous topological order are classified by unitary fusion categories (UFC). [Lan-Wen 13] (anomalous topo. = gapped 2D edge)
- 2+1D: Abelian topological order are classified by K-matrices
 2+1D: topological orders are classified by $(MTC, c) = (T, S, c)$?
 2+1D: topo. order with gappable edge are classified by unitary fusion categories (UFC): $Z(UFC) = MTC$ [Levin-Wen 05]

$$\Phi \left(\begin{array}{c} i \\ \alpha_j \\ m \\ l \end{array} \right) = \sum F_{ijk;m\alpha\beta} \Phi \left(\begin{array}{c} j \\ \beta \\ k \end{array} \right)$$
Classify long-range entanglement and topological order

- **1+1D**: there is no topological order [Verstraete-Cirac-Latorre 05]
 1+1D: anomalous topological order are classified by unitary fusion categories (UFC). [Lan-Wen 13] (anomalous topo. = gapped 2D edge)

- **2+1D**: Abelian topological order are classified by K-matrices
 2+1D: topological orders are classified by $(MTC, c) = (T, S, c)$?
 2+1D: topo. order with gappable edge are classified by unitary fusion categories (UFC): $\mathcal{Z}(UFC) = MTC$ [Levin-Wen 05]

 \[\Phi \left(\begin{array}{c|c|c|c|c|c|c} i & j & k \\ \hline m & \beta & \end{array} \right) = \sum F_{i j k; m \alpha \beta} \Phi \left(\begin{array}{c|c|c|c|c|c|c} i & j & k \\ \hline \alpha_m & \delta & n \chi \delta \end{array} \right) \]

- **Topological order with only trivial topological excitations**: [Kong-Wen arXiv:1405.5858; Freed arXiv:1406.7278]

 1 + 1D 2 + 1D 3 + 1D 4 + 1D 5 + 1D 6 + 1D

 Boson: 0 \mathbb{Z} E_8 0 \mathbb{Z}_2 0 $\mathbb{Z} \oplus \mathbb{Z}$

 Fermion: \mathbb{Z}_2 \mathbb{Z} $p + ip$? ? ?
Our vacuum is topo. ordered (long-range entangled) – an unification of quantum information and matter

Long-range entangled qubits
- **Unify:**
 - Spin-1/2
 - Fermi statistics
 - Gauge interactions
 - Chiral fermions
 - Fractional quantum number
- **New math** (algebra):
 - tensor category
 - group cohomology
- **Predict:**
 - New discrete gauge fields

Maxwell equation
- **Unify:**
 - Electricity
 - Magnetism
 - Light
- **New math** (geometry):
 - Fiber bundle (gauge theory)
- **Predict:**
 - $\dot{E} \rightarrow B$

Topological order and long-range entanglement provide a new conceptual lens, through which we now see a much richer world of quantum materials, and which may in time illuminate the quantum substructure of the universe itself.

Xiao-Gang Wen, MIT Sept., 2014

Quantum entanglement, topological order, and tensor category
Short-range entanglements w/ symmetry → SPT phases

For gapped systems with a symmetry $H = U_g H U^\dagger_g$, $g \in G$

- there are **LRE symmetric states** → many different phases
- there are **SRE symmetric states** → one phase (no symm. breaking)
Short-range entanglements w/ symmetry \(\rightarrow \) SPT phases

For gapped systems with a symmetry \(H = U_g H U_g^\dagger, \ g \in G \)

- there are \textbf{LRE symmetric states} \(\rightarrow \) many different phases
- there are \textbf{SRE symmetric states} \(\rightarrow \) many different phases

We may call them \textit{symmetry protected trivial} (SPT) phase

\[g_1 \quad g_2 \]

\[\text{SRE} \]

\[\text{topological order} \]

\[\text{LRE 1} \quad \text{LRE 2} \]

\[\text{SY–SRE 1} \quad \text{SY–SRE 2} \]

\[\text{SB–SRE 1} \quad \text{SB–SRE 2} \]

\[\text{SB–LRE 1} \quad \text{SB–LRE 2} \]

\[\text{SY–LRE 1} \quad \text{SY–LRE 2} \]

- SPT phases = equivalent class of \textit{symmetric} LU transformations

\[\text{SPT 1} \quad \text{SPT 2} \]

\[\text{phase transition} \]

\[\text{preserve symmetry} \]

\[\text{no symmetry} \]

\[\text{symmetry breaking (group theory)} \]

\[\text{topological orders} \ (???) \]

\[\text{SPT phases} \ (???) \]
Short-range entanglements w/ symmetry \rightarrow SPT phases

For gapped systems with a symmetry $H = U_g H U_g^\dagger$, $g \in G$

- there are **LRE symmetric states** \rightarrow many different phases
- there are **SRE symmetric states** \rightarrow many different phases

We may call them **symmetry protected trivial (SPT)** phase
or **symmetry protected topological (SPT)** phase

- **SPT phases** = equivalent class of *symmetric* LU transformations
- **1D Haldane phase**, [Haldane 83] 2D/3D topological insulators, [Kane-Mele 05; Bernevig-Zhang 06] [Moore-Balents 07; Fu-Kane-Mele 07] are examples of SPT phases.

Xiao-Gang Wen, MIT Sept., 2014
Topological states and anomalies

Topologically ordered state
- Theory with grav. anomaly

SPT state with on-site symmetry
- Theory with gauge (symm.) anomaly
- Theory with mixed gauge/grav. anomaly

SET orders
- (Tensor category w/ symmetry)

SPT orders
- (Group cohomology theory)

A classification of SPT orders

- The Haldane phase has only short-range entanglement, non-trivial only because of symmetry \rightarrow notion of SPT order. [Gu-Wen 2009].
A classification of SPT orders

- The Haldane phase has only short-range entanglement, non-trivial only because of symmetry → notion of SPT order. [Gu-Wen 2009].

- **A classification SPT order** (w/ gauge anomalous boundary):
 [Chen-Gu-Liu-Wen 2011]

 Group cohomology $\mathcal{H}^{d+1}[G, U(1)]$ classify (one-to-one) the $d + 1$D SPT order with an on-site symmetry G and whose boundary has only pure gauge anomaly.
A classification of SPT orders

- The Haldane phase has only short-range entanglement, non-trivial only because of symmetry \(\rightarrow\) notion of SPT order. [Gu-Wen 2009].

- **A classification SPT order (w/ gauge anomalous boundary)**:
 [Chen-Gu-Liu-Wen 2011]

 Group cohomology \(H^{d+1}[G, U(1)]\) classify (one-to-one) the \(d+1\)D **SPT order** with an on-site symmetry \(G\) and whose boundary has only pure gauge anomaly.

- The boundary of non-trivial SPT order has non-trivial gauge anomaly. SPT orders described by \(H^{d+1}[G, U(1)]\) classify pure gauge anomalies in one low dim. (inc. global). [Wen 2013]
A classification of SPT orders

- The Haldane phase has only short-range entanglement, non-trivial only because of symmetry \rightarrow notion of SPT order. [Gu-Wen 2009].

- **A classification SPT order (w/ gauge anomalous boundary):** [Chen-Gu-Liu-Wen 2011]
 - Group cohomology $\mathcal{H}^{d+1}[G, U(1)]$ classify (one-to-one) the $d + 1$D SPT order with an on-site symmetry G and whose boundary has only pure gauge anomaly.

- The boundary of non-trivial SPT order has non-trivial gauge anomaly. SPT orders described by $\mathcal{H}^{d+1}[G, U(1)]$ classify pure gauge anomalies in one low dim. (inc. global). [Wen 2013]

- The partition function of a SPT state $Z_{\text{vol-ind}}(M^d) = 1$ (trivial)
 - If we gauge the symmetry $Z_{\text{vol-ind}}(M^3, A) = e^{i\int_{M^3} \frac{k}{4\pi} A dA}$ (for 2+1D $U(1)$ SPT state classified by $k \in \mathcal{H}^3[U(1), U(1)] = \mathbb{Z}$).

 [Chen-Wen 2012, Lu-Vishwanath 2012, Liu-Wen 2013]

 We can probe the SPT states by gauging the symm. [Levin-Gu 12]
SPT state with mixed-gauge-grav. anomalous boundary

- Probe topological order and/or SPT order by gauging the symmetry and choosing curved space-time.
 - Gauge topological term → SPT states of group cohomology
 - Gravitational topological term → topologically ordered states
 - Mixed gauge-grav. topological term → new SPT states

- In 4D space, a $U(1)$ monople is a loop (not a point). Such a $U(1)$ monople-loop carry a gapless edge states of k-copy of E_8 bosonic IQH state.

- A new class of $U(1)$ SPT state in 3+1D labeled by $k \in \mathbb{Z}$:
 $$Z_{\text{vol-ind}}(A_i, g_{\mu\nu}) = e^{i k \int_M A \wedge \omega_3(g_{\mu\nu})}, \quad \omega_3 = \text{grav. CS term}$$

- A new class of $U(1)$ SPT state in 4+1D labeled by $k \in \mathbb{Z}_2$:
 $$Z_{\text{vol-ind}}(A_i, g_{\mu\nu}) = e^{i k \int_{M^4} A \wedge w_2(g_{\mu\nu})}, \quad w_i \text{ is the } i\text{th Stiefel-Whitney class.}$$

[Wang-Gu-Wen 14]
SPT state with mixed-gauge-grav. anomalous boundary

- Probe topological order and/or SPT order by gauging the symmetry and choosing curved space-time.
 - Gauge topological term \rightarrow SPT states of group cohomology
 - Gravitational topological term \rightarrow topologically ordered states
 - Mixed gauge-grav. topological term \rightarrow new SPT states

- A new class of $U(1)$ SPT state in 4+1D labeled by $k \in \mathbb{Z}$:
 \[
 Z_{\text{vol-ind}}(A_i, g_{\mu\nu}) = e^{i\frac{k}{3} \int_{M^5} dA \wedge \omega_3(g_{\mu\nu})}, \quad \omega_3 = \text{grav. CS term}
 \]
 - In 4D space, a $U(1)$ monople is a loop (not a point). Such a $U(1)$ monople-loop carry a gapless edge states of k-copy of E_8 bosonic IQH state.

[Wang-Gu-Wen 14]
SPT state with mixed-gauge-grav. anomalous boundary

- Probe topological order and/or SPT order by gauging the symmetry and choosing curved space-time.
 - Gauge topological term \(\rightarrow \) SPT states of group cohomology
 - Gravitational topological term \(\rightarrow \) topologically ordered states
 - Mixed gauge-grav. topological term \(\rightarrow \) new SPT states

- A new class of \(U(1) \) SPT state in 4+1D labeled by \(k \in \mathbb{Z} \):
 \[
 Z_{\text{vol-ind}}(A_i, g_{\mu\nu}) = e^{i \frac{k}{3} \int_{M^5} dA \wedge \omega_3(g_{\mu\nu})}, \quad \omega_3 = \text{grav. CS term}
 \]
 - In 4D space, a \(U(1) \) monople is a loop (not a point). Such a \(U(1) \) monople-loop carry a gapless edge states of \(k \)-copy of \(E_8 \) bosonic IQH state.

- A new class of \(U(1) \) SPT state in 3+1D labeled by \(k \in \mathbb{Z}_2 \):
 \[
 Z_{\text{vol-ind}}(A_i, g_{\mu\nu}) = e^{i \frac{k}{2} \int_{M^4} dA \wedge w_2(g_{\mu\nu})}
 \]
 where \(w_i \) is the \(i^{th} \) Stiefel-Whitney class.

[Wang-Gu-Wen 14]

Xiao-Gang Wen, MIT Sept., 2014
Classify long-range entanglement and topological order

- **1+1D:** there is no topological order [Verstraete-Cirac-Latorre 05]

 1+1D: anomalous topological order are classified by unitary fusion categories (UFC). [Lan-Wen 13] (anomalous topo. \(=\) gapped 2D edge)

- **2+1D:** Abelian topological order are classified by \(K\)-matrices

 2+1D: topological orders are classified by \((UMTC, c) = (T, S, c)\)?

 2+1D: topo. order with gappable edge are classified by unitary fusion categories (UFC): \(Z(UFC) = UMTC\) [Levin-Wen 05]

\[
\Phi \left(\alpha_{i}^{m} \beta_{l}^{j} \right) = \sum F_{i j k ; m \alpha \beta} \Phi \left(\alpha_{l}^{n} \right)
\]

- **Topological order with only trivial topological excitations:**

 [Kong-Wen 2014; Freed 2014]

\[
\begin{array}{cccccc}
1 + 1D & 2 + 1D & 3 + 1D & 4 + 1D & 5 + 1D & 6 + 1D \\
Boson: & 0 & \mathbb{Z} E_8 & 0 & \mathbb{Z}_2 & 0 & \mathbb{Z} \oplus \mathbb{Z} \\
Fermion: & \mathbb{Z}_2 & \mathbb{Z} p + ip & ? & ? & ? & ?
\end{array}
\]
Monoid and group structures of topological orders

- Let $C_d = \{ a, b, c, \cdots \}$ be a set of topologically ordered phases in d dimensions. Stacking a-TO state and b-TO state → a c-TO state:

 $a \boxtimes b = c$, \hspace{1cm} a, b, c \in C_d

Diagram:

- c-TO
 - a-TO
 - b-TO

In general,

\[
Z_a \otimes \text{vol-ind}(M \ltimes \hat{W}_{S^1_t}) = Z_a \otimes \text{vol-ind}(M \ltimes \hat{W}_{S^1_t}) Z_a \otimes \text{vol-ind}(M \ltimes \hat{W}_{S^1_t})^{-1}
\]

- A topological order is invertible iff its $Z_a \otimes \text{vol-ind}(M \ltimes \hat{W}_{S^1_t}) = e^{i\theta}$.
- A topological order is invertible iff it has no topological excitations.

[Kong-Wen 14, Freed 14]
Monoid and group structures of topological orders

- Let \(C_d = \{a, b, c, \cdots\} \) be a set of topologically ordered phases in \(d \) dimensions.

 Stacking an \(a \)-TO state and a \(b \)-TO state \(\rightarrow \) a \(c \)-TO state:
 \[a \boxtimes b = c, \quad a, b, c \in C_d \]

- \(\boxtimes \) makes \(C_d \) a monoid (a group without inverse).

Consider topological order \(a \) and its time reversal \(a^* \)

\[
Z_{\text{vol-ind}}^a(M \times \hat{W} S^1_t) = \left[Z_{\text{vol-ind}}^a(M \times \hat{W} S^1_t)\right]^*, \text{ then}
\]

\[
Z_{\text{vol-ind}}^{a \boxtimes a^*}(M \times \hat{W} S^1_t) = Z_{\text{vol-ind}}^a(M \times \hat{W} S^1_t)Z_{\text{vol-ind}}^{a^*}(M \times \hat{W} S^1_t)
\]

In general, \(Z_{\text{vol-ind}}^a(M \times \hat{W} S^1_t)Z_{\text{vol-ind}}^{a^*}(M \times \hat{W} S^1_t) \neq 1 \rightarrow a \boxtimes a^* \) is a non trivial topological order, and \(a \)-TO has no inverse.
Monoid and group structures of topological orders

- Let $C_d = \{a, b, c, \cdots\}$ be a set of topologically ordered phases in d dimensions.

 Stacking a-TO state and b-TO state \rightarrow a c-TO state: $a \boxtimes b = c, \ a, b, c \in C_d$

- \(\boxtimes \) make C_d a monoid (a group without inverse).

Consider topological order a and its time reversal a^*

\[
Z_{vol-ind}^a(M \times_{\widehat{W}} S^1_t) = [Z_{vol-ind}^a(M \times_{\widehat{W}} S^1_t)]^*, \ 	ext{then}
\]

\[
Z_{vol-ind}^{a \boxtimes a^*}(M \times_{\widehat{W}} S^1_t) = Z_{vol-ind}^a(M \times_{\widehat{W}} S^1_t)Z_{vol-ind}^{a^*}(M \times_{\widehat{W}} S^1_t)
\]

In general, $Z_{vol-ind}^a(M \times_{\widehat{W}} S^1_t)Z_{vol-ind}^{a^*}(M \times_{\widehat{W}} S^1_t) \neq 1 \rightarrow a \boxtimes a^*$ is a non trivial topological order, and a-TO has no inverse.

- A topological order is invertible iff its $Z_{vol-ind}(M \times_{\widehat{W}} S^1_t) = e^{i\theta}$

A topological order is invertible iff it has no topological excitations.

[Kong-Wen 14, Freed 14]
Classify invertible bosonic topo. order (with no topo. exc.)

In 2+1D:

- $Z_{\text{vol-ind}}(M \times_{\tilde{W}} S^1_t) = e^{\frac{i 2\pi c}{24} \int_{M \times_{\tilde{W}} S^1_t} \omega_3(g_{\mu\nu})}$ where ω_3 is the gravitational Chern-Simons term: $d\omega_3 = p_1$ and p_1 is the first Pontryagin class.
In 2+1D:

- $Z_{\text{vol-ind}}(M \times \tilde{W} S^1_t) = e^{i \frac{2\pi c}{24} \int_{M \times \tilde{W} S^1_t} \omega_3(g_{\mu\nu})}$ where ω_3 is the gravitational Chern-Simons term: $d\omega_3 = p_1$ and p_1 is the first Pontryagin class.

- The quantization of the topological term: $c = 8 \times \text{int.} \rightarrow \mathbb{Z}$-class: $\int_M \omega_3(g_{\mu\nu}) = \int_{N, \partial N = M} p_1 = \int_{N', \partial N' = M} p_1 \mod 3$, since $\int_{N_{\text{closed}}} p_1 = 0 \mod 3$.
Classify invertible bosonic topo. order (with no topo. exc.)

In 2+1D:

• \(Z_{\text{vol-ind}}(M \times \hat{W} S^1_t) = e^{i \frac{2\pi c}{24} \int_{M \times \hat{W} S^1_t} \omega_3(g_{\mu \nu})} \) where \(\omega_3 \) is the gravitational Chern-Simons term: \(d\omega_3 = p_1 \) and \(p_1 \) is the first Pontryagin class.

• The quantization of the topological term: \(c = 8 \times \text{int.} \to \mathbb{Z} \)-class:
 \[
 \int_M \omega_3(g_{\mu \nu}) = \int_{N, \partial N = M} p_1 = \int_{N', \partial N' = M} p_1 \mod 3,
 \]
 since \(\int_{N_{\text{closed}}} p_1 = 0 \mod 3 \).

• Relation to gravitational anomaly on the boundary \(B^2 \):
 \[
 (1) \quad Z = e^{i \int_{B^2} L_{\text{eff}}^{\text{bndry}}(g_{\mu \nu})} e^{i \frac{2\pi c}{24} \int_{M^3, \partial M^3 = B^2} \omega_3(g_{\mu \nu})}
 \]
 \(e^{i \frac{2\pi c}{24} \int_{M^3, \partial M^3 = B^2} \omega_3(g_{\mu \nu})} \) is not differomorphism invariant, but
 \(e^{i \int_{B^2} L_{\text{eff}}^{\text{bndry}}(g_{\mu \nu})} e^{i \frac{2\pi c}{24} \int_{M^3, \partial M^3 = B^2} \omega_3(g_{\mu \nu})} \) is.

 (2) Consider an 1+1D differomorphism \(W : B^2 \to B^2, g_{\mu \nu} \to g_{\mu \nu}^W \).
 \[
 \int_{B^2} L_{\text{eff}}^{\text{bndry}}(g_{\mu \nu}^W) - \int_{B^2} L_{\text{eff}}^{\text{bndry}}(g_{\mu \nu}) = \frac{2\pi c}{24} \int_{B^2 \times \hat{W} S^1} \omega^3(g_{\mu \nu})
 \]
Classify invertible bosonic topo. order (with no topo. exc.)

In 4+1D:

- \(Z_{\text{vol-ind}}(M \times \widetilde{W} S^1_t) = e^{i\pi \int_{M \times \widetilde{W} S^1_t} w_2 w_3} \) where \(w_i \) is the \(i^{th} \) Stiefel-Whitney class \(\rightarrow \mathbb{Z}_2 \)-class. We find \(\int_{M \times \widetilde{W} S^1_t} w_2 w_3 = 1 \) when \(M = \mathbb{C}P^2 \) and \(W : \mathbb{C}P^2 \rightarrow (\mathbb{C}P^2)^* \)

- Global grav. anomaly: for \(M = \mathbb{C}P^2 \) and \(W : \mathbb{C}P^2 \rightarrow (\mathbb{C}P^2)^* \)
 \[
 \int_M L_{\text{eff}}^{\text{bndry}}(g_{\mu\nu}^W) - \int_M L_{\text{eff}}^{\text{bndry}}(g_{\mu\nu}) = \int_{M \times \widetilde{W} S^1_t} w_2 w_3
 \]
Classify invertible bosonic topo. order (with no topo. exc.)

In 4+1D:

• \(Z_{\text{vol-ind}}(M \times_{\hat{W}} S^1_t) = e^{i\pi \int_{M \times_{\hat{W}} S^1_t} w_2 w_3} \) where \(w_i \) is the \(i \)th Stiefel-Whitney class \(\rightarrow \mathbb{Z}_2 \)-class. We find \(\int_{M \times_{\hat{W}} S^1_t} w_2 w_3 = 1 \) when \(M = \mathbb{C}P^2 \) and \(W : \mathbb{C}P^2 \rightarrow (\mathbb{C}P^2)^* \)

• Global grav. anomaly: for \(M = \mathbb{C}P^2 \) and \(W : \mathbb{C}P^2 \rightarrow (\mathbb{C}P^2)^* \)

\[
\int_M L_{\text{eff}}^{\text{bndry}}(g^W_{\mu\nu}) - \int_M L_{\text{eff}}^{\text{bndry}}(g_{\mu\nu}) = \int_{M \times_{\hat{W}} S^1_t} w_2 w_3
\]

In 6+1D:

• Two independent grav. Chern-Simons terms:

\[
Z_{\text{vol-ind}}(M^7) = e^{2\pi i \int_M \left[k_1 \frac{\hat{\omega}_7 - 2\omega_7}{5} + k_2 \frac{-2\hat{\omega}_7 + 5\omega_7}{9} \right]}
\]

where \(d\omega_7 = p_2, \ d\hat{\omega}_7 = p_1 p_1 \rightarrow \mathbb{Z} \oplus \mathbb{Z}\)-class \((k_1, k_2)\). [Kong-Wen 14]

\[
\begin{array}{cccccccc}
1 + 1D & 2 + 1D & 3 + 1D & 4 + 1D & 5 + 1D & 6 + 1D \\
\text{Boson:} & 0 & \mathbb{Z} & E_8 & 0 & \mathbb{Z}_2 & 0 & \mathbb{Z} \oplus \mathbb{Z} \\
\text{Fermion:} & \mathbb{Z}_2 & \mathbb{Z} & p+ip & ? & ? & ? & ?
\end{array}
\]
Topo. orders in different dim. form a cochain complex

- Three kind of topological orders in d-dim.: boundary bulk
 - Exact topological order TO_d^{exct} gappable definable
 - Closed topological order TO_d^{clsd} gapless definable
 - Generic topological order TO_d^{gnrc} may not

The gapped boundary is described by a generic topological order TO_d that uniquely determines the bulk topological order TO_{d+1} which is exact: $Z(\text{TO}_d) = TO_{d+1}$.

$Z(\text{Z}(\text{TO}_d)) = 1_{d+1}$ the trivial topological order.

Topological orders form a cochain complex: $\overset{\rightarrow}{Kong-Wen\ 2014}$

$Z \rightarrow \{TO_{d-1}\} \rightarrow \{TO_d\} \rightarrow \{TO_{d+1}\} \rightarrow$
Topo. orders in different dim. form a cochain complex

- Three kind of topological orders in d-dim.: boundary bulk
 - Exact topological order $\textit{TO}_d^{\textit{exact}}$ gappable definable
 - Closed topological order $\textit{TO}_d^{\textit{clsd}}$ gapless definable
 - Generic topological order $\textit{TO}_d^{\textit{gnrc}}$ may not

- The gapped boundary is described by a generic topological order \textit{TO}_d that uniquely determines the bulk topological order \textit{TO}_{d+1} which is exact: $Z(\textit{TO}_d) = \textit{TO}_{d+1}$.

- $Z(Z(\textit{TO}_d)) = 1_{d+1}$ – the trivial topological order.
Topo. orders in different dim. form a cochain complex

- Three kind of topological orders in d-dim.: boundary bulk

 Exact topological order TO_d^{exct} gappable definable

 Closed topological order TO_d^{clsd} gapless definable

 Generic topological order TO_d^{gnrc} may not

- The gapped boundary is described by a generic topological order TO_d that uniquely determine the bulk topological order TO_{d+1} which is exact: $Z(\text{TO}_d) = \text{TO}_{d+1}$.

- $Z(Z(\text{TO}_d)) = 1_{d+1}$ – the trivial topological order.

- Topological orders form a cochain complex: [Kong-Wen 2014]

$$
\begin{array}{c}
\mathbb{Z} \rightarrow \{ \text{TO}_{d-1} \} \\
\mathbb{Z} \rightarrow \{ \text{TO}_d \} \\
\mathbb{Z} \rightarrow \{ \text{TO}_{d+1} \}
\end{array}
$$
Topo. orders in different dim. form a cochain complex

- Three kind of topological orders in d-dim.:
 - Boundary bulk
 - Exact topological order TO_d^{exact}
 - Gappable definable
 - Closed topological order TO_d^{clsd}
 - Gapless definable
 - Generic topological order TO_d^{gnrc}
 - May not

- The gapped boundary is described by a generic topological order TO_d that uniquely determine the bulk topological order TO_{d+1} which is exact: $Z(TO_d) = TO_{d+1}$.

- $Z(Z(TO_d)) = 1_{d+1}$ – the trivial topological order.

- Topological orders form a cochain complex: [Kong-Wen 2014]
 \[
 Z \rightarrow \{TO_{d-1}\} \rightarrow \{TO_d\} \rightarrow \{TO_{d+1}\} \rightarrow \]

- Example: 1+1D generic topological orders are classified by UFC
 2+1D closed topological orders are classified by MTC
 \[
 UFC = \{TO_{1+1}\} \xrightarrow{Z_2} MTC = \{TO_{2+1}^{\text{clsd}}\} \xrightarrow{Z_3} 1_{3+1}\]

where Z_2 is the Drinfeld center.
A classification of gapped quantum liquids

- **Symmetry breaking phases:** *group theory*
 No fractional statistics, no fractional quantum numbers
 Example: Ferromagnets, superfluids, *etc*
 Key: Symmetry breaking

- **Topo. ordered phases:** *n-category theory (extended TQFT)*
 Have fractional statistics, and fractional quantum numbers
 Example: FQH states, \mathbb{Z}_2 spin liquid states, chiral spin liquid states, *etc*
 Key: Long-range entanglement (topological order)

- **SPT ordered phases:** *group cohomology theory and beyond*
 No fractional statistics, no fractional quantum numbers
 Example: Haldane phase in 1+1D, topological insulators, *etc*
 Key: Symmetry protection

- The above three features can coexist.