High-Dimensional Variable Selection in Nonlinear Models that Controls the False Discovery Rate

Lucas Janson

Harvard University Department of Statistics

CMSA Big Data Conference, August 18, 2017

Collaborators: Emmanuel Candès (Stanford), Yingying Fan, Jinch Li (USC)
Problem Statement
Controlled Variable Selection

Given:

- Y an outcome of interest (AKA response or dependent variable),
- X_1, \ldots, X_p a set of p potential explanatory variables (AKA covariates, features, or independent variables),

How can we select important explanatory variables with few mistakes?
Controlled Variable Selection

Given:

- \(Y \) an outcome of interest (AKA response or dependent variable),
- \(X_1, \ldots, X_p \) a set of \(p \) potential explanatory variables (AKA covariates, features, or independent variables),

How can we select important explanatory variables with few mistakes?

Applications to:

- Medicine/genetics/health care
Controlled Variable Selection

Given:

- Y an outcome of interest (AKA response or dependent variable),
- X_1, \ldots, X_p a set of p potential explanatory variables (AKA covariates, features, or independent variables),

How can we select important explanatory variables with few mistakes?

Applications to:

- Medicine/genetics/health care
- Economics/political science
Controlled Variable Selection

Given:

- Y an outcome of interest (AKA response or dependent variable),
- X_1, \ldots, X_p a set of p potential explanatory variables (AKA covariates, features, or independent variables),

How can we select important explanatory variables with few mistakes?

Applications to:

- Medicine/genetics/health care
- Economics/political science
- Industry/technology
Controlled Variable Selection (cont’d)

What is an important variable?

- We consider X_j to be unimportant if the conditional distribution of Y given X_1, \ldots, X_p does not depend on X_j.
- Formally, X_j is unimportant if it is conditionally independent of Y given $X -$ j: $Y \perp \perp X_j | X -$ j.

Markov Blanket of Y: smallest set S such that $Y \perp \perp X -$ $S | X_S$.

- For GLMs with no stochastically redundant covariates, equivalent to $\{j: \beta_j = 0\}$.

To make sure we do not make too many mistakes, we seek to select a set \hat{S} to control the false discovery rate (FDR): $\text{FDR}(\hat{S}) = \mathbb{E}(\#\{j \text{ in } \hat{S}: X_j \text{ unimportant}\} / \#\{j \text{ in } \hat{S}\}) \leq q$ (e.g. 10%)

"Here is a set of variables \hat{S}, 90% of which I expect to be important" - Lucas Janson (Harvard Statistics)
What is an important variable?

We consider X_j to be unimportant if the conditional distribution of Y given X_1, \ldots, X_p does not depend on X_j. Formally, X_j is unimportant if it is conditionally independent of Y given X_{-j}:

$$Y \perp \!\!\!\perp X_j \mid X_{-j}$$
What is an important variable?

We consider X_j to be unimportant if the conditional distribution of Y given X_1, \ldots, X_p does not depend on X_j. Formally, X_j is unimportant if it is conditionally independent of Y given X_{-j}:

$$Y \perp \perp X_j \mid X_{-j}$$

Markov Blanket of Y: smallest set S such that $Y \perp \perp X_S \mid X_S$
What is an important variable?

We consider X_j to be unimportant if the conditional distribution of Y given X_1, \ldots, X_p does not depend on X_j. Formally, X_j is unimportant if it is conditionally independent of Y given X_{-j}:

$$Y \perp\!
\perp X_j \mid X_{-j}$$

Markov Blanket of Y: smallest set S such that $Y \perp\!
\perp X_{-S} \mid X_S$

For GLMs with no stochastically redundant covariates, equivalent to $\{j : \beta_j = 0\}$
What is an important variable?

We consider \(X_j \) to be unimportant if the conditional distribution of \(Y \) given \(X_1, \ldots, X_p \) does not depend on \(X_j \). Formally, \(X_j \) is unimportant if it is conditionally independent of \(Y \) given \(X_{-j} \):

\[
Y \perp \!\!\!\perp X_j \mid X_{-j}
\]

Markov Blanket of \(Y \): smallest set \(S \) such that \(Y \perp \!\!\!\perp X_{-S} \mid X_S \)

For GLMs with no stochastically redundant covariates, equivalent to \(\{ j : \beta_j = 0 \} \)

To make sure we do not make too many mistakes, we seek to select a set \(\hat{S} \) to control the false discovery rate (FDR):

\[
\text{FDR}(\hat{S}) = \mathbb{E} \left(\frac{\# \{ j \in \hat{S} : X_j \text{ unimportant} \}}{\# \{ j \in \hat{S} \}} \right) \leq q \quad \text{(e.g. 10%)}
\]

“Here is a set of variables \(\hat{S} \), 90% of which I expect to be important”
New interpretation of knockoffs solves the controlled variable selection problem

- Allows any model for Y and X_1, \ldots, X_p
- Allows any dimension (including $p > n$)
- Finite-sample control (non-asymptotic) of FDR
- Practical performance on real problems
New interpretation of knockoffs solves the controlled variable selection problem

- Allows any model for Y and X_1, \ldots, X_p
- Allows any dimension (including $p > n$)
- Finite-sample control (non-asymptotic) of FDR
- Practical performance on real problems

Analysis of the genetic basis of Crohn’s Disease (WTCCC, 2007)

- $\approx 5,000$ subjects ($\approx 40\%$ with Crohn’s Disease)
- $\approx 375,000$ single nucleotide polymorphisms (SNPs) for each subject
New interpretation of knockoffs solves the controlled variable selection problem

- Allows any model for Y and X_1, \ldots, X_p
- Allows any dimension (including $p > n$)
- Finite-sample control (non-asymptotic) of FDR
- Practical performance on real problems

Analysis of the genetic basis of Crohn’s Disease (WTCCC, 2007)

- $\approx 5,000$ subjects ($\approx 40\%$ with Crohn’s Disease)
- $\approx 375,000$ single nucleotide polymorphisms (SNPs) for each subject

Original analysis of the data made 9 discoveries by running marginal tests and selecting p-values to target a FDR of 10%
New interpretation of knockoffs solves the controlled variable selection problem

- Allows any model for Y and X_1, \ldots, X_p
- Allows any dimension (including $p > n$)
- Finite-sample control (non-asymptotic) of FDR
- Practical performance on real problems

Analysis of the genetic basis of Crohn’s Disease (WTCCC, 2007)

- $\approx 5,000$ subjects ($\approx 40\%$ with Crohn’s Disease)
- $\approx 375,000$ single nucleotide polymorphisms (SNPs) for each subject

Original analysis of the data made 9 discoveries by running marginal tests and selecting p-values to target a FDR of 10%

Model-free knockoffs used the same FDR of 10% and made 18 discoveries, with many of the new discoveries confirmed by a larger meta-analysis
Review of Methods for Controlled Variable Selection

What is required for valid inference?

<table>
<thead>
<tr>
<th>Method</th>
<th>Low dimensions</th>
<th>Model for Y</th>
<th>Asymptotic regime</th>
<th>Sparsity</th>
<th>Random design</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLSp+BHq</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Lucas Janson (Harvard Statistics)
What is required for valid inference?

<table>
<thead>
<tr>
<th>Method</th>
<th>Low dimensions</th>
<th>Model for (Y)</th>
<th>Asymptotic regime</th>
<th>Sparsity</th>
<th>Random design</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS(_p)+(BH_q)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ML(_p)+(BH_q)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Review of Methods for Controlled Variable Selection

What is required for valid inference?

<table>
<thead>
<tr>
<th></th>
<th>Low dimensions</th>
<th>Model for Y</th>
<th>Asymptotic regime</th>
<th>Sparsity</th>
<th>Random design</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLSp+BHq</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>MLp+BHq</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HDp+BHq</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Lucas Janson (Harvard Statistics)

Knockoffs for HD Controlled Variable Selection
Review of Methods for Controlled Variable Selection

What is required for valid inference?

<table>
<thead>
<tr>
<th>Method</th>
<th>Low dimensions</th>
<th>Model for Y</th>
<th>Asymptotic regime</th>
<th>Sparsity</th>
<th>Random design</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLSp+BHq</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>MLp+BHq</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HDp+BHq</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Orig KnO</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Lucas Janson (Harvard Statistics)

Knockoffs for HD Controlled Variable Selection
What is required for valid inference?

<table>
<thead>
<tr>
<th>Method</th>
<th>Low dimensions</th>
<th>Model for Y</th>
<th>Asymptotic regime</th>
<th>Sparsity</th>
<th>Random design</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS$p+BHQ$</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ML$p+BHQ$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HD$p+BHQ$</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Orig KnO</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>New KnO</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes*</td>
</tr>
</tbody>
</table>
The Knockoffs Idea
y and X_j are n × 1 column vectors of data: n draws from the random variables Y and X_j, respectively; design matrix \(X := [X_1 \cdots X_p] \)
Knockoffs (Barber and Candès, 2015)

y and X_j are $n \times 1$ column vectors of data: n draws from the random variables Y and X_j, respectively; design matrix $X := [X_1 \cdots X_p]$

(1) **Construct knockoffs**: Knockoffs \tilde{X}_j must satisfy, $(\tilde{X} := [\tilde{X}_1 \cdots \tilde{X}_p])$

$$
[X \tilde{X}]^\top [X \tilde{X}] = \begin{bmatrix}
X^\top X & X^\top X - \text{diag}\{s\} \\
X^\top X - \text{diag}\{s\} & X^\top X
\end{bmatrix}
$$
\(y \) and \(X_j \) are \(n \times 1 \) column vectors of data: \(n \) draws from the random variables \(Y \) and \(X_j \), respectively; design matrix \(X := [X_1 \cdots X_p] \)

(1) **Construct knockoffs**: Knockoffs \(\tilde{X}_j \) must satisfy, \((\tilde{X} := [\tilde{X}_1 \cdots \tilde{X}_p]) \)

\[
[X \tilde{X}]^\top [X \tilde{X}] = \begin{bmatrix}
X^\top X & X^\top X - \text{diag}\{s\} \\
X^\top X - \text{diag}\{s\} & X^\top X
\end{bmatrix}
\]

(2) **Compute knockoff statistics**:
- Sufficiency: \(W_j \) only a function of \([X \tilde{X}]^\top [X \tilde{X}] \) and \([X \tilde{X}]^\top y \)
- Antisymmetry: swapping values of \(X_j \) and \(\tilde{X}_j \) flips sign of \(W_j \)
Knockoffs (Barber and Candès, 2015)

y and X_j are $n \times 1$ column vectors of data: n draws from the random variables Y and X_j, respectively; design matrix $X := [X_1 \cdots X_p]$

(1) **Construct knockoffs:** Knockoffs \tilde{X}_j must satisfy, $(\tilde{X} := [\tilde{X}_1 \cdots \tilde{X}_p])$

$$[X \tilde{X}]^\top [X \tilde{X}] = \begin{bmatrix} X^\top X & X^\top X - \text{diag}\{s\} \\ X^\top X - \text{diag}\{s\} & X^\top X \end{bmatrix}$$

(2) **Compute knockoff statistics:**
- Sufficiency: W_j only a function of $[X \tilde{X}]^\top [X \tilde{X}]$ and $[X \tilde{X}]^\top y$
- Antisymmetry: swapping values of X_j and \tilde{X}_j flips sign of W_j

(3) **Find the knockoff threshold:**
- Order the variables by decreasing $|W_j|$ and proceed down list
- Select only variables with positive W_j until last time $\frac{\text{negatives}}{\text{positives}} \leq q$
Knockoffs (Barber and Candès, 2015)

y and X_j are $n \times 1$ column vectors of data: n draws from the random variables Y and X_j, respectively; design matrix $X := [X_1 \cdots X_p]$

1. **Construct knockoffs**: Knockoffs \tilde{X}_j must satisfy, $(\tilde{X} := [\tilde{X}_1 \cdots \tilde{X}_p])$

$$[X \tilde{X}]^\top [X \tilde{X}] = \begin{bmatrix}
X^\top X & X^\top X - \text{diag}\{s\} \\
X^\top X - \text{diag}\{s\} & X^\top X
\end{bmatrix}$$

2. **Compute knockoff statistics**:
 - Sufficiency: W_j only a function of $[X \tilde{X}]^\top [X \tilde{X}]$ and $[X \tilde{X}]^\top y$
 - Antisymmetry: swapping values of X_j and \tilde{X}_j flips sign of W_j

3. **Find the knockoff threshold**:
 - Order the variables by decreasing $|W_j|$ and proceed down list
 - Select only variables with positive W_j until last time $\frac{\text{negatives}}{\text{positives}} \leq q$

Comments:
- Finite-sample FDR control and leverages sparsity for power
- Requires data follow low-dimensional ($n \geq p$) Gaussian linear model
- Canonical approach: condition on X, rely heavily on model for y
(1) **Construct knockoffs:**
- Artificial versions ("knockoffs") of each variable
- Act as controls for assessing importance of original variables
(1) **Construct knockoffs:**
- Artificial versions ("knockoffs") of each variable
- Act as controls for assessing importance of original variables

(2) **Compute knockoff statistics:**
- Scalar statistic W_j for each variable
- Measures how much more important a variable appears than its knockoff
- Positive W_j denotes original more important, strength measured by magnitude
Generalizing the Knockoffs Procedure

(1) **Construct knockoffs:**
- Artificial versions ("knockoffs") of each variable
- Act as controls for assessing importance of original variables

(2) **Compute knockoff statistics:**
- Scalar statistic W_j for each variable
- Measures how much more important a variable appears than its knockoff
- Positive W_j denotes original more important, strength measured by magnitude

(3) **Find the knockoff threshold:** (same as before)
- Order the variables by decreasing $|W_j|$ and proceed down list
- Select only variables with positive W_j until last time $\frac{\text{negatives}}{\text{positives}} \leq q$
Generalizing the Knockoffs Procedure

(1) **Construct knockoffs:**
- Artificial versions ("knockoffs") of each variable
- Act as controls for assessing importance of original variables

(2) **Compute knockoff statistics:**
- Scalar statistic W_j for each variable
- Measures how much more important a variable appears than its knockoff
- Positive W_j denotes original more important, strength measured by magnitude

(3) **Find the knockoff threshold:** (same as before)
- Order the variables by decreasing $|W_j|$ and proceed down list
- Select only variables with positive W_j until last time $\frac{\text{negatives}}{\text{positives}} \leq q$

Coin-flipping property: The key to knockoffs is that steps (1) and (2) are done specifically to ensure that, conditional on $|W_1|, \ldots, |W_p|$, the signs of the unimportant/null W_j are independently ± 1 with probability $1/2$
New Interpretation of Knockoffs
Instead of modeling \(y \) and conditioning on \(X \), condition on \(y \) and model \(X \) (shifts the burden of knowledge from \(y \) onto \(X \))
Knockoffs Without a Model for Y (Candès et al., 2016)

Instead of modeling y and conditioning on X, condition on y and model X (shifts the burden of knowledge from y onto X).

Explicitly,

$$\text{rows of } X = (X_{i,1}, \ldots, X_{i,p}) \overset{\text{iid}}{\sim} G$$

where G can be arbitrary but is assumed known.
Knockoffs Without a Model for Y (Candès et al., 2016)

Instead of modeling y and conditioning on X, condition on y and model X (shifts the burden of knowledge from y onto X)

Explicitly,

$$\text{rows of } X = (X_{i,1}, \ldots, X_{i,p}) \overset{\text{iid}}{\sim} G$$

where G can be arbitrary but is assumed known

- As compared to original knockoffs, removes
 - Restriction on dimension
 - Linear model requirement for $Y | X_1, \ldots, X_p$
 - “Sufficiency” constraint for W_j
Knockoffs Without a Model for Y (Candès et al., 2016)

Instead of modeling y and conditioning on X, condition on y and model X
(shifts the burden of knowledge from y onto X)

Explicitly,

$$\text{rows of } X = (X_{i,1}, \ldots, X_{i,p}) \overset{iid}{\sim} G$$

where G can be arbitrary but is assumed known

- As compared to original knockoffs, removes
 - Restriction on dimension
 - Linear model requirement for $Y \mid X_1, \ldots, X_p$
 - “Sufficiency” constraint for W_j
- The rows of X must be i.i.d., not the columns (covariates)
Knockoffs Without a Model for Y (Candès et al., 2016)

Instead of modeling y and conditioning on X, condition on y and model X (shifts the burden of knowledge from y onto X)

Explicitly,

\[\text{rows of } X = (X_{i,1}, \ldots, X_{i,p}) \overset{\text{iid}}{\sim} G \]

where G can be arbitrary but is assumed known

- As compared to original knockoffs, removes
 - Restriction on dimension
 - Linear model requirement for $Y \mid X_1, \ldots, X_p$
 - “Sufficiency” constraint for W_j

- The rows of X must be i.i.d., not the columns (covariates)
- **Nothing** about y’s distribution is assumed or need be known
Knockoffs Without a Model for Y (Candès et al., 2016)

Instead of modeling y and conditioning on X, condition on y and model X (shifts the burden of knowledge from y onto X)

Explicitly,

$$\text{rows of } X = (X_{i,1}, \ldots, X_{i,p}) \overset{iid}{\sim} G$$

where G can be arbitrary but is assumed known

- As compared to original knockoffs, removes
 - Restriction on dimension
 - Linear model requirement for $Y \mid X_1, \ldots, X_p$
 - “Sufficiency” constraint for W_j

- The rows of X must be i.i.d., not the columns (covariates)

- **Nothing** about y’s distribution is assumed or need be known

- **Robust** to overfitting X’s distribution in preliminary experiments
Figure: Covariates are **AR(1) with autocorrelation coefficient 0.3**. \(n = 800, p = 1500 \), and target FDR is 10%. \(Y \) comes from a binomial linear model with logit link function with 50 nonzero entries.
Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. $n = 800$, $p = 1500$, and target FDR is 10%. Y comes from a binomial linear model with logit link function with 50 nonzero entries.
Robustness

Figure: Covariates are $\text{AR(1) with autocorrelation coefficient } 0.3$. $n = 800$, $p = 1500$, and target FDR is 10%. Y comes from a binomial linear model with logit link function with 50 nonzero entries.
Robustness

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. \(n = 800, \ p = 1500, \) and target FDR is 10%. \(Y \) comes from a binomial linear model with logit link function with 50 nonzero entries.
Figure: Covariates are \textbf{AR(1) with autocorrelation coefficient 0.3}. \(n = 800, p = 1500, \) and target FDR is 10%. \(Y \) comes from a binomial linear model with logit link function with 50 nonzero entries.
Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. \(n = 800, p = 1500, \) and target FDR is 10%. \(Y \) comes from a binomial linear model with logit link function with 50 nonzero entries.
Figure: Covariates are **AR(1) with autocorrelation coefficient 0.3.** \(n = 800, \ p = 1500, \) and target FDR is 10%. \(Y \) comes from a binomial linear model with logit link function with 50 nonzero entries.
When is it appropriate?

1. Subjects sampled from a population, and

2a. X_j highly structured, well-studied, or well-understood, OR
Shifting the Burden of Knowledge

When is it appropriate?

1. Subjects sampled from a population, and
2a. X_j highly structured, well-studied, or well-understood, OR
2b. Large set of unsupervised X data (without Y's)
Shifting the Burden of Knowledge

When is it appropriate?

1. Subjects sampled from a population, and
2a. X_j highly structured, well-studied, or well-understood, OR
2b. Large set of unsupervised X data (without Y's)

For instance, many **genome-wide association studies** satisfy all conditions:

1. Subjects sampled from a population (oversampling cases still valid)
Shifting the Burden of Knowledge

When is it appropriate?

1. Subjects sampled from a population, and
2a. X_j highly structured, well-studied, or well-understood, OR
2b. Large set of unsupervised X data (without Y's)

For instance, many **genome-wide association studies** satisfy all conditions:

1. Subjects sampled from a population (oversampling cases still valid)
2a. Strong spatial structure: linkage disequilibrium models, e.g., Markov chains, are well-studied and work well
Shifting the Burden of Knowledge

When is it appropriate?

1. Subjects sampled from a population, and
2a. \(X_j \) highly structured, well-studied, or well-understood, OR
2b. Large set of unsupervised \(X \) data (without \(Y \)'s)

For instance, many **genome-wide association studies** satisfy all conditions:

1. Subjects sampled from a population (oversampling cases still valid)
2a. Strong spatial structure: linkage disequilibrium models, e.g., Markov chains, are well-studied and work well
2b. Other studies have collected same or similar SNP arrays on different subjects
The New Knockoffs Procedure

(1) **Construct knockoffs:** Exchangeability

\[
\begin{bmatrix}
X_1 \cdots X_j \cdots X_p & \tilde{X}_1 \cdots \tilde{X}_j \cdots \tilde{X}_p
\end{bmatrix} \overset{\mathcal{D}}{\equiv} \begin{bmatrix}
X_1 \cdots \tilde{X}_j \cdots X_p & \tilde{X}_1 \cdots X_j \cdots \tilde{X}_p
\end{bmatrix}
\]
The New Knockoffs Procedure

(1) **Construct knockoffs:** Exchangeability

\[
[X_1 \cdots X_j \cdots X_p \, \tilde{X}_1 \cdots \tilde{X}_j \cdots \tilde{X}_p] \overset{D}{=} [X_1 \cdots \tilde{X}_j \cdots X_p \, \tilde{X}_1 \cdots X_j \cdots \tilde{X}_p]
\]

(2) **Compute knockoff statistics:**

- Variable importance measure Z
- Antisymmetric function $f_j : \mathbb{R}^2 \rightarrow \mathbb{R}$, i.e.,

\[
f_j(z_1, z_2) = -f_j(z_2, z_1)
\]

- $W_j = f_j(Z_j, \tilde{Z}_j)$, where Z_j and \tilde{Z}_j are the variable importances of X_j and \tilde{X}_j, respectively
The New Knockoffs Procedure

(1) **Construct knockoffs:** Exchangeability

\[
\begin{bmatrix}
X_1 & \ldots & X_j & \ldots & X_p & \tilde{X}_1 & \ldots & \tilde{X}_j & \ldots & \tilde{X}_p
\end{bmatrix}^D \equiv
\begin{bmatrix}
X_1 & \ldots & \tilde{X}_j & \ldots & X_p & \tilde{X}_1 & \ldots & X_j & \ldots & \tilde{X}_p
\end{bmatrix}
\]

(2) **Compute knockoff statistics:**
- Variable importance measure \(Z \)
- Antisymmetric function \(f_j : \mathbb{R}^2 \rightarrow \mathbb{R} \), i.e.,
 \[
 f_j(z_1, z_2) = -f_j(z_2, z_1)
 \]
- \(W_j = f_j(Z_j, \tilde{Z}_j) \), where \(Z_j \) and \(\tilde{Z}_j \) are the variable importances of \(X_j \) and \(\tilde{X}_j \), respectively

(3) **Find the knockoff threshold:** (same as before)
- Order the variables by decreasing \(|W_j| \) and proceed down list
- Select only variables with positive \(W_j \) until last time \(\frac{\text{negatives}}{\text{positives}} \leq q \)
Step (1): Construct Knockoffs
Proof that valid knockoff variables can be generated for any X distribution.
Proof that valid knockoff variables can be generated for any X distribution.

If (X_1, \ldots, X_p) multivariate Gaussian, exchangeability reduces to matching first and second moments when X_j, \tilde{X}_j swapped.

For $\text{Cov}(X_1, \ldots, X_p) = \Sigma$:

\[
\text{Cov}(X_1, \ldots, X_p, \tilde{X}_1, \ldots, \tilde{X}_p) = \begin{bmatrix}
\Sigma & \Sigma - \text{diag}\{s\} \\
\Sigma - \text{diag}\{s\} & \Sigma
\end{bmatrix}
\]

For non-Gaussian X, still second-order-correct approximate knockoffs.
Knockoff Construction

Proof that valid knockoff variables can be generated for any X distribution

If (X_1, \ldots, X_p) multivariate Gaussian, exchangeability reduces to matching first and second moments when X_j, \tilde{X}_j swapped

For $\text{Cov}(X_1, \ldots, X_p) = \Sigma$:

$$\text{Cov}(X_1, \ldots, X_p, \tilde{X}_1, \ldots, \tilde{X}_p) = \begin{bmatrix} \Sigma & \Sigma - \text{diag}\{s\} \\ \Sigma - \text{diag}\{s\} & \Sigma \end{bmatrix}$$

For non-Gaussian X, still second-order-correct approximate knockoffs

- Linear algebra and semidefinite programming to find good s
- Recently: construction for Markov chains and HMMs (Sesia et al., 2017)
- Constructions also possible for grouped variables (Dai and Barber, 2016)
Step (2): Compute Knockoff Statistics
Recall W_j an antisymmetric function f_j of Z_j and \tilde{Z}_j (the variable importances of X_j and \tilde{X}_j, respectively):

$$W_j = f_j(Z_j, \tilde{Z}_j) = -f_j(\tilde{Z}_j, Z_j)$$
Recall W_j, an antisymmetric function f_j of Z_j and \tilde{Z}_j (the variable importances of X_j and \tilde{X}_j, respectively):

$$W_j = f_j(Z_j, \tilde{Z}_j) = -f_j(\tilde{Z}_j, Z_j)$$

For example,
- Z is magnitude of fitted coefficient β from a lasso regression of y on $[X \, \tilde{X}]$
- $f_j(z_1, z_2) = z_1 - z_2$
Recall W_j an antisymmetric function f_j of Z_j and \tilde{Z}_j (the variable importances of X_j and \tilde{X}_j, respectively):

$$W_j = f_j(Z_j, \tilde{Z}_j) = -f_j(\tilde{Z}_j, Z_j)$$

For example,

- Z is magnitude of fitted coefficient β from a lasso regression of y on $[X \ X]\$
- $f_j(z_1, z_2) = z_1 - z_2$

Lasso Coefficient Difference (LCD) statistic:

$$W_j = |\beta_j| - |\tilde{\beta}_j|$$
Exchangeability Endows Coin-Flipping

Recall exchangeability property: for any \(j \),

\[
\begin{bmatrix}
X_1 & \cdots & X_j & \cdots & X_p & \tilde{X}_1 & \cdots & \tilde{X}_j & \cdots & \tilde{X}_p
\end{bmatrix}
\]

\(\overset{\mathcal{D}}{=} \begin{bmatrix}
X_1 & \cdots & \tilde{X}_j & \cdots & X_p & \tilde{X}_1 & \cdots & X_j & \cdots & \tilde{X}_p
\end{bmatrix} \]
Exchangeability Endows Coin-Flipping

Recall exchangeability property: for any j,

$$\begin{bmatrix} X_1 & \cdots & X_j & \cdots & X_p & \tilde{X}_1 & \cdots & \tilde{X}_j & \cdots & \tilde{X}_p \end{bmatrix}$$

$$\mathcal{D} = \begin{bmatrix} X_1 & \cdots & \tilde{X}_j & \cdots & X_p & \tilde{X}_1 & \cdots & X_j & \cdots & \tilde{X}_p \end{bmatrix}$$

Coin-flipping property for W_j:

Lucas Janson (Harvard Statistics)
Exchangeability Endows Coin-Flipping

Recall exchangeability property: for any j,

$$ [X_1 \cdots X_j \cdots X_p \tilde{X}_1 \cdots \tilde{X}_j \cdots \tilde{X}_p]$$

$$ \overset{\mathcal{D}}{=} [X_1 \cdots \tilde{X}_j \cdots X_p \tilde{X}_1 \cdots X_j \cdots \tilde{X}_p]$$

Coin-flipping property for W_j: for any *unimportant* variable j,

$$ (Z_j, \tilde{Z}_j) := \left(Z_j \left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right), \; \tilde{Z}_j \left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right) \right) $$
Exchangeability Endows Coin-Flipping

Recall exchangeability property: for any $j,$

$$[X_1 \ldots X_j \ldots X_p \tilde{X}_1 \ldots \tilde{X}_j \ldots \tilde{X}_p]$$

$$\overset{\mathcal{D}}{=} [X_1 \ldots \tilde{X}_j \ldots X_p \tilde{X}_1 \ldots X_j \ldots \tilde{X}_p]$$

Coin-flipping property for W_j: for any unimportant variable $j,$

$$\left(Z_j, \tilde{Z}_j \right) := \left(Z_j(y, [\ldots X_j \ldots \tilde{X}_j \ldots]), \tilde{Z}_j(y, [\ldots X_j \ldots \tilde{X}_j \ldots]) \right)$$

$$\overset{\mathcal{D}}{=} \left(Z_j(y, [\ldots \tilde{X}_j \ldots X_j \ldots]), \tilde{Z}_j(y, [\ldots \tilde{X}_j \ldots X_j \ldots]) \right)$$
Exchangeability Endows Coin-Flipping

Recall exchangeability property: for any j,

$$[X_1 \cdots X_j \cdots X_p \tilde{X}_1 \cdots \tilde{X}_j \cdots \tilde{X}_p]$$

$$\mathcal{D} = [X_1 \cdots \tilde{X}_j \cdots X_p \tilde{X}_1 \cdots X_j \cdots \tilde{X}_p]$$

Coin-flipping property for W_j: for any unimportant variable j,

$$(Z_j, \tilde{Z}_j) := \left(Z_j\left(y, [\cdots X_j \cdots \tilde{X}_j \cdots]\right), \tilde{Z}_j\left(y, [\cdots X_j \cdots \tilde{X}_j \cdots]\right)\right)$$

$$\mathcal{D} \leftarrow \left(Z_j\left(y, [\cdots \tilde{X}_j \cdots X_j \cdots]\right), \tilde{Z}_j\left(y, [\cdots \tilde{X}_j \cdots X_j \cdots]\right)\right)$$

$$= \left(\tilde{Z}_j\left(y, [\cdots X_j \cdots \tilde{X}_j \cdots]\right), Z_j\left(y, [\cdots X_j \cdots \tilde{X}_j \cdots]\right)\right)$$
Exchangeability Endows Coin-Flipping

Recall exchangeability property: for any j,

$$\begin{bmatrix} X_1 & \cdots & X_j & \cdots & X_p & \tilde{X}_1 & \cdots & \tilde{X}_j & \cdots & \tilde{X}_p \end{bmatrix}$$

$$\equiv \begin{bmatrix} X_1 & \cdots & \tilde{X}_j & \cdots & X_p & \tilde{X}_1 & \cdots & X_j & \cdots & \tilde{X}_p \end{bmatrix}$$

Coin-flipping property for W_j: for any unimportant variable j,

$$\left(Z_j, \tilde{Z}_j \right) := \left(Z_j(y, \cdots X_j \cdots \tilde{X}_j \cdots) \right), \quad \tilde{Z}_j(y, \cdots X_j \cdots \tilde{X}_j \cdots)$$

$$\equiv \left(Z_j(y, \cdots \tilde{X}_j \cdots X_j \cdots) \right), \quad \tilde{Z}_j(y, \cdots \tilde{X}_j \cdots X_j \cdots)$$

$$= \left(\tilde{Z}_j(y, \cdots X_j \cdots \tilde{X}_j \cdots) \right), \quad Z_j(y, \cdots X_j \cdots \tilde{X}_j \cdots)$$

$$= \left(\tilde{Z}_j, Z_j \right)$$
Exchangeability Endows Coin-Flipping

Recall exchangeability property: for any j,

$$[X_1 \cdots X_j \cdots X_p \tilde{X}_1 \cdots \tilde{X}_j \cdots \tilde{X}_p]$$

$$\overset{\mathcal{D}}{=} [X_1 \cdots \tilde{X}_j \cdots X_p \tilde{X}_1 \cdots X_j \cdots \tilde{X}_p]$$

Coin-flipping property for W_j: for any *unimportant* variable j,

$$(Z_j, \tilde{Z}_j) := \left(Z_j\left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right), \tilde{Z}_j\left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right) \right)$$

$$\overset{\mathcal{D}}{=} \left(Z_j\left(y, \left[\cdots \tilde{X}_j \cdots X_j \cdots \right] \right), \tilde{Z}_j\left(y, \left[\cdots \tilde{X}_j \cdots X_j \cdots \right] \right) \right)$$

$$= \left(\tilde{Z}_j\left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right), Z_j\left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right) \right)$$

$$= \left(\tilde{Z}_j, Z_j \right)$$

$$W_j = f_j(Z_j, \tilde{Z}_j) \overset{\mathcal{D}}{=} f_j(\tilde{Z}_j, Z_j)$$
Exchangeability Endows Coin-Flipping

Recall exchangeability property: for any j,

$$[X_1 \cdots X_j \cdots X_p \tilde{X}_1 \cdots \tilde{X}_j \cdots \tilde{X}_p]$$

$$\mathcal{D} = [X_1 \cdots \tilde{X}_j \cdots X_p \tilde{X}_1 \cdots X_j \cdots \tilde{X}_p]$$

Coin-flipping property for W_j: for any unimportant variable j,

$$(Z_j, \tilde{Z}_j) := \left(Z_j \left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right), \ \tilde{Z}_j \left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right) \right)$$

$$\mathcal{D} = \left(Z_j \left(y, \left[\cdots \tilde{X}_j \cdots X_j \cdots \right] \right), \ \tilde{Z}_j \left(y, \left[\cdots \tilde{X}_j \cdots X_j \cdots \right] \right) \right)$$

$$= \left(\tilde{Z}_j \left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right), \ Z_j \left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right) \right)$$

$$= \left(\tilde{Z}_j, Z_j \right)$$

$$W_j = f_j(Z_j, \tilde{Z}_j) \overset{\mathcal{D}}{=} f_j(\tilde{Z}_j, Z_j) = -f_j(Z_j, \tilde{Z}_j) = -W_j$$
Exchangeability Endows Coin-Flipping

Recall exchangeability property: for any \(j \),

\[
\begin{bmatrix}
X_1 & \cdots & X_j & \cdots & X_p \\
\tilde{X}_1 & \cdots & \tilde{X}_j & \cdots & \tilde{X}_p
\end{bmatrix}
\]

\[\mathcal{D} = \begin{bmatrix}
X_1 & \cdots & \tilde{X}_j & \cdots & X_p \\
\tilde{X}_1 & \cdots & X_j & \cdots & \tilde{X}_p
\end{bmatrix} \]

Coin-flipping property for \(W_j \): for any *unimportant* variable \(j \),

\[
\left(Z_j, \tilde{Z}_j \right) := \left(Z_j \left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right), \tilde{Z}_j \left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right) \right)
\]
\[\overset{\mathcal{D}}{=} \left(Z_j \left(y, \left[\cdots \tilde{X}_j \cdots X_j \cdots \right] \right), \tilde{Z}_j \left(y, \left[\cdots \tilde{X}_j \cdots X_j \cdots \right] \right) \right) \]
\[= \left(\tilde{Z}_j \left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right), Z_j \left(y, \left[\cdots X_j \cdots \tilde{X}_j \cdots \right] \right) \right) \]
\[= \left(\tilde{Z}_j, Z_j \right) \]

\[
W_j \overset{\mathcal{D}}{=} -W_j
\]
Adaptivity and Prior Information in W_j

Recall LCD: $W_j = |\beta_j| - |\tilde{\beta}_j|$, where β_j, $\tilde{\beta}_j$ come from ℓ_1-penalized regression

Adaptivity

- Cross-validation (on $[X \ X\tilde{X}]$) to choose the penalty parameter in LCD
Recall LCD: \(W_j = |\beta_j| - |\tilde{\beta}_j| \), where \(\beta_j, \tilde{\beta}_j \) come from \(\ell_1 \)-penalized regression

Adaptivity

- Cross-validation (on \([X \tilde{X}]\)) to choose the penalty parameter in LCD
- Higher-level adaptivity: CV to choose best-fitting model for inference
Adaptivity and Prior Information in W_j

Recall LCD: $W_j = |\beta_j| - |\tilde{\beta}_j|$, where β_j, $\tilde{\beta}_j$ come from ℓ_1-penalized regression

Adaptivity

- Cross-validation (on $[X \tilde{X}]$) to choose the penalty parameter in LCD
- Higher-level adaptivity: CV to choose best-fitting model for inference
 - E.g., fit random forest and ℓ_1-penalized regression; derive feature importance from whichever has lower CV error—still strict FDR control

Prior information

Bayesian approach: choose prior and model, and Z_j could be the posterior probability that X_j contributes to the model

Still strict FDR control, even if wrong prior or MCMC has not converged
Adaptivity and Prior Information in W_j

Recall LCD: $W_j = |\beta_j| - |\tilde{\beta}_j|$, where $\beta_j, \tilde{\beta}_j$ come from ℓ_1-penalized regression

Adaptivity

- Cross-validation (on $[X \tilde{X}]$) to choose the penalty parameter in LCD
- Higher-level adaptivity: CV to choose best-fitting model for inference
 - E.g., fit random forest and ℓ_1-penalized regression; derive feature importance from whichever has lower CV error—still strict FDR control
- Can even let analyst look at (masked version of) data to choose Z function

Bayesian approach

- Z_j could be the posterior probability that X_j contributes to the model
- Still strict FDR control, even if wrong prior or MCMC has not converged
Adaptivity and Prior Information in W_j

Recall LCD: $W_j = |\beta_j| - |\tilde{\beta}_j|$, where β_j, $\tilde{\beta}_j$ come from ℓ_1-penalized regression

Adaptivity

- Cross-validation (on $[X \tilde{X}]$) to choose the penalty parameter in LCD
- Higher-level adaptivity: CV to choose best-fitting model for inference
 - E.g., fit random forest and ℓ_1-penalized regression; derive feature importance from whichever has lower CV error—still strict FDR control
- Can even let analyst look at (masked version of) data to choose Z function

Prior information

- **Bayesian approach**: choose prior and model, and Z_j could be the posterior probability that X_j contributes to the model
Adaptivity and Prior Information in W_j

Recall LCD: $W_j = |\beta_j| - |\tilde{\beta}_j|$, where β_j, $\tilde{\beta}_j$ come from ℓ_1-penalized regression

Adaptivity

- Cross-validation (on $[X \ X\tilde{X}]$) to choose the penalty parameter in LCD
- Higher-level adaptivity: CV to choose best-fitting model for inference
 - E.g., fit random forest and ℓ_1-penalized regression; derive feature importance from whichever has lower CV error—still strict FDR control
- Can even let analyst look at (masked version of) data to choose Z function

Prior information

- **Bayesian approach**: choose prior and model, and Z_j could be the posterior probability that X_j contributes to the model
- Still strict FDR control, even if wrong prior or MCMC has not converged
Step (3): Find the Knockoff Threshold
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

$W_1 \mid W_2 \mid W_3 \mid W_4 \mid W_5 \mid W_6 \mid W_7 \mid W_8 \mid W_9 \mid W_{10}$

$q = 20\% \ \{\text{negative } W_j \} \ \{\text{positive } W_j \}$

$S^\hat{\tau} = \{1, 4, 5, 6, 7\}$
Find the Knockoff Threshold

Example with \(p = 10 \) and \(q = 20\% = 1/5 \):

\[
\hat{\tau} = \{1, 4, 5, 6, 7\}
\]
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

$|W_9| \quad |W_2| \quad |W_7| \quad |W_{10}| \quad |W_6|$

$|W_8| \quad |W_3| \quad |W_1| \quad |W_4| \quad |W_5|$
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

\[
\begin{array}{cccc}
|W_9| & |W_2| & |W_7| & |W_{10}| \\
|W_8| & |W_3| & |W_1| & |W_4| \\
\end{array}
\]

\[
S = \{1, 4, 5, 6, 7\}
\]

Lucas Janson (Harvard Statistics)

Knockoffs for HD Controlled Variable Selection
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

$$\hat{\tau} = \{1, 4, 5, 6, 7\}$$

Lucas Janson (Harvard Statistics)
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

$$\hat{\tau}_S = \{1, 4, 5, 6, 7\}$$

Lucas Janson (Harvard Statistics)
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

$\hat{\tau}_S = \{1, 4, 5, 6, 7\}$

$\frac{\# \{\text{negative } W_j\}}{\# \{\text{positive } W_j\}}$

$q = 20\%$
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

$\hat{\tau}_S = \{1, 4, 5, 6, 7\}$
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

\[
\begin{array}{cccccc}
|W_1| & |W_2| & |W_3| & |W_4| & |W_5| & |W_6| \\
\hline
0 & 1/4 & 1/3 & 0 & 0 & 2/5
\end{array}
\]

\[
\frac{\# \{\text{negative } W_j} \} \}{\# \{\text{positive } W_j} \} = q = 20\%
\]
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

$\|W_9\| \quad \|W_2\| \quad \|W_7\| \quad \|W_{10}\| \quad \|W_6\|$

$\|W_8\| \quad \|W_3\| \quad \|W_1\| \quad \|W_4\| \quad \|W_5\|$

$\frac{1}{5} \quad \frac{1}{4} \quad \frac{1}{3} \quad \frac{0}{3} \quad \frac{0}{2} \quad \frac{0}{1}$

$\frac{\#\{\text{negative } W_j\}}{\#\{\text{positive } W_j\}}$

$q = 20\%$
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

\[
|W_9| \quad |W_2| \quad |W_7| \quad |W_{10}| \quad |W_6|
\]

\[
\begin{array}{cccc}
|W_8| & |W_3| & |W_1| & |W_4| & |W_5| \\
\frac{2}{5} & \frac{1}{5} & \frac{1}{4} & \frac{1}{3} & \frac{0}{3} \\
0 & 0 & 2 & 0 & 1
\end{array}
\]

\[
\frac{\#\{\text{negative } W_j\}}{\#\{\text{positive } W_j\}}
\]

$q = 20\%$
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

\[
\begin{array}{cccccc}
|W_9| & |W_2| & |W_7| & |W_{10}| & |W_6| \\
\frac{3}{5} & \frac{2}{5} & \frac{1}{5} & & \\
|W_8| & |W_3| & |W_1| & |W_4| & |W_5| \\
\frac{1}{4} & \frac{1}{3} & \frac{0}{3} & & \frac{0}{2} & \frac{0}{1}
\end{array}
\]

$\hat{\tau}_S = \{1, 4, 5, 6, 7\}$

$\frac{\#\{\text{negative } W_j\}}{\#\{\text{positive } W_j\}}$

$q = 20\%$
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

$|W_9| \quad |W_2| \quad |W_7| \quad |W_{10}| \quad |W_6|$

$|W_8| \quad |W_3| \quad |W_1| \quad |W_4| \quad |W_5|$

$\frac{3}{6} \quad \frac{3}{5} \quad \frac{2}{5} \quad \frac{1}{5} \quad \frac{1}{4} \quad \frac{1}{3} \quad \frac{0}{3} \quad \frac{0}{2} \quad \frac{0}{1}$

$q = 20\%$
Find the Knockoff Threshold

Example with \(p = 10 \) and \(q = 20\% = 1/5 \):

\[S = \{1, 4, 5, 6, 7\} \]

Lucas Janson (Harvard Statistics)
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

$|W_9| \quad |W_2| \quad |W_7| \quad |W_{10}| \quad |W_6|

0

$|W_8| \quad |W_3| \quad |W_1| \quad |W_4| \quad |W_5|

$\frac{3}{7} \quad \frac{3}{6} \quad \frac{3}{5} \quad \frac{2}{5} \quad \frac{1}{5}

$\frac{1}{4} \quad \frac{1}{3} \quad \frac{0}{3}

$\frac{0}{2} \quad \frac{0}{1}$

$q = 20\%$
Find the Knockoff Threshold

Example with $p = 10$ and $q = 20\% = 1/5$:

$S = \{1, 4, 5, 6, 7\}$
FDR = \mathbb{E} \left(\frac{\# \{ \text{null } X_j \text{ selected} \}}{\# \{ \text{total } X_j \text{ selected} \}} \right)
Intuition for FDR Control

FDR = \[\mathbb{E} \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{\#\{\text{total } X_j \text{ selected}\}} \right)\]

= \[\mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right)\]
Intuition for FDR Control

\[
\text{FDR} = \mathbb{E} \left(\frac{\#\{\text{null } X_j \text{ selected} \}}{\#\{\text{total } X_j \text{ selected} \}} \right) \\
= \mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau} \}}{\#\{\text{positive } |W_j| > \hat{\tau} \}} \right) \\
\approx \mathbb{E} \left(\frac{\#\{\text{null negative } |W_j| > \hat{\tau} \}}{\#\{\text{positive } |W_j| > \hat{\tau} \}} \right)
\]
Intuition for FDR Control

\[
\text{FDR} = \mathbb{E} \left(\frac{\# \{ \text{null } X_j \text { selected} \}}{\# \{ \text{total } X_j \text { selected} \}} \right) \\
= \mathbb{E} \left(\frac{\# \{ \text{null positive } |W_j| > \hat{\tau} \}}{\# \{ \text{positive } |W_j| > \hat{\tau} \}} \right) \\
\approx \mathbb{E} \left(\frac{\# \{ \text{null negative } |W_j| > \hat{\tau} \}}{\# \{ \text{positive } |W_j| > \hat{\tau} \}} \right) \\
\leq \mathbb{E} \left(\frac{\# \{ \text{negative } |W_j| > \hat{\tau} \}}{\# \{ \text{positive } |W_j| > \hat{\tau} \}} \right)
\]
GWAS Application
2007 case-control study by WTCCC

- $n \approx 5,000, \ p \approx 375,000$; preprocessing mirrored original analysis
2007 case-control study by WTCCC

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis

- **Strong spatial structure**: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)
2007 case-control study by WTCCC

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis

- **Strong spatial structure**: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)

- Entire analysis took 6 hours of serial computation time; **1 hour** in parallel
Genetic Analysis of Crohn’s Disease

2007 case-control study by WTCCC

- \(n \approx 5,000 \), \(p \approx 375,000 \); preprocessing mirrored original analysis

- **Strong spatial structure**: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)

- Entire analysis took 6 hours of serial computation time; **1 hour** in parallel

- Knockoffs made **twice as many discoveries** as original analysis
2007 case-control study by WTCCC

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis

- **Strong spatial structure**: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)

- Entire analysis took 6 hours of serial computation time; 1 hour in parallel

- Knockoffs made **twice as many discoveries** as original analysis
 - Some new discoveries **confirmed** in larger study
2007 case-control study by WTCCC

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis

- **Strong spatial structure**: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)

- Entire analysis took 6 hours of serial computation time; 1 hour in parallel

- Knockoffs made **twice as many discoveries** as original analysis
 - Some new discoveries **confirmed** in larger study
 - Some corroborated by work on nearby genes: **promising candidates**
Genetic Analysis of Crohn’s Disease

2007 case-control study by WTCCC

- $n \approx 5,000$, $p \approx 375,000$; preprocessing mirrored original analysis
- **Strong spatial structure**: second-order knockoffs generated using genetic covariance estimate (Wen and Stephens, 2010)
- Entire analysis took 6 hours of serial computation time; 1 hour in parallel
- Knockoffs made **twice as many discoveries** as original analysis
 - Some new discoveries confirmed in larger study
 - Some corroborated by work on nearby genes: promising candidates
 - Similar result when HMM knockoffs applied to same data (Sesia et al., 2017)
Discussion
By conditioning on Y and modeling X, knockoffs can be applied to high-dimensional and nonlinear problems, where it is powerful, flexible, and appears robust.

Some future directions for research:

Theoretical: rigorous guarantees on robustness

Methodological: develop knockoff constructions for new X distributions

Applied: team up with domain experts who know/control their X, e.g., gene knockout/knockdown, climate change modeling

Thank you!
Summary and Next Steps

By conditioning on \(Y \) and modeling \(X \), knockoffs can be applied to high-dimensional and nonlinear problems, where it is powerful, flexible, and appears robust.

Some future directions for research:

- **Theoretical**: rigorous guarantees on robustness
Summary and Next Steps

By conditioning on Y and modeling X, knockoffs can be applied to high-dimensional and nonlinear problems, where it is powerful, flexible, and appears robust.

Some future directions for research:

- **Theoretical**: rigorous guarantees on robustness
- **Methodological**: develop knockoff constructions for new X distributions

Thank you!

Lucas Janson (Harvard Statistics)
Summary and Next Steps

By conditioning on Y and modeling X, knockoffs can be applied to high-dimensional and nonlinear problems, where it is powerful, flexible, and appears robust.

Some future directions for research:

- **Theoretical**: rigorous guarantees on robustness
- **Methodological**: develop knockoff constructions for new X distributions
- **Applied**: team up with domain experts who know/control their X, e.g., gene knockout/knockdown, climate change modeling
By conditioning on Y and modeling X, knockoffs can be applied to high-dimensional and nonlinear problems, where it is powerful, flexible, and appears robust.

Some future directions for research:

- **Theoretical**: rigorous guarantees on robustness
- **Methodological**: develop knockoff constructions for new X distributions
- **Applied**: team up with domain experts who know/control their X, e.g., gene knockout/knockdown, climate change modeling

Thank you!
Appendix

Simulations in Low-Dimensional Linear Model

Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures. The design matrix is i.i.d. $\mathcal{N}(0, 1/n)$, $n = 3000$, $p = 1000$, and y comes from a Gaussian linear model with 60 nonzero regression coefficients having equal magnitudes and random signs. The noise variance is 1.
Simulations in Low-Dimensional Nonlinear Model

Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures. The design matrix is i.i.d. $\mathcal{N}(0, 1/n)$, $n = 3000$, $p = 1000$, and y comes from a binomial linear model with logit link function, and 60 nonzero regression coefficients having equal magnitudes and random signs.
Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures. The design matrix is i.i.d. $\mathcal{N}(0, 1/n)$, $n = 3000$, $p = 6000$, and y comes from a binomial linear model with logit link function, and 60 nonzero regression coefficients having equal magnitudes and random signs.
Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures. The design matrix has AR(1) columns, and marginally each $X_j \sim \mathcal{N}(0, 1/n)$. $n = 3000$, $p = 6000$, and y follows a binomial linear model with logit link function, and 60 nonzero coefficients with random signs and randomly selected locations.
Checking Sensitivity to Misspecification Error

Concern about misspecification

\[
\begin{array}{c|c|c}
Y \mid X & X \\
\hline
\text{Yes} & \text{No} \\
\text{No} & \text{Yes} \\
\end{array}
\]

Canonical (model Y, not X)

model X, not Y
Checking Sensitivity to Misspecification Error

<table>
<thead>
<tr>
<th>Concern about misspecification</th>
<th>(Y \mid X)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canonical (model (Y), not (X))</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>model (X), not (Y)</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Misspecification replicated in simulation?
- No
- Yes
Checking Sensitivity to Misspecification Error

Concern about misspecification

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Canonical (model Y, not X)

model X, not Y

Misspecification replicated in simulation?

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can actually check sensitivity to misspecification error!
Figure: Power and FDR (target is 10%) for model-free knockoffs applied to subsamples of a chromosome 1 of real genetic design matrix; $n \approx 1,400$.
Computation of Second-Order Knockoffs

\[\text{Cov}(X_1, \ldots, X_p) = \Sigma, \text{ need:} \]

\[\text{Cov}(X_1, \ldots, X_p, \tilde{X}_1, \ldots, \tilde{X}_p) = \begin{bmatrix} \Sigma & \Sigma - \text{diag}\{s\} \\ \Sigma - \text{diag}\{s\} & \Sigma \end{bmatrix} \]
Computation of Second-Order Knockoffs

\[\text{Cov}(X_1, \ldots, X_p) = \Sigma, \text{ need:} \]

\[
\text{Cov}(X_1, \ldots, X_p, \tilde{X}_1, \ldots, \tilde{X}_p) = \begin{bmatrix}
\Sigma & \Sigma - \text{diag}\{s\} \\
\Sigma - \text{diag}\{s\} & \Sigma
\end{bmatrix}
\]

- **Equicorrelated (EQ)** (fast, less powerful): \(s_{j}^{\text{EQ}} = 2\lambda_{\text{min}}(\Sigma) \wedge 1 \) for all \(j \)
Computation of Second-Order Knockoffs

\[\text{Cov}(X_1, \ldots, X_p) = \Sigma, \text{ need:} \]

\[\text{Cov}(X_1, \ldots, X_p, \tilde{X}_1, \ldots, \tilde{X}_p) = \begin{bmatrix} \Sigma & \Sigma - \text{diag}\{s\} \\ \Sigma - \text{diag}\{s\} & \Sigma \end{bmatrix} \]

- **Equicorrelated (EQ)** *(fast, less powerful)*: \(s_{\text{EQ}}^j = 2\lambda_{\text{min}}(\Sigma) \wedge 1 \) for all \(j \)

- **Semidefinite program (SDP)** *(slower, more powerful)*:

 \[
 \begin{align*}
 \text{minimize} & \quad \sum_j |1 - s_{\text{SDP}}^j| \\
 \text{subject to} & \quad s_{\text{SDP}}^j \geq 0 \\
 & \quad \text{diag}\{s_{\text{SDP}}\} \preceq 2\Sigma,
 \end{align*}
\]
Computation of Second-Order Knockoffs

\[
\text{Cov}(X_1, \ldots, X_p) = \Sigma, \text{ need:}
\]

\[
\text{Cov}(X_1, \ldots, X_p, \tilde{X}_1, \ldots, \tilde{X}_p) = \begin{bmatrix}
\Sigma & \Sigma - \text{diag}\{s\} \\
\Sigma - \text{diag}\{s\} & \Sigma
\end{bmatrix}
\]

- **Equicorrelated (EQ)** (fast, less powerful): \(s_j^{\text{EQ}} = 2\lambda_{\text{min}}(\Sigma) \wedge 1 \) for all \(j \)

- **Semidefinite program (SDP)** (slower, more powerful):

 minimize \(\sum_j |1 - s_j^{\text{SDP}}| \)

 subject to \(s_j^{\text{SDP}} \geq 0 \)

 \(\text{diag}\{s^{\text{SDP}}\} \preceq 2\Sigma \),

- **(New) Approximate SDP**:
 - Approximate \(\Sigma \) as block diagonal so that SDP separates
 - Bisection search scalar multiplier of solution to account for approximation
 - faster than SDP, more powerful than EQ, and easily parallelizable
Algorithm 1 Sequential Conditional Independent Pairs

\textbf{for} \ j = \{1, \ldots, p\} \ \textbf{do} \\
\hspace{1em} \text{Sample } \tilde{X}_j \text{ from } \mathcal{L}(X_j | X_{-j}, \tilde{X}_{1:j-1}) \text{ conditionally independently of } X_j \\
\textbf{end}

Proof sketch (discrete case): Denote PMF of \((X_1:p, \tilde{X}_1:j-1)\) by \(\mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1})\). Conditional PMF of \(\tilde{X}_j | X_1:p, \tilde{X}_{1:j-1}\) is \(\mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})/\sum_u \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})\). Joint PMF of \((X_1:p, \tilde{X}_1:j)\) is \(\mathcal{L}(X_j | X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1}) \mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1}) / \sum_u \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})\).
Algorithm 1 Sequential Conditional Independent Pairs

for $j = \{1, \ldots, p\}$ do
 Sample \tilde{X}_j from $\mathcal{L}(X_j \mid X_{-j}, \tilde{X}_{1:j-1})$ conditionally independently of X_j
end

Proof sketch (discrete case):
- Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1})$
Algorithm 1 Sequential Conditional Independent Pairs

for $j = \{1, \ldots, p\}$ do
 Sample \tilde{X}_j from $\mathcal{L}(X_j \mid X_{-j}, \tilde{X}_{1:j-1})$ conditionally independently of X_j
end

Proof sketch (discrete case):

- Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1})$
- Conditional PMF of $\tilde{X}_j \mid X_{1:p}, \tilde{X}_{1:j-1}$ is

$$\frac{\mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_u \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}.$$
Algorithm 1 Sequential Conditional Independent Pairs

for $j = \{1, \ldots, p\}$ do
 Sample \tilde{X}_j from $\mathcal{L}(X_j \mid X_{-j}, \tilde{X}_{1:j-1})$ conditionally independently of X_j
end

Proof sketch (discrete case):

- Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1})$
- Conditional PMF of $\tilde{X}_j \mid X_{1:p}, \tilde{X}_{1:j-1}$ is
 \[
 \frac{\mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_u \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}.
 \]
- Joint PMF of $(X_{1:p}, \tilde{X}_{1:j})$ is
 \[
 \frac{\mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1}) \mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_u \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}.
 \]
Algorithm 1 Sequential Conditional Independent Pairs

for $j = \{1, \ldots, p\}$ do
 Sample \tilde{X}_j from $L(X_j | X_{-j}, \tilde{X}_{1:j-1})$ conditionally independently of X_j
end

Proof sketch (discrete case):

- Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $L(X_{-j}, X_j, \tilde{X}_{1:j-1})$
- Conditional PMF of $\tilde{X}_j | X_{1:p}, \tilde{X}_{1:j-1}$ is
 \[
 \frac{L(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_u L(X_{-j}, u, \tilde{X}_{1:j-1})}.
 \]
- Joint PMF of $(X_{1:p}, \tilde{X}_{1:j})$ is
 \[
 \frac{L(X_{-j}, X_j, \tilde{X}_{1:j-1})L(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_u L(X_{-j}, u, \tilde{X}_{1:j-1})}.
 \]
Algorithm 1 Sequential Conditional Independent Pairs

for $j = \{1, \ldots, p\}$ do
\hspace{1em} Sample \tilde{X}_j from $\mathcal{L}(X_j | X_{-j}, \tilde{X}_{1:j-1})$ conditionally independently of X_j
end

Proof sketch (discrete case):

- Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1})$
- Conditional PMF of $\tilde{X}_j | X_{1:p}, \tilde{X}_{1:j-1}$ is
 \[
 \frac{\mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_u \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}.
 \]
- Joint PMF of $(X_{1:p}, \tilde{X}_{1:j})$ is
 \[
 \frac{\mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1}) \mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1})}{\sum_u \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}.
 \]
Algorithm 1 Sequential Conditional Independent Pairs

\begin{algorithm}
\begin{algorithmic}
 \FOR{$j = \{1, \ldots, p\}$}
 \STATE Sample \tilde{X}_j from $\mathcal{L}(X_j \mid X_{-j}, \tilde{X}_{1:j-1})$ conditionally independently of X_j
 \ENDFOR
\end{algorithmic}
\end{algorithm}

Proof sketch (discrete case):

- Denote PMF of $(X_{1:p}, \tilde{X}_{1:j-1})$ by $\mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1})$
- Conditional PMF of $\tilde{X}_j \mid X_{1:p}, \tilde{X}_{1:j-1}$ is
 \[\frac{\mathcal{L}(X_{-j}, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_u \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}. \]
- Joint PMF of $(X_{1:p}, \tilde{X}_{1:j})$ is
 \[\frac{\mathcal{L}(X_{-j}, X_j, \tilde{X}_{1:j-1})\mathcal{L}(X_j, \tilde{X}_j, \tilde{X}_{1:j-1})}{\sum_u \mathcal{L}(X_{-j}, u, \tilde{X}_{1:j-1})}. \]
Proof of Control

\[\text{FDR} = \mathbb{E} \left(\frac{\# \{ \text{null } X_j \text{ selected} \}}{\# \{ \text{total } X_j \text{ selected} \}} \right) \]
Proof of Control

\[
\text{FDR} = \mathbb{E}\left(\frac{\#\{\text{null } X_j \text{ selected}\}}{\#\{\text{total } X_j \text{ selected}\}} \right)
\]

\[
= \mathbb{E}\left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right)
\]

More precisely:

\[
\hat{m}_{\text{FDR}} = \mathbb{E}\left(\frac{\#\{\text{null } X_j \text{ selected}\}}{q - 1} + \#\{\text{total } X_j \text{ selected}\} \right)
\]

\[
= \mathbb{E}\left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{q - 1} + \#\{\text{positive } |W_j| > \hat{\tau}\} \right)
\]

\[
\approx \mathbb{E}\left(\frac{\#\{\text{null negative } |W_j| > \hat{\tau}\}}{q - 1} + \#\{\text{positive } |W_j| > \hat{\tau}\} \right)
\]

\[
\leq \mathbb{E}\left(\frac{\#\{\text{negative } |W_j| > \hat{\tau}\}}{q - 1} + \#\{\text{positive } |W_j| > \hat{\tau}\} \right)
\]

\[
\text{Supermartingale} \leq 1 \text{ with } \hat{\tau} \text{ a stopping time}
\]
Proof of Control

\[\text{FDR} = \mathbb{E} \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{\#\{\text{total } X_j \text{ selected}\}} \right) \]

\[= \mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]

\[\approx \mathbb{E} \left(\frac{\#\{\text{null negative } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]

More precisely:

\[m_{\text{FDR}} = \mathbb{E} \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{q - 1} + \#\{\text{total } X_j \text{ selected}\} \right) \]

\[= \mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{q - 1} + \#\{\text{positive } |W_j| > \hat{\tau}\} \right) \]

\[\approx \mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{1} + \#\{\text{null negative } |W_j| > \hat{\tau}\} \right) \]

\[\leq 1 \]

with \(\hat{\tau} \) a stopping time.
Proof of Control

\[
\text{FDR} = \mathbb{E} \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{\#\{\text{total } X_j \text{ selected}\}} \right)
\]

\[
= \mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right)
\]

\[
\approx \mathbb{E} \left(\frac{\#\{\text{null negative } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right)
\]

\[
\leq \mathbb{E} \left(\frac{\#\{\text{negative } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right)
\]
Proof of Control

\[\text{FDR} = \mathbb{E} \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{\#\{\text{total } X_j \text{ selected}\}} \right) \]

\[= \mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]

\[\approx \mathbb{E} \left(\frac{\#\{\text{null negative } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]

\[\leq \mathbb{E} \left(\frac{\#\{\text{negative } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]

More precisely:

\[\text{mFDR} = \mathbb{E} \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{q^{-1} + \#\{\text{total } X_j \text{ selected}\}} \right) = \mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]
Proof of Control

\[
\text{FDR} = \mathbb{E} \left(\frac{\# \{ \text{null } X_j \text{ selected} \}}{\# \{ \text{total } X_j \text{ selected} \}} \right) \\
= \mathbb{E} \left(\frac{\# \{ \text{null positive } |W_j| > \hat{\tau} \}}{\# \{ \text{positive } |W_j| > \hat{\tau} \}} \right) \\
\approx \mathbb{E} \left(\frac{\# \{ \text{null negative } |W_j| > \hat{\tau} \}}{\# \{ \text{positive } |W_j| > \hat{\tau} \}} \right) \\
\leq \mathbb{E} \left(\frac{\# \{ \text{negative } |W_j| > \hat{\tau} \}}{\# \{ \text{positive } |W_j| > \hat{\tau} \}} \right)
\]

More precisely:

\[
\text{mFDR} = \mathbb{E} \left(\frac{\# \{ \text{null } X_j \text{ selected} \}}{q^{-1} + \# \{ \text{total } X_j \text{ selected} \}} \right) = \mathbb{E} \left(\frac{\# \{ \text{null positive } |W_j| > \hat{\tau} \}}{q^{-1} + \# \{ \text{positive } |W_j| > \hat{\tau} \}} \right) \\
= \mathbb{E} \left(\frac{\# \{ \text{null positive } |W_j| > \hat{\tau} \}}{1 + \# \{ \text{null negative } |W_j| > \hat{\tau} \}} \cdot \frac{1 + \# \{ \text{null negative } |W_j| > \hat{\tau} \}}{q^{-1} + \# \{ \text{positive } |W_j| > \hat{\tau} \}} \right)
\]
Proof of Control

FDR = \[E \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{\#\{\text{total } X_j \text{ selected}\}} \right) \]

= \[E \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]

\approx \[E \left(\frac{\#\{\text{null negative } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]

\leq \[E \left(\frac{\#\{\text{negative } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]

More precisely:

mFDR = \[E \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{q^{-1} + \#\{\text{total } X_j \text{ selected}\}} \right) \]

= \[E \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]

= \[E \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{1 + \#\{\text{null negative } |W_j| > \hat{\tau}\}} \cdot \frac{1 + \#\{\text{null negative } |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \]

\leq q \text{ by definition of } \hat{\tau}
Proof of Control

\[
\text{FDR} = \mathbb{E} \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{\#\{\text{total } X_j \text{ selected}\}} \right) \\
= \mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \\
\cong \mathbb{E} \left(\frac{\#\{\text{null negative } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \\
\leq \mathbb{E} \left(\frac{\#\{\text{negative } |W_j| > \hat{\tau}\}}{\#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \\
\leq \mathbb{E} \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{q^{-1} + \#\{\text{total } X_j \text{ selected}\}} \right) \\
= \mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\text{positive } |W_j| > \hat{\tau}\}} \right) \\
\leq q \text{ by definition of } \hat{\tau}
\]

More precisely:

\[
\text{mFDR} = \mathbb{E} \left(\frac{\#\{\text{null } X_j \text{ selected}\}}{q^{-1} + \#\{\text{total } X_j \text{ selected}\}} \right) \\
= \mathbb{E} \left(\frac{\#\{\text{null positive } |W_j| > \hat{\tau}\}}{1 + \#\{\text{null negative } |W_j| > \hat{\tau}\}} \cdot \frac{1 + \#\{\text{null negative } |W_j| > \hat{\tau}\}}{q^{-1} + \#\{\text{positive } |W_j| > \hat{\tau}\}} \right)
\]

Supermartingale \leq 1 with \(\hat{\tau} \) a stopping time

Lucas Janson (Harvard Statistics)
Knockoffs for HD Controlled Variable Selection
18 / 18