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Abstract In this article we study a differential algebra of modular-type functions attached
to the periods of a one-parameter family of Calabi–Yau varieties which is mirror dual to
the universal family of quintic threefolds. Such an algebra is generated by seven functions
satisfying functional and differential equations in parallel to themodular functional equations
of classical Eisenstein series and the Ramanujan differential equation. Our result is the first
example of automorphic-type functions attached to varieties whose period domain is not
Hermitian symmetric. It is a reformulation and realization of a problem of Griffiths from
the seventies on the existence of automorphic functions for the moduli of polarized Hodge
structures.

Keywords Gauss–Manin connection · Yukawa coupling · Hodge filtration · Griffiths
transversality

Mathematics Subject Classification 14N35 · 14J15 · 32G20

1 Introduction

In 1991 Candelas et al. in [2] calculated in the framework of mirror symmetry a generating
function, called the Yukawa coupling, which predicts the number of rational curves of a
fixed degree in a generic quintic threefold. Since then there were many efforts to relate
the Yukawa coupling to classical modular or quasi-modular forms, however, there was no
success. The theory of modular or quasi-modular forms is attached to elliptic curves, or more
accurately, to their periods, see for instance [11,12]. In general the available automorphic
form theories are attached to varieties whose Hodge structures form a Hermitian symmetric
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domain. This is not the case for the mirror quintic Calabi–Yau threefolds which are the
underlying varieties of the Yukawa coupling. An attempt to formulate automorphic form
theories beyond Hermitian symmetric domains was first done in the seventies by P. Griffiths
in the framework of Hodge structures, see [7]. However, such a formulation has lost the
generating function role of modular forms. The main aim of the present text is to reformulate
and realize the construction of a modular-type function theory attached to mirror quintic
threefolds. Our approach is purely geometric and it uses Grothendieck’s algebraic de Rham
cohomology [8] and the algebraic Gauss–Manin connection due to Katz and Oda [9], see
Theorem 3. From this we derive the algebra of modular-type functions, see Theorem 1, and
describe the functional equations satisfied by its elements, see Theorem 2. For preliminaries
in Hodge theory and modular forms the reader is referred to Voisin’s book [18] and Zagier’s
article [19], respectively. The present work continues and simplifies our previous article [13].

Consider the following fourth-order linear differential equation:

θ4 − z

(
θ + 1

5

)(
θ + 2

5

)(
θ + 3

5

)(
θ + 4

5

)
= 0, θ = z

∂

∂z
. (1)

A basis of the solution space of (1) is given by:

ψi (z) = 1

i !
∂ i

∂εi

(
5−5εF(ε, z)

)
, j = 0, 1, 2, 3,

where

F(ε, z) :=
∞∑
n=0

( 1
5 + ε

)
n

( 2
5 + ε

)
n

( 3
5 + ε

)
n

( 4
5 + ε

)
n

(1 + ε)4n
zε+n

and (a)n := a(a + 1) · · · (a + n − 1) for n > 0 and (a)0 := 1. We use the base change

⎛
⎜⎜⎝
x11
x21
x31
x41

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
0 5 5

2 − 25
12

−5 0 − 25
12 200 ζ(3)

(2π i)3

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1
54

ψ3

2π i
54

ψ2

(2π i)2

54
ψ1

(2π i)3

54
ψ0

⎞
⎟⎟⎟⎟⎟⎠

.

In the new basis x1i the monodromy of (1) around the singularities z = 0 and z = 1 is
respectively given by:

M0 :=

⎛
⎜⎜⎝
1 1 0 0
0 1 0 0
5 5 1 0
0 −5 −1 1

⎞
⎟⎟⎠ , M1 :=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

that is, the analytic continuation of the 4 × 1 matrix [xi1] around the singularity z = 0
(respectively z = 1) is given by M0[xi1], respectively M1[xi1] (see for instance [5,17] and
[3] for similar calculations). The functions xi1 can be written as periods of a holomorphic
differential 3-form over topological cycles with integral coefficients (see Sect. 4).

Let

τ0 := x11
x21

, q := e2π iτ0 ,

and

xi j := θ j−1xi1, i, j ∈ {1, 2, 3, 4}.
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Theorem 1 Let

t0 = x21,

t1 = 54x21 ((6z − 1)x21 + 5(11z − 1)x22 + 25(6z − 1)x23 + 125(z − 1)x24) ,

t2 = 54x221 ((2z − 7)x21 + 15(z − 1)x22 + 25(z − 1)x23) ,

t3 = 54x321 ((z − 6)x21 + 5(z − 1)x22) ,

t4 = zx521,

t5 = 55(z − 1)x221 (x12x21 − x11x22) ,

t6 = 55(z − 1)x21 (3(x12x21 − x11x22) + 5(x13x21 − x11x23)) .

There are holomorphic functions hi defined in some neighborhood of 0 ∈ C such that

ti =
(
2π i

5

)di
hi

(
e2π iτ0

)
, (2)

where

di := 3(i + 1), i ∈ {0, 1, 2, 3, 4}, d5 := 11, d6 := 8.

Moreover, the ti satisfy the following ordinary differential equation:

Ra :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṫ0 = 1
t5

(6 · 54t50 + t0t3 − 54t4)

ṫ1 = 1
t5

(−58t60 + 55t40 t1 + 58t0t4 + t1t3)

ṫ2 = 1
t5

(−3 · 59t70 − 54t50 t1 + 2 · 55t40 t2 + 3 · 59t20 t4 + 54t1t4 + 2t2t3)

ṫ3 = 1
t5

(−510t80 − 54t50 t2 + 3 · 55t40 t3 + 510t30 t4 + 54t2t4 + 3t23 )

ṫ4 = 1
t5

(56t40 t4 + 5t3t4)

ṫ5 = 1
t5

(−54t50 t6 + 3 · 55t40 t5 + 2t3t5 + 54t4t6)

ṫ6 = 1
t5

(3 · 55t40 t6 − 55t30 t5 − 2t2t5 + 3t3t6)

(3)

with ∗̇ := ∂∗
∂τ0

.

We define the weights deg(ti ) := di . In the right hand side of Ra we have homogeneous
rational functions of degree 4, 7, 10, 13, 16, 12, 9, respectively. Note that the degree of a
quotient a

b is defined to be deg(a) − deg(b). These are the same degrees in the left hand side
if we define deg(ṫi ) := deg(ti )+1. The ordinary differential equationRa is a generalization of
the Ramanujan differential equations satisfied by Eisenstein series, see for instance [12,19].

We write each hi as a formal power series in q, hi = ∑∞
n=0 hi,nq

n and substitute in (3)
with ∗̇ = 5q ∂∗

∂q and we see that it determines all the coefficients hi,n uniquely with the initial
values:

h0,0 = 1

5
, h0,1 = 24, h4,0 = 0 (4)

and assuming that h5,0 �= 0. In fact the differential equation (3) seems to be the simplest
way of writing the mixed recursion between hi,n, n ≥ 2. Some of the first coefficients of the
hi are given in the table at the end of the Introduction. The differential Galois group of (1)
is Sp(4,C). This together with the equality (2) implies that the functions h0, h1, . . . , h6 are
algebraically independent over C (see [13], Theorem 2).

The reader who is expert in classical modular forms may ask for the functional equations
of the ti . Let H be the monodromy covering of (C − {0, 1}) ∪ {∞} associated with the
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monodromy group 	 := 〈M1, M0〉 of (1) (see §4). The set H is biholomorphic to the upper
half plane, see [1]. This is equivalent to say that the only relation between M0 and M1 is
(M0M1)

5 = I . We will not need to assume this statement because we do not need the
coordinate system on H given by this biholomorphism. The monodromy group 	 acts from
the left on H in a canonical way:

(A, w) �→ A(w) ∈ H, A ∈ 	, w ∈ H

and the quotient 	\H is biholomorphic to (C − {0, 1}) ∪ {∞}. This action has one elliptic
point ∞ of order 5 and two cusps 0 and 1. We can regard xi j as holomorphic one-valued
functions on H. For simplicity we use the same notation for these functions: xi j : H → C.
We define

τi : H → C, τ0 := x11
x21

, τ1 := x31
x21

, τ2 := x41
x21

, τ3 := x31x22 − x32x21
x11x22 − x12x21

which are a priori meromorphic functions on H. We will use τ0 as a local coordinate around
a point w ∈ H whenever w is not a pole of τ0 and the derivative of τ0 does not vanish at w.
In this way we need to express the τi , i ∈ {1, 2, 3} as functions of τ0:

τ1 = −25

12
+ 5

2
τ0(τ0 + 1) + ∂H

∂τ0
,

τ2 = 200
ζ(3)

(2π i)3
− 5

6
τ0

(
5

2
+ τ 20

)
− τ0

∂H

∂τ0
− 2H,

τ3 = ∂τ1

∂τ0
,

where

H = 1

(2π i)3

∞∑
n=1

⎛
⎝∑

d|n
ndd

3

⎞
⎠ e2π iτ0n

n3
(5)

and nd is the virtual number of rational curves of degree d in a generic quintic threefold. The
numbers nd are also called instanton numbers or BPS degeneracies. A complete description
of the image of τ0 is not yet known. Now, the ti are well-defined holomorphic functions on
H. The functional equations of the ti with respect to the action of an arbitrary element of 	

are complicated mixed equalities which we have described in §4. Since 	 is generated by M0

and M1 it is enough to explain them for these two elements. The functional equations of the
ti with respect to the action of M0 and written in the τ0-coordinate are the trivial equalities
ti (τ0) = ti (τ0 + 1), i = 0, 1, . . . , 6.

Theorem 2 With respect to the action of M1, the ti written in the τ0-coordinate satisfy the
following functional equations:

t0(τ0) = t0

(
τ0

τ2 + 1

)
1

τ2 + 1
,

t1(τ0) = t1

(
τ0

τ2 + 1

)
1

(τ2 + 1)2
+ t7

(
τ0

τ2 + 1

)
τ0τ3 − τ1

(τ2 + 1)(τ 20 τ3 − τ0τ1 + τ2 + 1)

+ t9

(
τ0

τ2 + 1

) −τ0

(τ2 + 1)2
+ 1

τ2 + 1
,

t2(τ0) = t2

(
τ0

τ2 + 1

)
1

(τ2 + 1)3
+ t6

(
τ0

τ2 + 1

)
τ0τ3 − τ1

(τ2 + 1)2(τ 20 τ3 − τ0τ1 + τ2 + 1)
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+ t8

(
τ0

τ2 + 1

) −τ0

(τ2 + 1)3
,

t3(τ0) = t3

(
τ0

τ2 + 1

)
1

(τ2 + 1)4
+ t5

(
τ0

τ2 + 1

)
τ0τ3 − τ1

(τ2 + 1)3(τ 20 τ3 − τ0τ1 + τ2 + 1)

t4(τ0) = t4

(
τ0

τ2 + 1

)
1

(τ2 + 1)5
,

t5(τ0) = t5

(
τ0

τ2 + 1

)
1

(τ2 + 1)2(τ 20 τ3 − τ0τ1 + τ2 + 1)
,

t6(τ0) = t6

(
τ0

τ2 + 1

)
1

(τ2 + 1)(τ 20 τ3 − τ0τ1 + τ2 + 1)
+ t8

(
τ0

τ2 + 1

)
τ 20

(τ2 + 1)3
,

where

t7 := (55t40 + t3)t6 − (55t30 + t2)t5

54(t4 − t50 )
,

t8 := 54(t50 − t4)

t5
,

t9 := −55t40 − t3
t5

.

Since we do not know the global behavior of τ0, the above equalities must be interpreted in
the following way: for any fixed branch of ti (τ0) there is a path γ in the image of τ0 : H → C

which connects τ0 to
τ0

τ2+1 and such that the analytic continuations of the ti along the path γ

satisfies the above equalities. For this reason it may be reasonable to use a new name for all
the ti in the right hand side of the equalities in Theorem 2. We could also state Theorem 2
without using any local coordinate system on H: we regard ti as holomorphic functions on
H and, for instance, the first equality in Theorem 2 can be derived from the equalities:

t0(w) = t0(M1(w))
1

τ2(w) + 1
, τ0(M1(w)) = τ0(w)

τ2(w) + 1
.

The Yukawa coupling Y turns out to be

Y = 58(t4 − t50 )2

t35

=
(
2π i

5

)−3 (
5 + 2875

q

1 − q
+ 609250 · 23 q2

1 − q2
+ · · · + ndd

3 qd

1 − qd
+ · · ·

)

and so it satisfies the functional equation

Y (τ0) = Y

(
τ0

τ2 + 1

) (
τ 20 τ3 − τ0τ1 + τ2 + 1

)3
(τ2 + 1)4

.

The basic idea behind all the computations in Theorem 1 and Theorem 2 lies in the following
geometric theorem:

Theorem 3 Let T be the moduli of pairs (W, [α1, α2, α3, α4]), where W is a mirror quintic
Calabi–Yau threefold and

αi ∈ F4−i/F5−i , i ∈ {1, 2, 3, 4}
[〈αi , α j 〉] = �.
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Here, H3
dR(W ) is the third algebraic de Rham cohomology of W, Fi is the i th piece of the

Hodge filtration of H3
dR(W ), 〈·, ·〉 is the intersection form in H3

dR(W ) and � is the constant
matrix:

� :=

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠ . (6)

Then there is a unique vector fieldRa in T such the Gauss–Manin connection of the universal
family of mirror quintic Calabi–Yau varieties over T composed with the vector field Ra,
namely ∇Ra, satisfies:

∇Ra(α1) = α2,

∇Ra(α2) = Yα3,

∇Ra(α3) = −α4,

∇Ra(α4) = 0

for some regular function Y in T . In fact,

T ∼=
{
(t0, t1, t2, t3, t4, t5, t6) ∈ C

7 | t5t4(t4 − t50 ) �= 0
}

, (7)

and under this isomorphism the vector field Ra as an ordinary differential equation is (3)

and Y = 58(t4−t0)2

t35
is the Yukawa coupling.

The space of classical (or elliptic) modular or quasi-modular forms of a fixed degree for
discrete subgroups of SL(2,R), is finite. This simple observation is the origin ofmany number
theoretic applications (see for instance [19]) and we may try to generalize such applications
to the context of present text. Having this in mind, we have to describe the behavior of the ti
around the other cusp z = 1. This will be done in another article. All the calculations of the
present text, and in particular the calculations of the pi and the differential equation (3), are
done by Singular, see [6]. The reader who does not want to calculate everything by his own
effort can obtain the corresponding Singular code and a Singular library form the Pdf file of
the present text which is hyperlinked to the computer codes in my website. Many arguments
of the present text work for an arbitrary Calabi–Yau differential equation in the sense of [16].
In this paper we mainly focus on the geometry of mirror quintic Calabi–Yau varieties which
led us to explicit calculations. Therefore, the results for an arbitrary Calabi–Yau equation is
postponed to another paper.

The present text is organized in the following way. Section 2 is dedicated to the algebro-
geometric aspects of mirror quintic Calabi–Yau threefolds. In this section we describe how
one can get the differential equation (3) using the Gauss–Manin connection of families of
mirror quintic Calabi–Yau varieties enhanced with elements in their de Rham cohomologies.
Theorem 3 is proved in this section. In Sect. 3 we describe a solution of (3). This solution is
characterized by a special format of the period matrix of mirror quintic Calabi–Yau varieties.
Finally in Sect. 4 we describe such a solution in terms of the periods xi j and the corresponding
q-expansion. In this section we first prove Theorem 2 and then Theorem 1.
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Don Zagier pointed out that using the parameters t7, t8, t9 the differential equation (3)
must look simpler. I was able to rewrite it in the following way:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṫ0 = t8 − t0t9
ṫ1 = −t1t9 − 54t0t8
ṫ2 = −t1t8 − 2t2t9 − 3 · 55t20 t8
ṫ3 = 4t2t8 − 3t3t9 − 5(t7t8 − t9t6)t8
ṫ4 = −5t4t9
ṫ5 = −t6t8 − 3t5t9 − t3
ṫ6 = −2t6t9 − t2 − t7t8
ṫ7 = −t7t9 − t1

ṫ8 = t28
t5
t6 − 3t8t9

ṫ9 = t28
t5
t7 − t29

(8)

My sincere thanks go to Charles Doran, Stefan Reiter and Duco van Straten for useful
conversations and their interest on the topic of the present text. In particular, I would like to
thankDonZagierwhose comments on the first draft of the textmotivatedme towrite Theorem
1 and Theorem 2 in a more elementary way and without geometric considerations. I found it
useful for me and a reader who seeks for number theoretic applications similar to those for
classical modular forms, see for instance [19]. I would also like to thank both mathematics
institutes IMPA and MPIM for providing excellent research ambient during the preparation
of the present text. After this article, there have been many developments and applications
which I have collected them in a project named Gauss–Manin connection in disguise. It can
be found in the author’s webpage. Also in the later developments I have decided to use the
name differential Calabi–Yau modular form instead of modular-type function.

q0 q1 q2 q3 q4 q5 q6

1
24 h0

1
120 1 175 117625 111784375 126958105626 160715581780591

−1
750 h1

1
30 3 930 566375 526770000 592132503858 745012928951258

−1
50 h2

7
10 107 50390 29007975 26014527500 28743493632402 35790559257796542

−1
5 h3

6
5 71 188330 100324275 86097977000 93009679497426 114266677893238146

−h4 0 −1 170 41475 32183000 32678171250 38612049889554
1
125 h5 − 1

125 15 938 587805 525369650 577718296190 716515428667010
1
25 h6 − 3

5 187 28760 16677425 15028305250 16597280453022 20644227272244012
1
125 h7 − 1

5 13 2860 1855775 1750773750 1981335668498 2502724752660128
1
10 h8 − 1

50 13 6425 6744325 8719953625 12525150549888 19171976431076873
1
10 h9 − 1

10 17 11185 12261425 16166719625 23478405649152 36191848368238417

2 Mirror quintic Calabi–Yau varieties

Let Wψ, ψ5 �= 1 be the variety obtained by a resolution of singularities of the following
quotient:

Wψ :=
{
[x0 : x1 : x2 : x3 : x4] ∈ P

4 | x50 + x51 + x52 + x53 + x54 − 5ψx0x1x2x3x4 = 0
}

/G,

(9)
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where G is the group

G := {(ζ1, ζ2, . . . , ζ5) | ζ 5
i = 1, ζ1ζ2ζ3ζ4ζ5 = 1}

acting in a canonical way, see for instance [2]. The varietyWψ is Calabi–Yau and it is mirror
dual to the universal family of quintic varieties in P

4. From now on we denote by W such
a variety and we call it a mirror quintic Calabi–Yau threefold. This section is dedicated to
algebraic-geometric aspects, such as the moduli space and the algebraic de Rham cohomol-
ogy, of mirror quintic Calabi–Yau threefolds.Wewill use the algebraic de Rham cohomology
H3
dR(W ) which is even defined for W defined over an arbitrary field of characteristic zero.

The original text of Grothendieck [8] is still the main source of information on algebraic de
Rham cohomology. In the present text by the moduli of the objects x we mean the set of all
x modulo natural isomorphisms.

2.1 Moduli space, I

We first construct explicit affine coordinates for the moduli S of pairs (W, ω), where W is a
mirror quintic Calabi–Yau threefold and ω is a holomorphic differential 3-form on W . We
have

S ∼= C
2\{(t50 − t4)t4 = 0},

where for (t0, t4) we associate the pair (Wt0,t4 , ω1). In the affine coordinates (x1, x2, x3, x4),
that is x0 = 1, Wt0,t4 is given by

Wt0,t4 := { f (x) = 0}/G,

f (x) := −t4 − x51 − x52 − x53 − x54 + 5t0x1x2x3x4,

and

ω1 := dx1 ∧ dx2 ∧ dx3 ∧ dx4
d f

.

The multiplicative group Gm := C
∗ acts on S by:

(W, ω) • k = (W, k−1ω), k ∈ Gm, (W, ω) ∈ S.

In the coordinates (t0, t4) this corresponds to:

(t0, t4) • k = (kt0, k
5t4), (t0, t4) ∈ S, k ∈ Gm . (10)

Two Calabi–Yau varieties in the family (9) are isomorphic if and only if they have the same
ψ5. This and (10) imply that distinct pairs (t0, t4) give us non-isomorphic pairs (W, ω).

2.2 Gauss–Manin connection

For a proper smooth familyW/T of algebraic varieties defined over a field k of characteristic
zero, we have the Gauss–Manin connection

∇ : Hi
dR(W/T ) → �1

T ⊗OT Hi
dR(W/T ),

where Hi
dR(W/T ) is the i th relative de Rham cohomology and �1

T is the set of differential
1-forms on T . For simplicity we have assumed that T is affine and Hi

dR(W/T ) is a OT -
module, where OT is the k-algebra of regular function on T . By definition of a connection,
∇ is k-linear and satisfies the Leibniz rule

∇(rω) = dr ⊗ ω + r∇ω,ω ∈ Hi
dR(W/T ), r ∈ OT .

123



Modular-type functions attached to mirror quintic Calabi–Yau. . .

For a vector field v in T we define

∇v : Hi
dR(X) → Hi

dR(X)

to be ∇ composed with

v ⊗ Id : �1
T ⊗OT Hi

dR(X) → OT ⊗OT Hi
dR(X) = Hi

dR(X).

Sometimes it is useful to choose a basis ω1, ω2, . . . , ωh of the OT -module Hi (X/T ) and
write the Gauss–Manin connection in this basis:

∇

⎛
⎜⎜⎜⎝

ω1

ω2
...

ωh

⎞
⎟⎟⎟⎠ = A ⊗

⎛
⎜⎜⎜⎝

ω1

ω2
...

ωh

⎞
⎟⎟⎟⎠ , (11)

where A is a h × h matrix with entries in �1
T . For further information on the Gauss–Manin

connection see [9]. See also [14] for computational aspects of the Gauss–Manin connection.

2.3 Intersection form and Hodge filtration

For ω, α ∈ H3
dR(Wt0,t4) let

〈ω, α〉 := Tr(ω ∪ α)

be the intersection form. If we considerW as a complex manifold and its de Rham cohomol-
ogy defined by C∞ forms, then the intersection form is just 〈ω, α〉 = 1

(2π i)3
∫
Wt0,t4

ω ∧ α.

Using Poincaré duality it can be seen that it is dual to the topological intersection form in
H3(Wt0,t4 ,Q), for all these see, for instance, Deligne’s lectures in [4]. In H3

dR(Wt0,t4) we
have the Hodge filtration

{0} = F4 ⊂ F3 ⊂ F2 ⊂ F1 ⊂ F0 = H3
dR(Wt0,t4), dimC(Fi ) = 4 − i.

There is a relation between the Hodge filtration and the intersection form which is given by
the following collection of equalities:

〈Fi , F j 〉 = 0, i + j ≥ 4.

The Griffiths transversality is a property combining the Gauss–Manin connection and the
Hodge filtration. It says that the Gauss–Manin connection sends Fi to �1

S ⊗ Fi−1 for i =
1, 2, 3. Using this we conclude that:

ωi := ∂ i−1

∂t i−1
0

(ω1) ∈ F4−i , i = 1, 2, 3, 4. (12)

By abuse of notation we have used ∂
∂t0

instead of ∇ ∂
∂t0

. The intersection form in the basis ωi

is:

[〈ωi , ω j 〉]=

⎛
⎜⎜⎜⎜⎝

0 0 0 1
625 (t4 − t50 )−1

0 0 − 1
625 (t4 − t50 )−1 − 1

125 t
4
0 (t4 − t50 )−2

0 1
625 (t4 − t50 )−1 0 1

125 t
3
0 (t4 − t50 )−2

− 1
625 (t4 − t50 )−1 1

125 t
4
0 (t4 − t50 )−2 − 1

125 t
3
0 (t4 − t50 )−2 0

⎞
⎟⎟⎟⎟⎠ .

For a proof see [13, p. 468].
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2.4 Moduli space, II

We make the base change α = Sω, where S is given by

S =

⎛
⎜⎜⎝

1 0 0 0
t9 t8 0 0
t7 t6 t5 0
t1 t2 t3 t10

⎞
⎟⎟⎠ (13)

and the ti are unknown parameters, and we assume the intersection form in the αi is given
by the matrix � in (6):

� = [〈αi , α j 〉] = S[〈ωi , ω j 〉]St.
This yields to many polynomial relations between the ti . It turns out that we can take the ti
as independent parameters and calculate all others in terms of these seven parameters:

t7t8 − t6t9 = 3125t30 + t2,

t10 = −t8t5,

t5t9 = −3125t40 − t3,

t10 = 625(t4 − t50 ).

The expression of t7, t8, t9 are given in Theorem 2. For the moduli space T introduced in
Theorem 3 we get an isomorphism of sets (7), where for t in the right hand side of the
isomorphism (7), we associate the pair (Wt0,t4 , α). We also define

t̃5 = 1

3125
t5, t̃6 = − 1

56

(
t50 − t4

)
t6 + 1

510
(
9375t40 + 2t3

)
t5

which correspond to the parameters t5, t6 in the previous article [13].

2.5 The Picard–Fuchs equation

Let us consider the one parameter family of Calabi–Yau varieties Wt0,t4 with t0 = 1 and
t4 = z and denote by η the restriction of ω1 to these parameters. We calculate the Picard–
Fuchs equation of η with respect to the parameter z:

∂4η

∂z4
=

4∑
i=1

ai (z)
∂ i−1η

∂zi−1 modulo relatively exact forms.

This is in fact the linear differential equation

I ′′′′ = −24

625z3(z − 1)
I + −24z + 5

5z3(z − 1)
I ′ + −72z + 35

5z2(z − 1)
I ′′ + −8z + 6

z(z − 1)
I ′′′, ′ = ∂

∂z
(14)

which is calculated in [2]. This differential equation can be alsowritten in the form (1). In [14]
we have developed algorithms which calculate such differential equations. The parameter z
is more convenient for our calculations than the parameter ψ and this is the reason why in
this section we have used z instead of ψ . The differential equation (14) is satisfied by the
periods

I (z) =
∫

δz

η, δ ∈ H3(W1,z,Q)
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of the differential form η on the family W1,z . In the basis
∂ iη

∂zi
, i ∈ {0, 1, 2, 3} of H3

dR(W1,z)

the Gauss–Manin connection matrix has the form

A(z)dz :=

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

a1(z) a2(z) a3(z) a4(z)

⎞
⎟⎟⎠ dz. (15)

2.6 Gauss–Manin connection I

We would like to calculate the Gauss–Manin connection

∇ : H3
dR(W/S) → �1

S ⊗OS H3
dR(W/S)

of the two parameter proper family of varieties Wt0,t4 , (t0, t4) ∈ S. We calculate ∇ with
respect to the basis (12) of H3

dR(W/S). For this purpose we return back to the one parameter
case. Now, consider the identity map

g : W(t0,t4) → W1,z,

which satisfies g∗η = t0ω1. Under this map

∂

∂z
= −1

5

t60
t4

∂

∂t0

(
= t50

∂

∂t4

)
.

From these two equalities we obtain a matrix S̃ = S̃(t0, t4) such that

[
η,

∂η

∂z
,
∂2η

∂z2
,
∂3η1

∂z3

]t
= S̃−1 [ω1, ω2, ω3, ω4]

t ,

where t denotes the transpose of matrices, and the Gauss–Manin connection in the basis
ωi , i ∈ {1, 2, 3, 4} is:

˜GM =
(
d S̃ + S̃ · A

(
t4
t50

)
· d

(
t4
t50

))
· S̃−1,

which is the following matrix after doing explicit calculations:
⎛
⎜⎜⎜⎜⎜⎝

− 1
5t4

dt4 dt0 + −t0
5t4

dt4 0 0

0 −2
5t4

dt4 dt0 + −t0
5t4

dt4 0

0 0 −3
5t4

dt4 dt0 + −t0
5t4

dt4

−t0
t50−t4

dt0 + t20
5t50 t4−5t24

dt4
−15t20
t50−t4

dt0 + 3t30
t50 t4−t24

dt4
−25t30
t50−t4

dt0 + 5t40
t50 t4−t24

dt4
−10t40
t50−t4

dt0 + 6t50+4t4
5t50 t4−5t24

dt4

⎞
⎟⎟⎟⎟⎟⎠

.

(16)
Now, we calculate the Gauss–Manin connection matrix of the family W/T written in the

basis αi , i ∈ {1, 2, 3, 4}. This is

GM =
(
dS + S · ˜GM

)
· S−1,

where S is the base change matrix (13). Since the matrix GM is huge and does not fit into a
mathematical paper, we do not write it here.

123



H. Movasati

2.7 Modular differential equation

We are in the final step of the proof of Theorem 3. We have calculated the Gauss–Manin
connection GM written in the basis αi , i = 1, 2, 3, 4. It is a matter of explicit linear algebra
calculations to show that there is a unique vector fieldRa in T with the propertiesmentioned in
Theorem (3), and to calculate it. In summary, the Gauss–Manin connection matrix composed
with the vector field Ra and written in the basis αi has the form:

∇Ra =

⎛
⎜⎜⎜⎝
0 1 0 0

0 0
58(t4−t50 )2

t35
0

0 0 0 −1
0 0 0 0

⎞
⎟⎟⎟⎠ . (17)

It is interesting that the Yukawa coupling appears as the only non-constant term in the above
matrix.

2.8 Algebraic group

There is an algebraic group which acts on the right hand side of the isomorphism (7). It
corresponds to the base change inαi , i ∈ {1, 2, 3, 4} such that the newbasis is still compatible
with the Hodge filtration and we have still the intersection matrix (6):

G :=
{
g = [gi j ]4×4 ∈ GL(4,C) | gi j = 0, for j < i and gt�g = �

}
,⎧⎪⎪⎨

⎪⎪⎩
g =

⎛
⎜⎜⎝
g11 g12 g13 g14
0 g22 g23 g24
0 0 g33 g34
0 0 0 g44

⎞
⎟⎟⎠ , gi j ∈ C

⎛
⎜⎜⎝

g11g44 = 1,
g22g33 = 1,

g12g44 + g22g34 = 0,
g13g44 + g23g34 − g24g33 = 0,

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

.

G is called the Borel subgroup of Sp(4,C) respecting the Hodge flag. The action of G on
the moduli T is given by:

(W, [α1, α2, α3, α4]) • g = (W, [α1, α2, α3, α4] g) .

The algebraic group G is of dimension six and it has two multiplicative subgroups Gm =
(C∗, ·) and four additive subgroupsGa = (C,+)which generate it. In fact, an element g ∈ G
can be written in a unique way as the following product:

⎛
⎜⎜⎝
g−1
1 −g3g

−1
1 (−g3g6 + g4)g

−1
1 (−g3g4 + g5)g

−1
1

0 g−1
2 g6g

−1
2 g4g

−1
2

0 0 g2 g2g3
0 0 0 g1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
g−1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 0 0 0
0 g−1

2 0 0
0 0 g2 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 −g3 0 0
0 1 0 0
0 0 1 g3
0 0 0 1

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝
1 0 g4 0
0 1 0 g4
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 0 0 g5
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 0 0 0
0 1 g6 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .
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In other words, we have a bijection of sets Gm ×Gm ×Ga ×Ga ×Ga ×Ga ∼= G sending
(gi )i=1,...,6 to the above product. If we identify an element g ∈ G with the vector (gi )i=1,...,6

then

(g1, g2, g3, g4, g5, g6)
−1

= (g−1
1 , g−1

2 ,−g−1
1 g2g3, g

−1
1 g−1

2 (g3g6 − g4), g
−2
1 (−g23g6 + 2g3g4 − g5),−g−2

2 g6).

We denote by • the right action of G on the T space.

Proposition 1 The action of G on the ti (as regular functions on the affine variety T ) is given
by:

g • t0 = t0g1,

g • t1 = t1g
2
1 + t7g1g2g3 + t9g1g

−1
2 g4 − g3g4 + g5,

g • t2 = t2g
3
1 + t6g

2
1g2g3 + t8g

2
1g

−1
2 g4,

g • t3 = t3g
4
1 + t5g

3
1g2g3,

g • t4 = t4g
5
1,

g • t5 = t5g
3
1g2,

g • t6 = t6g
2
1g2 + t8g

2
1g

−1
2 g6.

Consequently

g • t7 = t7g1g2 + t9g1g
−1
2 g6 − g3g6 + g4,

g • t8 = t8g
2
1g

−1
2 ,

g • t9 = t9g1g
−1
2 − g3,

g • t10 = t10g
5
1 .

Proof We first calculate the action of g = (k, 1, 0, 0, 0, 0), k ∈ C
∗ on t . We have an

isomorphism (W(t0,t4), k
−1ω1) ∼= (W(t0k,t4k5), ω1) given by

(x1, x2, x3, x4) �→ (
k−1x1, k

−1x2, k
−1x3, k

−1x4
)
.

Under this isomorphism the vector field k−1 ∂
∂t0

is mapped to ∂
∂t0

and so k−iωi is mapped to
ωi . This implies the isomorphisms

(W(t0,t4), k(t1ω1 + t2ω2 + t3ω3 + 625(t4 − t50 )ω4))

∼= (W(t0,t4)•k, k2t1ω1 + k3t2ω2 + k4t3ω3 + 625(k5t4 − (kt0)
5)ω4))

and

(W(t0,t4), Sω) ∼= (W(t0,t4)•k, S

⎛
⎜⎜⎝
k 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

⎞
⎟⎟⎠ω),

where S is defined in (13). Therefore,

g • ti = ti k
d̃i , d̃i = i + 1, i ∈ {0, 1, 2, 3, 4} d̃5 = 3, d̃6 = 2

��

123



H. Movasati

3 Periods

This section is dedicated to transcendental aspects of mirror quintic Calabi–Yau threefold.
By this we mean the periods of meromorphic differential 3-forms over topological cycles.
We first work with periods without calculating them explicitly.

3.1 Period map

We choose a symplectic basis for H3(W,Z), that is, a basis δi , i ∈ {1, 2, 3, 4} such that

� := [〈δi , δ j 〉] =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ .

It is also convenient to use the basis

[δ̃1, δ̃2, δ̃3, δ̃4] = [δ1, δ2, δ3, δ4]�−1 = [δ3, δ4,−δ1,−δ2].
In this basis the intersection form is [〈δ̃i , δ̃ j 〉] = �−t = �. Recall that in §2.4 amirror quintic
Calabi–Yau threefoldW is equipped with a basis α1, α2, α3, α4 of H3

dR(W ) compatible with
the Hodge filtration and such that [〈αi , α j 〉] = �. We define the period matrix to be

[xi j ] =
[∫

δi

α j

]
.

In this section we discard the usage of xi j in the Introduction. Let δ̃
p
i ∈ H3(W,Q) be the

Poincaré dual of δ̃i , that is, it is defined by the property
∫
δ
δ̃
p
i = 〈δ̃i , δ〉 for all δ ∈ H3(W,Q).

If we write αi in terms of δ̃
p
i then we get:

[α1, α2, α3, α4] =
[
δ̃
p
1 , δ̃

p
2 , δ̃

p
3 , δ̃

p
4

] [∫
δi

α j

]
,

that is, the coefficients of the base change matrix are the periods of the αi over the δi and not
the δ̃i . We have

[〈αi , α j 〉] =
[∫

δi

α j

]t
�−t

[∫
δi

α j

]
(18)

and so we get:
� − [xi j ]t�[xi j ] = 0. (19)

This gives us 6 non trivial polynomial relations between periods xi j :

x12x31 − x11x32 + x22x41 − x21x42 = 0,

x13x31 − x11x33 + x23x41 − x21x43 = 0,

x14x31 − x11x34 + x24x41 − x21x44 + 1 = 0,

x13x32 − x12x33 + x23x42 − x22x43 + 1 = 0,

x14x32 − x12x34 + x24x42 − x22x44 = 0,

x14x33 − x13x34 + x24x43 − x23x44 = 0.

These equalities correspond to the entries (1, 2), (1, 3), (1, 4), (2, 3), (2, 4) and (3, 4) of
(19). Taking the determinant of (19) we see that up to sign we have det(pm) = −1. There is
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another effective way to calculate this determinant without the sign ambiguity. In the ideal
of Q[xi j , i, j = 1, 2, 3, 4] generated by the polynomials f12, f13, f14, f23, f2,4, f34 in the
right hand side of the above equalities, the polynomial det([xi j ]) is reduced to −1. Let yi j be
indeterminate variables, R = C[yi j , i, j = 1, 2, 3, 4] and I := { f ∈ R | f (· · · , xi j , . . .) =
0}. The ideal I is generated by f12, f13, f14, f23, f2,4, f34, see for instance [13, Proposition
3, p. 472].

3.2 A special locus

Let

C t := [0, 1, 0, 0][〈δ̃i , δ̃ j 〉]−t = [0, 0, 0, 1].
We are interested in the loci L of parameters t ∈ T such that[∫

δ1

α4, . . . ,

∫
δ4

α4

]
= C. (20)

Using the equality corresponding to the (1, 4) entry of (18), we note that on this locus we
have ∫

δ2

α1 = 1,
∫

δ2

αi = 0, i ≥ 2.

The equalities (20) define a three dimensional locus of T . We also put the following two
conditions ∫

δ1

α2 = 1,
∫

δ1

α3 = 0

in order to get a one dimensional locus. Finally, using (19) we conclude that the period matrix
for points in L is of the form

τ =

⎛
⎜⎜⎝

τ0 1 0 0
1 0 0 0
τ1 τ3 1 0
τ2 −τ0τ3 + τ1 −τ0 1

⎞
⎟⎟⎠ . (21)

The particular expressions for the (4, 2) and (4, 3) entries of the above matrix follow from
the polynomial relations (19). The Gauss–Manin connection matrix restricted to L is:

GM |L= dτ t · τ−t =

⎛
⎜⎜⎝
0 dτ0 −τ3dτ0 + dτ1 −τ1dτ0 + τ0dτ1 + dτ2
0 0 dτ3 −τ3dτ0 + dτ1
0 0 0 −dτ0
0 0 0 0

⎞
⎟⎟⎠ .

The Griffiths transversality theorem implies that

−τ3dτ0 + dτ1 = 0, −τ1dτ0 + τ0dτ1 + dτ2 = 0.

Since L is one dimensional, there are analytic relations between τ0, τ1, τ2, τ3. Therefore, we
consider τ0 as an independent parameter and τ1, τ2, τ3 as dependent parameters on τ0. We
get

τ3 = ∂τ1

∂τ0
,

∂τ2

∂τ0
= τ1 − τ0

∂τ1

∂τ0
. (22)
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We conclude that the Gauss–Manin connection matrix restricted to L and composed with the
vector field ∂

∂τ0
is given by: ⎛

⎜⎜⎝
0 1 0 0
0 0 ∂τ3

∂τ0
0

0 0 0 −1
0 0 0 0

⎞
⎟⎟⎠ . (23)

Proposition 2 The functions ti (τ0) obtained by the regular functions ti restricted to L and
seen as functions in τ0 form a solution of the ordinary differential equation Ra.

Proof It follows from (23) and the uniqueness of the vector field Ra satisfying the equalities
(17). ��
3.3 The algebraic group and the special locus L

For any 4 × 4 matrix x = [xi j ] satisfying (19) and

x11x22 − x12x21 �= 0, x21 �= 0, (24)

there is a unique g ∈ G such xg is of the form (21). To prove this affirmation explicitly, we
take an arbitrary x and g and we write down the corresponding equations corresponding to
the six entries (2, 1), (1, 2), (2, 2), (1, 3), (2, 3), (2, 4) of xg, that is

xg =

⎛
⎜⎜⎝

∗ 1 0 ∗
1 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞
⎟⎟⎠ .

For our calculations we will need the coordinates of g−1 in terms of xi j :

g1 = x−1
21 ,

g2 = −x21
x11x22 − x12x21

,

g3 = −x22
x21

,

g4 = −x12x23 + x13x22
x11x22 − x12x21

,

g5 = x11x22x24 − x12x21x24 + x12x22x23 − x13x222
x11x21x22 − x12x221

,

g6 = x11x23 − x13x21
x11x22 − x12x21

.

Substituting the expression of g in terms of xi j in τ = xg, we get:
⎛
⎜⎜⎜⎝

x11
x21

1 0 0

1 0 0 0
x31
x21

−x21x32+x22x31
x11x22−x12x21

1 0
x41
x21

−x21x42+x22x41
x11x22−x12x21

− x11
x21

1

⎞
⎟⎟⎟⎠ .

Note that for the entries (1, 4), (3, 3) and (4, 3) of the above matrix we have used the
polynomial relations (19) between periods.
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4 Monodromy covering

In the previous section we described a solution of Ra locally. In this section we further
study such a solution in a global context. More precisely, we describe a meromorphic map
t : H → T whose image is the L in the previous section, whereH is the monodromy covering
of (1).

4.1 Monodromy covering

Let H̃ be the moduli of the pairs (W, δ), where W is a mirror quintic Calabi–Yau threefold
and δ = {δ1, δ2, δ3, δ4} is a basis of H3(W,Z) such that the intersection matrix in this basis
is �, that is, [〈δi , δ j 〉] = �. The set H̃ has a canonical structure of a Riemann surface, not
necessarily connected. We denote by H the connected component of H̃ which contains the
particular pair (W1,z, δ) such that the monodromies around z = 0 and z = 1 are respectively
given by the matrices M0 and M1 in the Introduction. It is known that in the monodromy
group 	 := 〈M0, M1〉 the only relation between M0 and M1 is (M0M1)

5 = I , see [1].
This is equivalent to say that H is biholomorphic to the upper half plane. By definition, the
monodromy group 	 acts on H by base change in δ. The bigger group Sp(4,Z) acts also on
H̃ by base change and all connected components of H̃ are obtained by Hα := α(H), α ∈
Sp(4,Z)/	:

H̃ := ∪α∈Sp(4,Z)/	H̃α.

From now on by w we denote a point (W, δ) of H. We use the following meromorphic
functions on H:

τi : H → C, i ∈ {0, 1, 2}
τ0(w) =

∫
δ1

α1∫
δ2

α1
, τ1(w) =

∫
δ3

α1∫
δ2

α1
, τ2(w) =

∫
δ4

α1∫
δ2

α1
,

where α1 is a holomorphic differential form on W . They do not depend on the choice of α1.
For simplicity, we have used the same notations τi as in Sect. 3.

There is a useful meromorphic function z on H which is obtained by identifying W
with some W1,z . It has a pole of order 5 at elliptic points which are the pairs (W, δ) with
W = Wψ,1, ψ = 0. In this way, we have a well-defined holomorphic function

ψ = z−
1
5 : H → C.

The coordinate system τ0 is adapted for calculations around the cusp z = 0. Let B be the set
of points w = (W, δ) ∈ H such that either τ0 has a pole at w or it has a critical point at w,
that is, ∂τ0

∂z (w) = 0. We do not know whether B is empty or not. Many functions that we are
going to study are meromorphic with poles at B. The set B is characterized by the property
that in its complement in H the inequalities (24) hold.

4.2 A particular solution

For a point w = (W, δ) ∈ H\B there is a unique basis α of H3
dR(W ) such that (W, α) is an

element in the moduli space T defined in §2.4, and the period matrix [∫
δi

α j ] of the triple
(W, δ, α) is of the form (21). This follows from the arguments in §3.3. In this way we have
well-defined meromorphic maps

t : H → T
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and

τ : H → Mat(4,C)

which are characterized by the uniqueness of the basis α and the equality:

τ(w) =
[∫

δi

α j

]
.

If we parameterize H by the image of τ0 then t is the same map as in §3.2. We conclude that
the map t : H → T with the coordinate system τ0 on H is a solution of Ra. The functions t
and τ are holomorphic outside the poles and critical points of τ0 (this corresponds to points
in which the inequalities (24) occur).

4.3 Action of the monodromy

The monodromy group 	 := 〈M0, M1〉 acts on H by base change. If we choose the local
coordinate system τ0 on H then this action is given by:

A(τ0) = a11τ0 + a12 + a13τ1 + a14τ2
a21τ0 + a22 + a23τ1 + a24τ2

, A = [ai j ] ∈ 	.

Proposition 3 For all A ∈ 	 we have

t (w) = t (A(w)) • g(A, w),

where g(A, w) ∈ G is defined using the equality

A · τ(w) = τ(A(w)) · g(A, w).

Proof Let w = (W, δ) ∈ H and t (w) = (W, α). By definition we have

[
∫
A(δ)i

α j ]g(A, w)−1 = Aτ(w)g(A, w)−1 = τ(A(w)).

Therefore, t (A(w)) = (W, α · g(A, w)−1) = t (w) • g(A, w)−1. ��
If we choose the coordinate system τ0 onH and regard the parameters ti and τi as functions

in τ0, then we have

t (τ0) = t (A(τ0)) • g(A, τ0).

These are the functional equations of the ti (τ0) mentioned in the Introduction. For A = M0

we have: ⎛
⎜⎜⎝
1 1 0 0
0 1 0 0
5 5 1 0
0 −5 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

τ0 1 0 0
1 0 0 0
τ1 τ3 1 0
τ2 −τ0τ3 + τ1 −τ0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

τ0 + 1 1 0 0
1 0 0 0

τ1 + 5τ + 5 τ3 + 5 1 0
τ2 − 5 − τ1 −τ0(τ3 + 1) + τ1 −τ0 − 1 1

⎞
⎟⎟⎠

which is already of the format (21). Note that

−(τ0 + 1)(τ3 + 5) + τ1 + 5τ0 + 5 = −τ0(τ3 + 1) + τ1.
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Therefore, M0(τ0) = τ0 + 1 and g(M0, τ0) is the identity matrix. The corresponding func-
tional equation of ti simply says that ti is invariant under τ0 �→ τ0 + 1:

ti (τ0) = ti (τ0 + 1), i ∈ {0, 1, . . . , 6}.
For A = M1 we have⎛
⎜⎜⎝
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

τ0 1 0 0
1 0 0 0
τ1 τ3 1 0
τ2 −τ0τ3 + τ1 −τ0 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

τ0 1 0 0
τ2 + 1 −τ0τ3 + τ1 −τ0 1

τ1 τ3 1 0
τ2 −τ0τ3 + τ1 −τ0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

τ0
τ2+1 1 0 0
1 0 0 0
τ1

τ2+1
τ0τ1τ3−τ 21 +τ2τ3+τ3

τ 20 τ3−τ0τ1+τ2+1
1 0

τ2
τ2+1

−τ0τ3+τ1
τ 20 τ3−τ0τ1+τ2+1

−τ0
τ2+1 1

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

(τ2 + 1) (−τ0τ3 + τ1) (−τ0) 1

0
τ 20 τ3−τ0τ1+τ2+1

τ2+1
τ 20

τ2+1
−τ0
τ2+1

0 0 τ2+1
τ 20 τ3−τ0τ1+τ2+1

τ0τ3−τ1
τ 20 τ3−τ0τ1+τ2+1

0 0 0 1
τ2+1

⎞
⎟⎟⎟⎟⎠ ,

where the element of the algebraic group G in the right hand side has the coordinates:

g1 = 1

τ2 + 1
,

g2 = τ2 + 1

τ 20 τ3 − τ0τ1 + τ2 + 1
,

g3 = τ0τ3 − τ1

τ2 + 1
,

g4 = −τ0

τ 20 τ3 − τ0τ1 + τ2 + 1
,

g5 = 1

τ 20 τ3 − τ0τ1 + τ2 + 1
,

g6 = τ 20

τ 20 τ3 − τ0τ1 + τ2 + 1
.

In this case we have

M1(τ0) = τ0

τ2 + 1
.

The corresponding functional equations of the ti can be written immediately. These are
presented in Theorem 2.

4.4 The solution in terms of periods

In this section we explicitly calculate the map t . For w = (W, δ) ∈ H we identify W with
W1,z and hence we obtain a unique point z̃ = (1, 0, 0, 0, z, 1, 0) ∈ T . Now, we have a

123



H. Movasati

well-defined period map

pm : H → Mat(4,C),

w = (W1,z, {δi,z, i = 1, 2, 3, 4}) �→
[∫

δi,z

α j

]
.

We write pm(w)g(w) = τ(w), where τ(w) is of the form (21) and g(w) ∈ G. We have

t (w) = z̃ • g(w).

For the one dimensional locus z̃ ∈ T , we have α = Sω and ω = T η̃, where

S =

⎛
⎜⎜⎝

1 0 0 0
−55 −54(z−1) 0 0
− 5

z−1 0 1 0
0 0 0 54(z − 1)

⎞
⎟⎟⎠ , T =

⎛
⎜⎜⎝

1 0 0 0
−1 −5 0 0
2 15 25 0

−6 −55 −150 −125

⎞
⎟⎟⎠

and

η̃ = [η, θη, θ2η, θ3η]t, θ = z
∂

∂z
.

Therefore, α = STη. Restricted to z̃-locus we have α1 = ω1 = η and by our definition of
the xi j in the introduction

xi j = θ j−1
∫

δi

η, i, j = 1, 2, 3, 4.

Therefore,

pm(w) = [xi j ](ST )t.

Now, the map w �→ t (w), where the domain H is equipped with the coordinate system z, is
given by the expressions for ti in Theorem 1. We conclude that if we write the ti in terms of
τ0 then we get functions which are solutions to Ra. Note that

∂

∂τ0
= 2π iq

∂

∂q
=

(
z
∂ x11
x21

∂z

)−1

z
∂

∂z
= x221

x12x21 − x11x22
θ.

4.5 Calculating periods

In this section we calculate the periods xi j explicitly. This will finish the proof of our main
theorems announced in the Introduction.

We restrict the parameter t ∈ T to the one dimensional loci z̃ given by t0 = 1, t1 =
t2 = t3 = 0, t4 = z, t5 = 1, t6 = 0. On this locus η = ω1 = α1. We know that the
integrals

∫
δ
η, δ ∈ H3(W1,z,Q) satisfy the linear differential equation (14). Four linearly

independent solutions of (14) are given byψ0, ψ1, ψ2, ψ3 in the Introduction, see for instance
[17] and [3]. In fact, there are four topological cycleswith complex coefficients δ̂1, δ̂2, δ̂3, δ̂4 ∈
H3(W1,z,C) such that

∫
δ̂i

η = (2π i)i−1

54
ψ4−i . Note that the pair (W1,z, 5η) is isomorphic to

the pair (Wψ,�) used in [2]. We use a new basis given by
⎛
⎜⎜⎝

δ1
δ2
δ3
δ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 d d

2 −b
−d 0 −b −a

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δ̂1

δ̂2

δ̂3

δ̂4

⎞
⎟⎟⎠ ,
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where

a = c3
(2π i)3

ζ(3) = −200

(2π i)3
ζ(3), b = c2 · H/24 = 25

12
, d = H3 = 5,

(these notations are used in [17]). The monodromies around z = 0 and z = 1 written in the
basis δi are respectively

M0 :=

⎛
⎜⎜⎝
1 1 0 0
0 1 0 0
d d 1 0
0 −k −1 1

⎞
⎟⎟⎠ M1 :=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

where k = 2b + d
6 = 5, see [3]. In fact, δi ∈ H3(W1,z,Z) for i = 1, 2, 3, 4. This follows

from the calculations in [2] and the expressions for monodromy matrices. In summary, we
have

x11 =
∫

δ1

η = 1

52

(
2π i

5

)2

ψ1(z̃),

x21 =
∫

δ2

η = 1

5

(
2π i

5

)3

ψ0,

x31 =
∫

δ3

η = d

125
ψ2(z̃)

2π i

5
+ d

50
·
(
2π i

5

)2

· ψ1(z̃) − b

5
·
(
2π i

5

)3

· ψ0(z̃),

x41 =
∫

δ4

η = −d

54
ψ3(z̃) + −b

52
·
(
2π i

5

)2

· ψ1(z̃) − a

5
·
(
2π i

5

)3

· ψ0(z̃),

where z̃ = z
55
. We have also

τ0 =
∫
δ1

η∫
δ2

η
= 1

2π i

ψ1(z̃)

ψ0(z̃)
,

τ1 =
∫
δ3

η∫
δ2

η
= d

(
1

2
τ 20 + 1

5
H ′

)
+ d

2
τ0 − b = −b + d

2
τ0(τ0 + 1) + d

5
H ′,

τ2 =
∫
δ4

η∫
δ2

η
= −d

(−1

3
τ 30 + τ0

(
1

2
τ 20 + 1

5
H ′

)
+ 2

5
H

)
− bτ0 − a

= −a − bτ0 − d

6
τ 30 − d

5
τ0H

′ − 2d

5
H,

where H is defined in (5). We have used the equalities

ψ2

ψ0
− 1

2

(
ψ1

ψ0

)2

= 1

5

⎛
⎝ ∞∑

n=1

⎛
⎝∑

d|n
ndd

3

⎞
⎠ qn

n2

⎞
⎠ ,

1

3

(
ψ1

ψ0

)3

− ψ1

ψ0

ψ2

ψ0
+ ψ3

ψ0
= 2

5

∞∑
n=1

⎛
⎝∑

d|n
ndd

3

⎞
⎠ qn

n3
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see for instance [10,15]. We can use the explicit series

ψ0(z̃) =
∞∑

m=0

(5m)!
(m!)5 z̃

m

ψ1(z̃) = ln(z̃)ψ0(z̃) + 5ψ̃1(z̃), ψ̃1(z̃) =
∞∑

m=1

(5m)!
(m!)5

(
5m∑

k=m+1

1

k

)
z̃m

and calculate the q-expansion of ti (τ0) around the cusp z = 0. There is another way of
doing this using the differential equation Ra. We just use the above equalities to obtain
the initial values (4) in the Introduction. We write each hi as a formal power series in
q, hi = ∑∞

n=0 ti,nq
n , and substitute it in (3) with ṫ := 5q ∂t

∂q . Let

Tn = [t0,n, t1,n, t2,n, t3,n, t4,n, t5,n, t6,n].
Comparing the coefficients of q0 and q1 in both sides of Ra we get:

T0 =
[
1

5
,−25,−35,−6, 0,−1,−15

]
,

T1 = [24,−2250,−5350,−355, 1, 1875, 4675].
Comparing the coefficients of qn, n ≥ 2 we get a recursion of the following type:

(A0 + 5nI7×7)T
t
n = A function of the entries of T0, T1, . . . , Tn−1,

where

A0 =
[

∂(t5Rai )

∂t j

]
i, j=0,1,...,6

evaluated at t = T0, Ra =
6∑

i=0

Rai
∂

∂ti
.

The matrix A0 + 5nI7×7, n ≥ 2 is invertible and so we get a recursion in Tn .
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