< 2022 >
November
  • 01
    11/01/2022
    20bottfeatureplain-1

    Math Science Lectures in Honor of Raoul Bott: Michael Freedman

    11:00 am-12:30 pm
    11/01/2022

    20bottfeatureplain
    On October 4th and October 5th, 2021, Harvard CMSA hosted the annual Math Science Lectures in Honor of Raoul Bott. This year’s speaker was Michael Freedman (Microsoft). The lectures took place on Zoom.

    This will be the third annual lecture series held in honor of Raoul Bott.

    Lecture 1
    October 4th, 11:00am (Boston time)
    Title: The Universe from a single Particle

    Abstract: I will explore a toy model  for our universe in which spontaneous symmetry breaking – acting on the level of operators (not states) – can produce the interacting physics we see about us from the simpler, single particle, quantum mechanics we study as undergraduates. Based on joint work with Modj Shokrian Zini, see arXiv:2011.05917 and arXiv:2108.12709.

    Video

    Lecture 2
    October 5th, 11:00am (Boston time)
    Title: Controlled Mather Thurston Theorems.

    Abstract: The “c-principle” is a cousin of Gromov’s h-principle in which cobordism rather than homotopy is required to (canonically) solve a problem. We show that in certain well-known c-principle contexts only the mildest cobordisms, semi-s-cobordisms, are required. In physical applications, the extra topology (a perfect fundamental group) these cobordisms introduce could easily be hidden in the UV. This leads to a proposal to recast gauge theories such as EM and the standard model in terms of flat connections rather than curvature. See arXiv:2006.00374  

    Video

     

  • 01
    11/01/2022

    Kardar-Parisi-Zhang dynamics in integrable quantum magnets

    9:00 am-10:30 am
    11/01/2022

    Quantum Matter Seminar

    Speaker: Francisco Machado  (Berkeley/Harvard)

    Title: Kardar-Parisi-Zhang dynamics in integrable quantum magnets

    Abstract: Although the equations of motion that govern quantum mechanics are well-known, understanding the emergent macroscopic behavior that arises from a particular set of microscopic interactions remains remarkably challenging. One particularly important behavior is that of hydrodynamical transport; when a quantum system has a conserved quantity (i.e. total spin), the late-time, coarse-grained dynamics of the conserved charge is expected to follow a simple, classical hydrodynamical description. However the nature and properties of this hydrodynamical description can depend on many details of the underlying interactions. For example, the presence of additional dynamical constraints can fundamentally alter the propagation of the conserved quantity and induce slower-than-diffusion propagation. At the same time, the presence of an extensive number of conserved quantities in the form of integrability, can imbue the system with stable quasi-particles that propagate ballistically through the system.

    In this talk, I will discuss another possibility that arises from the interplay of integrability and symmetry; in integrable one dimensional quantum magnets with complex symmetries, spin transport is neither ballistic nor diffusive, but rather superdiffusive. Using a novel method for the simulation of quantum dynamics (termed Density Matrix Truncation), I will present a detailed analysis of spin transport in a variety of integrable quantum magnets with various symmetries. Crucially, our analysis is not restricted to capturing the dynamical exponent of the transport dynamics and enables us to fully characterize its universality class: for all superdiffusive models, we find that transport falls under the celebrated Kardar-Parisi-Zhang (KPZ) universality class.

    Finally, I will discuss how modern atomic, molecular and optical platforms provide an important bridge to connect the microscopic interactions to the resulting hydrodynamical transport dynamics. To this end, I will present recent experimental results, where this KPZ universal behavior was observed using atoms confined to an optical lattice.

    [1] Universal Kardar-Parisi-Zhang dynamics in integrable quantum systems
    B Ye†, FM*, J Kemp*, RB Hutson, NY Yao
    (PRL in press) – arXiv:2205.02853

    [2] Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion
    D Wei, A Rubio-Abadal, B Ye, FM, J Kemp, K Srakaew, S Hollerith, J Rui, S Gopalakrishnan, NY Yao, I Bloch, J Zeiher
    Science (2022) — arXiv:2107.00038

     

    https://www.youtube.com/watch?v=65DjgbX30FU&list=PL0NRmB0fnLJQAnYwkpt9PN2PBKx4rvdup&index=27

  • 02
    11/02/2022
    20bottfeatureplain-1

    Math Science Lectures in Honor of Raoul Bott: Michael Freedman

    11:00 am-12:30 pm
    11/02/2022

    20bottfeatureplain
    On October 4th and October 5th, 2021, Harvard CMSA hosted the annual Math Science Lectures in Honor of Raoul Bott. This year’s speaker was Michael Freedman (Microsoft). The lectures took place on Zoom.

    This will be the third annual lecture series held in honor of Raoul Bott.

    Lecture 1
    October 4th, 11:00am (Boston time)
    Title: The Universe from a single Particle

    Abstract: I will explore a toy model  for our universe in which spontaneous symmetry breaking – acting on the level of operators (not states) – can produce the interacting physics we see about us from the simpler, single particle, quantum mechanics we study as undergraduates. Based on joint work with Modj Shokrian Zini, see arXiv:2011.05917 and arXiv:2108.12709.

    Video

    Lecture 2
    October 5th, 11:00am (Boston time)
    Title: Controlled Mather Thurston Theorems.

    Abstract: The “c-principle” is a cousin of Gromov’s h-principle in which cobordism rather than homotopy is required to (canonically) solve a problem. We show that in certain well-known c-principle contexts only the mildest cobordisms, semi-s-cobordisms, are required. In physical applications, the extra topology (a perfect fundamental group) these cobordisms introduce could easily be hidden in the UV. This leads to a proposal to recast gauge theories such as EM and the standard model in terms of flat connections rather than curvature. See arXiv:2006.00374  

    Video

     

  • 02
    11/02/2022
    CMSA Topological Seminar 11.2.22

    Optical axion electrodynamics

    9:00 am-10:00 am
    11/02/2022
    CMSA Room G10
    CMSA, 20 Garden Street, Cambridge, MA 02138 USA

    Topological Quantum Matter Seminar

    Speaker: Junyeong Ahn (Harvard)

    Title: Optical axion electrodynamics

    Abstract: Electromagnetic fields in a magneto-electric medium behave in close analogy to photons coupled to the hypothetical elementary particle, the axion. This emergent axion electrodynamics is expected to provide novel ways to detect and control material properties with electromagnetic fields. Despite having been studied intensively for over a decade, its theoretical understanding remains mostly confined to the static limit. Formulating axion electrodynamics at general optical frequencies requires resolving the difficulty of calculating optical magneto-electric coupling in periodic systems and demands a proper generalization of the axion field. In this talk, I will introduce a theory of optical axion electrodynamics that allows for a simple quantitative analysis. Then, I will move on to discuss the issue of the Kerr effect in axion antiferromagnets, refuting the conventional wisdom that the Kerr effect is a measure of the net magnetic moment. Finally, I will apply our theory to a topological antiferromagnet MnBi2Te4.

    References:
    [1] Theory of Optical Axion Electrodynamics, J. Ahn, S.Y. Xu, A.Vishwanath, arXiv:2205.06843

  • 02
    11/02/2022
    CMSA Colloquium 11.02.22

    Doping and inverting Mott insulators on semiconductor moire superlattices

    12:45 pm-1:45 pm
    11/02/2022
    CMSA Room G10
    CMSA, 20 Garden Street, Cambridge, MA 02138 USA

    Speaker: Liang Fu (MIT)

    Title: Doping and inverting Mott insulators on semiconductor moire superlattices

    Abstract: Semiconductor bilayer heterostructures provide a remarkable platform for simulating Hubbard models on an emergent lattice defined by moire potential minima. As a hallmark of Hubbard model physics, the Mott insulator state with local magnetic moments has been observed at half filling of moire band. In this talk, I will describe new phases of matter that grow out of the canonical 120-degree antiferromagnetic Mott insulator on the triangular lattice. First, in an intermediate range of magnetic fields, doping this Mott insulator gives rise to a dilute gas of spin polarons, which form a pseudogap metal. Second, the application of an electric field between the two layers can invert the many-body gap of a charge-transfer Mott insulator, resulting in a continuous phase transition to a quantum anomalous Hall insulator with a chiral spin structure. Experimental results will be discussed and compared with theoretical predictions.

< 2022 >
November
«
»
  • 01
    11/01/2022

    SPACETIME AND QUANTUM MECHANICS, TOTAL POSITIVITY AND MOTIVES

    9:48 pm
    11/01/2022-12/31/2010

    Recent developments have poised this area to make serious advances in 2019, and we feel that bringing together many of the relevant experts for an intensive semester of discussions and collaboration will trigger some great things to happen. To this end, the organizers will host a small workshop during fall 2019, with between 20-30 participants. They will also invite 10-20 longer-term visitors throughout the semester. Additionally, there will be a seminar held weekly on Thursdays at 2:30pm in CMSA G10.

    Organizers:

    .

    Workshops:

     

    Here is a partial list of the mathematicians and physicists who have indicated that they will attend part or all of this special program as a visitor:

  • 01
    11/01/2022

    Mathematical Biology

    9:45 pm-9:46 pm
    11/01/2022-12/31/2010

    During Academic year 2018-19, the CMSA will be hosting a Program on Mathematical Biology.

    Just over a century ago, the biologist, mathematician and philologist D’Arcy Thompson wrote “On growth and form”. The book was a visionary synthesis of the geometric biology of form at the time. It also served as a call for mathematical and physical approaches to understanding the evolution and development of shape.

    In the century since its publication, we have seen a revolution in biology following the discovery of the genetic code, which has uncovered the molecular and cellular basis for life, combined with the ability to probe the chemical, structural, and dynamical nature of molecules, cells, tissues and organs across scales. In parallel, we have seen a blossoming of our understanding of spatiotemporal patterning in physical systems, and a gradual unveiling of the complexity of physical form. And in mathematics and computation, there has been a revolution in terms of posing and solving problems at the intersection of computational geometry, statistics and inference.  So, how far are we from realizing a descriptive, predictive and controllable theory of biological shape?

    In Fall 2018, CMSA will focus on a program that aims at recent mathematical advances in describing shape using geometry and statistics in a biological context, while also considering a range of physical theories that can predict biological shape at scales ranging from macromolecular assemblies to whole organ systems

    The CMSA will be hosting three workshops as part of this program. The Workshop on Morphometrics, Morphogenesis and Mathematics will take place on October 22-26. 

    A workshop on Morphogenesis: Geometry and Physics will take place on December 3-6, 2018.

    A workshop on Invariance and Geometry in Sensation, Action and Cognition will take place on April 15-17, 2019.

  • 01
    11/01/2022

    THE SIMONS COLLABORATION IN HOMOLOGICAL MIRROR SYMMETRY

    9:49 pm
    11/01/2022-12/23/2010

    The Simons Collaboration program in Homological Mirror Symmetry at Harvard CMSA and Brandeis University is part of the bigger Simons collaboration program on Homological mirror symmetry (https://schms.math.berkeley.edu) which brings to CMSA experts on algebraic geometry, Symplectic geometry, Arithmetic geometry, Quantum topology and mathematical aspects of high energy physics, specially string theory with the goal of proving the homological mirror symmetry conjecture (HMS) in full generality and explore its applications. Mirror symmetry, which emerged in the late 1980s as an unexpected physical duality between quantum field theories, has been a major source of progress in mathematics. At the 1994 ICM, Kontsevich reinterpreted mirror symmetry as a deep categorical duality: the HMS conjecture states that the derived category of coherent sheaves of a smooth projective variety is equivalent to the Fukaya category of a mirror symplectic manifold (or Landau-Ginzburg model). We are happy to announce that the Simons Foundation has agreed to renew funding for the HMS collaboration program for three additional years.

    A brief induction of the Brandeis-Harvard CMSA HMS/SYZ research agenda and team members are as follow:


    Directors:


    Shing-Tung Yau (Harvard University)

    Born in Canton, China, in 1949, S.-T. Yau grew up in Hong Kong, and studied in the Chinese University of Hong Kong from 1966 to 1969. He did his PhD at UC Berkeley from 1969 to 1971, as a student of S.S. Chern. He spent a year as a postdoc at the Institute for Advanced Study in Princeton, and a year as assistant professor at SUNY at Stony Brook. He joined the faculty at Stanford in 1973. On a Sloan Fellowship, he spent a semester at the Courant Institute in 1975. He visited UCLA the following year, and was offered a professorship at UC Berkeley in 1977. He was there for a year, before returning to Stanford. He was a plenary speaker at the 1978 ICM in Helsinki. The following year, he became a faculty member at the IAS in Princeton. He moved to UCSD in 1984. Yau came to Harvard in 1987, and was appointed the Higgins Professor of Mathematics in 1997. He has been at Harvard ever since. Yau has received numerous prestigious awards and honors throughout his career. He was named a California Scientist of the Year in 1979. In 1981, he received a Oswald Veblen Prize in Geometry and a John J. Carty Award for the Advancement of Science, and was elected a member of the US National Academy of Sciences. In 1982, he received a Fields Medal for “his contributions to partial differential equations, to the Calabi conjecture in algebraic geometry, to the positive mass conjecture of general relativity theory, and to real and complex MongeAmpre equations”. He was named Science Digest, America’s 100 Brightest Scientists under 40, in 1984. In 1991, he received a Humboldt Research Award from the Alexander von Humboldt Foundation in Germany. He was awarded a Crafoord Prize in 1994, a US National Medal of Science in 1997, and a China International Scientific and Technological Cooperation Award, for “his outstanding contribution to PRC in aspects of making progress in sciences and technology, training researchers” in 2003. In 2010, he received a Wolf Prize in Mathematics, for “his work in geometric analysis and mathematical physics”. Yau has also received a number of research fellowships, which include a Sloan Fellowship in 1975-1976, a Guggenheim Fellowship in 1982, and a MacArthur Fellowship in 1984-1985. Yau’s research interests include differential and algebraic geometry, topology, and mathematical physics. As a graduate student, he started to work on geometry of manifolds with negative curvature. He later became interested in developing the subject of geometric analysis, and applying the theory of nonlinear partial differential equations to solve problems in geometry, topology, and physics. His work in this direction include constructions of minimal submanifolds, harmonic maps, and canonical metrics on manifolds. The most notable, and probably the most influential of this, was his solution of the Calabi conjecture on Ricci flat metrics, and the existence of Kahler-Einstein metrics. He has also succeeded in applying his theory to solve a number of outstanding conjectures in algebraic geometry, including Chern number inequalities, and the rigidity of complex structures of complex projective spaces. Yau’s solution to the Calabi conjecture has been remarkably influential in mathematical physics over the last 30 years, through the creation of the theory of Calabi-Yau manifolds, a theory central to mirror symmetry. He and a team of outstanding mathematicians trained by him, have developed many important tools and concepts in CY geometry and mirror symmetry, which have led to significant progress in deformation theory, and on outstanding problems in enumerative geometry. Lian, Yau and his postdocs have developed a systematic approach to study and compute period integrals of CY and general type manifolds. Lian, Liu and Yau (independently by Givental) gave a proof of the counting formula of Candelas et al for worldsheet instantons on the quintic threefold. In the course of understanding mirror symmetry, Strominger, Yau, and Zaslow proposed a new geometric construction of mirror symmetry, now known as the SYZ construction. This has inspired a rapid development in CY geometry over the last two decades. In addition to CY geometry and mirror symmetry, Yau has done influential work on nonlinear partial differential equations, generalized geometry, Kahler geometry, and general relativity. His proof of positive mass conjecture is a widely regarded as a cornerstone in the classical theory of general relativity. In addition to publishing well over 350 research papers, Yau has trained more than 60 PhD students in a broad range of fields, and mentored dozens of postdoctoral fellows over the last 40 years.


    Professor Bong Lian (Brandeis University)

    BongBorn in Malaysia in 1962, Bong Lian completed his PhD in physics at Yale University under the direction of G. Zuckerman in 1991. He joined the permanent faculty at Brandeis University in 1995, and has remained there since. Between 1995 and 2013, he had had visiting research positions at numerous places, including the National University of Taiwan, Harvard University, and Tsinghua University. Lian received a J.S. Guggenheim Fellowship in 2003. He was awarded a Chern Prize at the ICCM in Taipei in 2013, for his “influential and fundamental contributions in mathematical physics, in particular in the theory of vertex algebras and mirror symmetry.” He has also been co-Director, since 2014, of the Tsinghua Mathcamp, a summer outreach program launched by him and Yau for mathematically talented teenagers in China. Since 2008, Lian has been the President of the International Science Foundation of Cambridge, a non-profit whose stated mission is “to provide financial and logistical support to scholars and universities, to promote basic research and education in mathematical sciences, especially in the Far East.” Over the last 20 years, he has mentored a number of postdocs and PhD students. His research has been supported by an NSF Focused Research Grant since 2009. Published in well over 60 papers over 25 years, Lian’s mathematical work lies in the interface between representation theory, Calabi-Yau geometry, and string theory. Beginning in the late 80’s, Lian, jointly with Zuckerman, developed the theory of semi-infinite cohomology and applied it to problems in string theory. In 1994, he constructed a new invariant (now known as the Lian- Zuckerman algebra) of a topological vertex algebra, and conjectured the first example of a G algebra in vertex algebra theory. The invariant has later inspired a new construction of quantum groups by I. Frenkel and A. Zeitlin, as semi-infinite cohomology of braided vertex algebras, and led to a more recent discovery of new relationships between Courant algebroids, A-algebras, operads, and deformation theory of BV algebras. In 2010, he and his students Linshaw and Song developed important applications of vertex algebras in equivariant topology. Lian’s work in CY geometry and mirror symmetry began in early 90’s. Using a characteristic p version of higher order Schwarzian equations, Lian and Yau gave an elementary proof that the instanton formula of Candelas et al implies Clemens’s divisibility conjecture for the quintic threefold, for infinitely many degrees. In 1996, Lian (jointly with Hosono and Yau) answered the so-called Large Complex Structure Limit problem in the affirmative in many important cases. Around the same year, they announced their hyperplane conjecture, which gives a general formula for period integrals for a large class of CY manifolds, extending the formula of Candelas et al. Soon after, Lian, Liu and Yau (independently by Givental) gave a proof of the counting formula. In 2003, inspired by mirror symmetry, Lian (jointly with Hosono, Oguiso and Yau) discovered an explicit counting formula for Fourier-Mukai partners, and settled an old problem of Shioda on abelian and K3 surfaces. Between 2009 and 2014, Lian (jointly with Bloch, Chen, Huang, Song, Srinivas, Yau, and Zhu) developed an entirely new approach to study the so-called Riemann-Hilbert problem for period integrals of CY manifolds, and extended it to general type manifolds. The approach leads to an explicit description of differential systems for period integrals with many applications. In particular, he answered an old question in physics on the completeness of Picard-Fuchs systems, and constructed new differential zeros of hypergeometric functions.


    Denis Auroux (Harvard University)

    AurouxDenis Auroux’s research concerns symplectic geometry and its applications to mirror symmetry. While his early work primarily concerned the topology of symplectic 4-manifolds, over the past decade Auroux has obtained pioneering results on homological mirror symmetry outside of the Calabi-Yau setting (for Fano varieties, open Riemann surfaces, etc.), and developed an extension of the SYZ approach to non-Calabi-Yau spaces.After obtaining his PhD in 1999 from Ecole Polytechnique (France), Auroux was employed as Chargé de Recherche at CNRS and CLE Moore Instructor at MIT, before joining the faculty at MIT in 2002 (as Assistant Professor from 2002 to 2004, and as Associate Professor from 2004 to 2009, with tenure starting in 2006). He then moved to UC Berkeley as a Full Professor in 2009.
    Auroux has published over 30 peer-reviewed articles, including several in top journals, and given 260 invited presentations about his work. He received an Alfred P. Sloan Research Fellowship in 2005, was an invited speaker at the 2010 International Congress of Mathematicians, and in 2014 he was one of the two inaugural recipients of the Poincaré Chair at IHP. He has supervised 10 PhD dissertations, won teaching awards at MIT and Berkeley, and participated in the organization of over 20 workshops and conferences in symplectic geometry and mirror symmetry.




    Senior Personnel:

    Artan Sheshmani (Harvard CMSA)

    unnamedArtan Sheshmani’s research is focused on enumerative algebraic geometry and mathematical aspects of string theory. He is interested in applying techniques in algebraic geometry, such as, intersection theory, derived category theory, and derived algebraic geometry to construct and compute the deformation invariants of algebraic varieties, in particular Gromov-Witten (GW) or Donaldson-Thomas (DT) invariants. In the past Professor Sheshmani has worked on proving modularity property of certain DT invariants of K3-fibered threefolds (as well as their closely related Pandharipande-Thomas (PT) invariants), local surface threefolds, and general complete intersection Calabi-Yau threefolds. The modularity of DT/PT invariants in this context is predicted in a famous conjecture of  string theory called S-duality modularity conjecture, and his joint work has provided the proof to some cases of it, using degenerations, virtual localizations, as well as wallcrossing techniques. Recently, Sheshmani has focused on proving a series of dualities relating the various enumerative invariants over threefolds, notably the GW invariants and invariants that arise in topological gauge theory. In particular in his joint work with Gholampour, Gukov, Liu, Yau he studied DT gauge theory and its reductions to D=4 and D=2 which are equivalent to local theory of surfaces in Calabi-Yau threefolds. Moreover, in a recent joint work with Yau and Diaconescu, he has studied the construction and computation of DT invariants of Calabi-Yau fourfolds via a suitable derived categorical reduction of the theory to the DT theory of threefolds. Currently Sheshmani is interested in a wide range of problems in enumerative geometry of CY varieties in dimensions 3,4,5.

    Artan has received his PhD and Master’s degrees in pure mathematics under Sheldon Katz and Thomas Nevins from the University of Illinois at Urbana Champaign (USA) in 2011 and 2008 respectively. He holds a Master’s degree in Solid Mechanics (2004) and two Bachelor’s degrees, in Mechanical Engineering and Civil Engineering from the Sharif University of Technology, Tehran, Iran.  Artan has been a tenured Associate Professor of Mathematics with joint affiliation at Harvard CMSA and center for Quantum Geometry of Moduli Spaces (QGM), since 2016. Before that he has held visiting Associate Professor and visiting Assistant Professor positions at MIT.

    An Huang (Brandeis University)

    unnamedThe research of An Huang since 2011 has been focused on the interplay between algebraic geometry, the theory of special functions and mirror symmetry. With S. Bloch, B. Lian, V. Srinivas, S.-T. Yau, X. Zhu, he has developed the theory of tautological systems, and has applied it to settle several important problems concerning period integrals in relation to mirror symmetry. With B. Lian and X. Zhu, he has given a precise geometric interpretation of all solutions to GKZ systems associated to Calabi-Yau hypersurfaces in smooth Fano toric varieties. With B. Lian, S.-T. Yau, and C.-L. Yu, he has proved a conjecture of Vlasenko concerning an explicit formula for unit roots of the zeta functions of hypersurfaces, and has further related these roots to p-adic interpolations of complex period integrals. Beginning in 2018, with B. Stoica and S.-T. Yau, he has initiated the study of p-adic strings in curved spacetime, and showed that general relativity is a consequence of the self-consistency of quantum p-adic strings. One of the goals of this study is to understand p-adic A and B models.

    An Huang received his PhD in Mathematics from the University of California at Berkeley in 2011. He was a postdoctoral fellow at the Harvard University Mathematics Department, and joined Brandeis University as an Assistant Professor in Mathematics in 2016.



    Siu Cheong Lau (Boston University)
    unnamed

    The research interest of Siu Cheong Lau lies in SYZ mirror symmetry, symplectic and algebraic geometry.  His thesis work has successfully constructed the SYZ mirrors for all toric Calabi-Yau manifolds based on quantum corrections by open Gromov-Witten invariants and their wall-crossing phenomenon.  In collaboration with N.C. Leung, H.H. Tseng and K. Chan, he derived explicit formulas for the open Gromov-Witten invariants for semi-Fano toric manifolds which have an obstructed moduli theory.  It has a beautiful relation with mirror maps and Seidel representations.   Recently he works on a local-to-global approach to SYZ mirror symmetry.  In joint works with C.H. Cho and H. Hong, he developed a noncommutative local mirror construction for immersed Lagrangians, and a natural gluing method to construct global mirrors.  The construction has been realized in various types of geometries including orbifolds, focus-focus singularities and pair-of-pants decompositions of Riemann surfaces.

    Siu-Cheong Lau has received the Doctoral Thesis Gold Award (2012) and the Best Paper Silver Award (2017) at the International Congress of Chinese Mathematicians.  He was awarded the Simons Collaboration Grant in 2018.  He received a Certificate of Teaching Excellence from Harvard University in 2014.


    Affiliates:

    • Netanel Rubin-Blaier (Cambridge)
    • Kwokwai Chan (Chinese University of Hong Kong)
    • Mandy Cheung (Harvard University, BP)
    • Chuck Doran (University of Alberta)
    • Honsol Hong (Yonsei University)
    • Shinobu Hosono (Gakushuin University, Japan)
    • Conan Leung (Chinese University of Hong Kong)
    • Yu-shen Lin (Boston University)
    • Hossein Movassati (IMPA Brazil)
    • Arnav Tripathhy (Harvard University, BP)

     

    Postdocs:

    • Dennis Borisov
    • Tsung-Ju Lee
    • Dingxin Zhang
    • Jingyu Zhao
    • Yang Zhou

    Jobs:

    Postdoctoral Fellowship in Algebraic Geometry

    Postdoctoral Fellowship in Mathematical Sciences

     

    To learn about previous programming as part of the Simons Collaboration, click here.

  • 01
    11/01/2022

    TOPOLOGICAL ASPECTS OF CONDENSED MATTER

    9:44 pm
    11/01/2022-12/28/2013

    During Academic year 2018-19, the CMSA will be hosting a Program on Topological Aspects of Condensed Matter. New ideas rooted in topology have recently had a big impact on condensed matter physics, and have highlighted new connections with high energy physics, mathematics and quantum information theory. Additionally, these ideas have found applications in the design of photonic systems and of materials with novel mechanical properties. The aim of this program will be to deepen these connections by foster discussion and seeding new collaborations within and across disciplines.

    As part of the Program, the CMSA will be hosting two workshops:

    .

    Additionally, a weekly Topology Seminar will be held on Mondays from 10:00-11:30pm in CMSA room G10.

    Here is a partial list of the mathematicians who have indicated that they will attend part or all of this special program
    NameTentative Visiting Dates

    Jason Alicea

    11/12/2018-11/16/2018
    Maissam Barkeshli4/22/2019 – 4/26/2019
    Xie Chen4/15-17/2019 4/19-21/2019 4/24-30/2019

    Lukasz Fidkowski

    1/7/2019-1/11/2019

    Zhengcheng Gu

    8/15/2018-8/30/2018 & 5/9/2019-5/19/2019

    Yin Chen He

    10/14/2018-10/27/2018
    Anton Kapustin8/26/2018-8/30/2018 & 3/28/2019-4/5/2019

    Michael Levin

    3/11/2019-3/15/2019
    Yuan-Ming Lu4/29/2019-6/01/2019

    Adam Nahum

    4/2/2019- 4/19/2019

    Masaki Oshikawa

    4/22/2019-5/22/2019
    Chong Wang 10/22/2018-11/16/2018

    Juven Wang

    4/1/2019-4/16/2019
    Cenke Xu 8/26/2018-10/1/2018

    Yi-Zhuang You

    4/1/2019-4/19/2019

    Mike Zaletel

    5/1/2019-5/10/2019
  • 01
    11/01/2022

    Topological Insulators and Mathematical Science – Conference and Program

    2:00 pm-7:00 pm
    11/01/2022-09/17/2014

    The CMSA will be hosting a conference on the subject of topological insulators and mathematical science on September 15-17.  Seminars will take place each day from 2:00-7:00pm in Science Center Hall D, 1 Oxford Street, Cambridge, MA.

< 2022 >
November
«
»
  • 28
    11/28/2022
    20bottfeatureplain-1

    Math Science Lectures in Honor of Raoul Bott: Michael Freedman

    11:00 am-12:30 pm
    11/28/2022

    20bottfeatureplain
    On October 4th and October 5th, 2021, Harvard CMSA hosted the annual Math Science Lectures in Honor of Raoul Bott. This year’s speaker was Michael Freedman (Microsoft). The lectures took place on Zoom.

    This will be the third annual lecture series held in honor of Raoul Bott.

    Lecture 1
    October 4th, 11:00am (Boston time)
    Title: The Universe from a single Particle

    Abstract: I will explore a toy model  for our universe in which spontaneous symmetry breaking – acting on the level of operators (not states) – can produce the interacting physics we see about us from the simpler, single particle, quantum mechanics we study as undergraduates. Based on joint work with Modj Shokrian Zini, see arXiv:2011.05917 and arXiv:2108.12709.

    Video

    Lecture 2
    October 5th, 11:00am (Boston time)
    Title: Controlled Mather Thurston Theorems.

    Abstract: The “c-principle” is a cousin of Gromov’s h-principle in which cobordism rather than homotopy is required to (canonically) solve a problem. We show that in certain well-known c-principle contexts only the mildest cobordisms, semi-s-cobordisms, are required. In physical applications, the extra topology (a perfect fundamental group) these cobordisms introduce could easily be hidden in the UV. This leads to a proposal to recast gauge theories such as EM and the standard model in terms of flat connections rather than curvature. See arXiv:2006.00374  

    Video

     

  • 28
    11/28/2022

    Representation Theory, Calabi–Yau Manifolds, and Mirror Symmetry

    9:00 am-3:30 pm
    11/28/2022-12/01/2022
    CMSA Room G10
    CMSA, 20 Garden Street, Cambridge, MA 02138 USA

    Videos are available on the CMSA Youtube Playlist.

    On November 28 – Dec 1, 2022, the CMSA hosted a Workshop on Representation Theory, Calabi-Yau Manifolds, and Mirror Symmetry.

    Organizers: An Huang (Brandeis University) | Siu-Cheong Lau (Boston University) | Tsung-Ju Lee (CMSA, Harvard) | Andrew Linshaw (University of Denver)

    Scientific Advisor: Shing-Tung Yau (Harvard, Tsinghua)

    Location: Room G10, CMSA, 20 Garden Street, Cambridge MA 02138

    Directions and Recommended Lodging

    The conference was held in hybrid format, both in-person and online.

    The workshop was partially supported by Simons and NSF Grant DMS-2227199.

     

    Speakers: 

    • Tomoyuki Arakawa (Kyoto)
    • Thomas Creutzig (Edmonton)
    • Jonathan Mboyo Esole (Northeastern)
    • Fei Han (National University of Singapore)
    • Shinobu Hosono (Gakushuin University)
    • Flor Orosz Hunziker (Colorado)
    • Cuipo Jiang (Shanghai)
    • Shashank Kanade (Denver)
    • Matt Kerr (Washington University in St. Louis)
    • Carl Lian (Humboldt-Universität zu Berlin)
    • Nai-Chung Conan Leung (CUHK)
    • Ivan Loseu (Yale)
    • Robert McRae (Tsinghua University)
    • Anne Moreau (Université Paris-Saclay, Orsay)
    • Tony Pantev (University of Pennsylvania)
    • Mauricio Romo (Tsinghua University)
    • Bailin Song (USTC)
    • Cumrun Vafa (Harvard University)
    • Chin-Lung Wang (National Taiwan University)
    • Weiqiang Wang (Virginia)
    • Yaping Yang (University of Melbourne)
    • Shing-Tung Yau (Tsinghua University)
    • Chenglong Yu (Tsinghua University)
    • Gufang Zhao (University of Melbourne)

     

    Schedule (Eastern Time)

    Schedule (pdf)

    11/28 (Monday)

    08:30am – 08:55amRefreshments
    08:55am – 09:00amOpening remarks by Horng-Tzer Yau
    09:00am – 09:45amShing-Tung Yau*Title: The Hull-Strominger system through conifold transitions

    Abstract: In this talk I discuss the geometry of C-Y manifolds outside of the Kähler regime and especially describe the Hull-Strominger system through the conifold transitions.

    10:00am – 10:45amChenglong Yu*Title: Commensurabilities among Lattices in PU(1,n)

    Abstract: In joint work with Zhiwei Zheng, we study commensurabilities among certain subgroups in PU(1,n). Those groups arise from the monodromy of hypergeometric functions. Their discreteness and arithmeticity are classified by Deligne and Mostow. Thurston also obtained similar results via flat conic metrics. However, the classification of the lattices among them up to conjugation and finite index (commensurability) is not completed. When n=1, it is the commensurabilities of hyperbolic triangles. The cases of n=2 are almost resolved by Deligne-Mostow and Sauter’s commensurability pairs, and commensurability invariants by Kappes-Möller and McMullen. Our approach relies on the study of some higher dimensional Calabi-Yau type varieties instead of complex reflection groups. We obtain some relations and commensurability indices for higher n and also give new proofs for existing pairs in n=2.

    11:00am – 11:45amThomas Creutzig*Title: Shifted equivariant W-algebras

    Abstract: The CDO of a compact Lie group is a family of VOAs whose top level is the space of functions on the Lie group. Similar structures appear at the intersections of boundary conditions in 4-dimensional gauge theories, I will call these new families of VOAs shifted equivariant W-algebras. I will introduce these algebras, construct them and explain how they can be used to quickly prove the GKO-coset realization of principal W-algebras.

    11:45am – 1:30 pmLunch
    01:30pm – 02:15pmCumrun VafaTitle: Reflections on Mirror Symmetry

    Abstract: In this talk I review some of the motivations leading to the search and discovery of mirror symmetry as well as some of the applications it has had.

    02:30pm – 03:15pmJonathan Mboyo EsoleTitle: Algebraic topology and matter representations in F-theory

    Abstract: Recently, it was observed that representations appearing in geometric engineering in F-theory all satisfy a unique property: they correspond to characteristic representations of embedding of Dynkin index one between Lie algebras. However, the reason why that is the case is still being understood. In this talk, I will present new insights, giving a geometric explanation for this fact using K-theory and the topology of Lie groups and their classifying spaces. In physics, this will be interpreted as conditions on the charge of instantons and the classifications of Wess-Zumino-Witten terms.

    03:15pm – 03:45 pmBreak
    03:45pm – 04:30pmWeiqiang WangTitle: A Drinfeld presentation of affine i-quantum groups

    Abstract: A quantum symmetric pair of affine type (U, U^i) consists of a Drinfeld-Jimbo affine quantum group (a quantum deformation of a loop algebra) U and its coideal subalgebra U^i (called i-quantum group). A loop presentation for U was formulated by Drinfeld and proved by Beck. In this talk, we explain how i-quantum groups can be viewed as a generalization of quantum groups, and then we give a Drinfeld type presentation for the affine quasi-split i-quantum group U^i. This is based on joint work with Ming Lu (Sichuan) and Weinan Zhang (Virginia).

    04:45pm – 05:30pmTony PantevTitle: Decomposition, anomalies, and quantum symmetries

    Abstract: Decomposition is a phenomenon in quantum physics which converts quantum field theories with non-effectively acting gauge symmetries into equivalent more tractable theories in which the fields live on a disconnected space. I will explain the mathematical content of decomposition which turns out to be a higher categorical version of Pontryagin duality. I will examine how this duality interacts with quantum anomalies and secondary quantum symmetries and will show how the anomalies can be canceled by homotopy coherent actions of diagrams of groups. I will discuss in detail the case of 2-groupoids which plays a central role in anomaly cancellation, and will describe a new duality operation that yields decomposition in the presence of anomalies. The talk is based on joint works with Robbins, Sharpe, and Vandermeulen.

     

    11/29 (Tuesday)

     

    Refreshments
    09:00am – 09:45amRobert MacRae*Title: Rationality for a large class of affine W-algebras

    Abstract: One of the most important results in vertex operator algebras is Huang’s theorem that the representation category of a “strongly rational” vertex operator algebra is a semisimple modular tensor category. Conversely, it has been conjectured that every (unitary) modular tensor category is the representation category of a strongly rational (unitary) vertex operator algebra. In this talk, I will describe my results on strong rationality for a large class of affine W-algebras at admissible levels. This yields a large family of modular tensor categories which generalize those associated to affine Lie algebras at positive integer levels, as well as those associated to the Virasoro algebra.

    10:00am – 10:45amBailin Song*Title: The global sections of chiral de Rham complexes on compact Calabi-Yau manifolds

    Abstract: Chiral de Rham complex is a sheaf of vertex algebras on a complex manifold. We will describe the space of global sections of the chiral de Rham complexes on compact Calabi-Yau manifolds.

    11:00am – 11:45amCarl Lian*Title: Curve-counting with fixed domain

    Abstract: The fixed-domain curve-counting problem asks for the number of pointed curves of fixed (general) complex structure in a target variety X subject to incidence conditions at the marked points. The question comes in two flavors: one can ask for a virtual count coming from Gromov-Witten theory, in which case the answer can be computed (in principle) from the quantum cohomology of X, or one can ask for the “honest” geometric count, which tends to be more subtle. The answers are conjectured to agree in the presence of sufficient positivity, but do not always. I will give an overview of some recent results and open directions. Some of this work is joint with Alessio Cela, Gavril Farkas, and Rahul Pandharipande.

    11:45am – 01:30pmLunch
    01:30pm – 02:15pmChin-Lung WangTitle: A blowup formula in quantum cohomology

    Abstract: We study analytic continuations of quantum cohomology $QH(Y)$ under a blowup $\phi: Y \to X$ of complex projective manifolds along the extremal ray variable $q^{\ell}$. Under $H(Y) = \phi^* H(X) plus K$ where $K = \ker \phi_*$, we show that (i) the restriction of quantum product along the $\phi^*H(X)$ direction, denoted by $QH(Y)_X$, is meromorphic in $x := 1/q^\ell$, (ii) $K$ deforms uniquely to a quantum ideal $\widetilde K$ in $QH(Y)_X$, (iii) the quotient ring $QH(Y)_X/\widetilde K$ is regular over $x$, and its restriction to $x = 0$ is isomorphic to $QH(X)$. This is a joint work (in progress) with Y.-P. Lee and H.-W. Lin.

    02:30pm – 03:15pmIvan LoseuTitle: Quantizations of nilpotent orbits and their Lagrangian subvarieties

    Abstract: I’ll report on some recent progress on classifying quantizations of the algebras of regular functions of nilpotent orbits (and their covers) in semisimple Lie algebras, as well as the classification of quantizations of certain Lagrangian subvarieties. An ultimate goal here is to understand the classification of unitary representations of real semisimple Lie groups.

    03:15pm – 03:45pmBreak
    03:45pm – 04:30pmMatt Kerr*Title: $K_2$ and quantum curves

    Abstract: The basic objects for this talk are motives consisting of a curve together with a $K_2$ class, and their mixed Hodge-theoretic invariants.

    My main objective will be to explain a connection (recently proved in joint work with C. Doran and S. Sinha Babu) between (i) Hodge-theoretically distinguished points in the moduli of such motives and (ii) eigenvalues of operators on L^2(R) obtained by quantizing the equations of the curves.

    By local mirror symmetry, this gives evidence for a conjecture in topological string theory (due to M. Marino, A. Grassi, and others) relating enumerative invariants of toric CY 3-folds to spectra of quantum curves.

    04:45pm – 05:30pmFlor Orosz HunzikerTitle: Tensor structures associated to the N=1 super Virasoro algebra

    Abstract:  We have recently shown that there is a natural category of representations associated to the N=1 super Virasoro vertex operator algebras that have braided tensor structure. We will describe this category and discuss the problem of establishing its rigidity at particular central charges. This talk is based on joint work in progress with Thomas Creutzig, Robert McRae and Jinwei Yang.

     

     

     

    11/30 (Wednesday)

    08:30am – 09:00amRefreshments
    09:00am – 09:45amTomoyuki ArakawaTitle: 4D/2D duality and representation theory

    Abstract: This talk is about the 4D/2D duality discovered by Beem et al. rather recently in physics. It associates a vertex operator algebra (VOA) to any 4-dimensional superconformal field theory, which is expected to be a complete invariant of thl theory. The VOAs appearing in this manner may be regarded as chiralization of various symplectic singularities and their representations are expected to be closely related with the Coulomb branch of the 4D theory. I will talk about this remarkable 4D/2D duality from a representation theoretic perspective.

    10:00am – 10:45amShashank KanadeTitle: Combinatorics of principal W-algebras of type A

    Abstract: The combinatorics of principal W_r(p,p’) algebras of type A is controlled by cylindric partitions. However, very little seems to be known in general about fermionic expressions for the corresponding characters. Welsh’s work explains the case of Virasoro minimal models W_2(p,p’). Andrews, Schilling and Warnaar invented and used an A_2 version of the usual (A_1) Bailey machinery to give fermionic characters (up to a factor of (q)_\infty) of some, but not all, W_3(3,p’) modules. In a recent joint work with Russell, we have given a complete set of conjectures encompassing all of the remaining modules for W_3(3,p’), and proved our conjectures for small values of p’. In another direction, characters of W_r(p,p’) algebras also arise as appropriate limits of certain sl_r coloured Jones invariants of torus knots T(p,p’), and we expect this to provide further insights on the underlying combinatorics.

    11:00am – 11:45amGufang ZhaoTitle: Quasimaps to quivers with potentials

    Abstract: This talk concerns non-compact GIT quotient of a vector space, in the presence of an abelian group action and an equivariant regular function (potential) on the quotient. We define virtual counts of quasimaps from prestable curves to the critical locus of the potential. The construction borrows ideas from the theory of gauged linear sigma models as well as recent development in shifted symplectic geometry and Donaldson-Thomas theory of Calabi-Yau 4-folds. Examples of virtual counts arising from quivers with potentials are discussed. This is based on work in progress, in collaboration with Yalong Cao.

    11:45am – 01:30pmGroup Photo, Lunch
    01:30pm – 02:15pmYaping YangTitle: Cohomological Hall algebras and perverse coherent sheaves on toric Calabi-Yau 3-folds

    Abstract: Let X be a smooth local toric Calabi-Yau 3-fold. On the cohomology of the moduli spaces of certain sheaves on X, there is an action of the cohomological Hall algebra (COHA) of Kontsevich and Soibelman via “raising operators”. I will discuss the “double” of the COHA that acts on the cohomology of the moduli space by adding the “lowering operators”. We associate a root system to X. The double COHA is expected to be the shifted Yangian of this root system. We also give a prediction for the shift in terms of an intersection pairing. We provide evidence of the aforementioned expectation in various examples. This is based on my joint work with M. Rapcak, Y. Soibelman, and G. Zhao

    02:30pm – 03:15pmFei HanTitle: Graded T-duality with H-flux for 2d sigma models

    Abstract: T-duality in string theory can be realised as a transformation acting on the worldsheet fields in the two-dimensional nonlinear sigma model. Bouwknegt-Evslin-Mathai established the T-duality in a background flux for the first time upon compactifying spacetime in one direction to a principal circle by constructing the T-dual maps transforming the twisted cohomology of the dual spacetimes. In this talk, we will describe our recent work on how to promote the T-duality maps of Bouwknegt-Evslin-Mathai in two aspects. More precisely, we will introduce (1) graded T-duality, concerning the graded T-duality maps of all levels of twistings; (2) the 2-dimensional sigma model picture, concerning the double loop space of spacetimes. This represents our joint work with Mathai.

    03:15pm – 3:45pmBreak
    03:45pm – 04:30pmMauricio RomoTitle: Networks and BPS Counting: A-branes view point

    Abstract: I will review the countings of BPS invariants via exponential/spectral networks and present an interpretation of this counting as a count of certain points in the moduli space of A-branes corresponding to degenerate Lagrangians.

    04:45pm – 05:30pmShinobu HosonoTitle: Mirror symmetry of abelian fibered Calabi-Yau manifolds with ρ = 2

    Abstract: I will describe mirror symmetry of Calabi-Yau manifolds fibered by (1,8)-polarized abelian surfaces, which have Picard number two. Finding a mirror family over a toric variety explicitly, I  observe that mirror symmetry of all related Calabi-Yau manifods arises from the corresponding boundary points, which are not necessarily toric boundary points.  Calculating Gromov-Witten invariants up to genus 2, I find that the generating functions are expressed elliptic (quasi-)modular forms, which reminds us the modular anomaly equation found for elliptic surfaces. This talk is based on a published work with Hiromichi Takaki (arXiv:2103.08150).

    06:00pmBanquet @ Royal East Restaurant, 782 Main St, Cambridge, MA 02139

     

    12/1 (Thursday)

    08:30am – 09:00amRefreshments
    09:00am – 09:45amConan Nai Chung Leung*Title: Quantization of Kahler manifolds

    Abstract: I will explain my recent work on relationships among geometric quantization, deformation quantization, Berezin-Toeplitz quantization and brane quantization.

    10:00am – 10:45amCuipo Jiang*Title: Cohomological varieties associated to vertex operator algebras

    Abstract: We define and examine the cohomological variety of a vertex algebra, a notion cohomologically dual to that of the associated variety, which measures the smoothness of the associated scheme at the vertex point.  We study its basic properties. As examples, we construct a closed subvariety of the cohomological variety for rational affine vertex operator algebras constructed from finite dimensional simple Lie algebras. We also determine the cohomological varieties of the simple Virasoro vertex operator algebras. These examples indicate that, although the associated variety for a rational $C_2$-cofinite vertex operator algebra is always a simple point, the cohomological variety can have as large a dimension as possible. This talk is based on joint work with Antoine Caradot and Zongzhu Lin.

    11:00am – 11:45amAnne Moreau*Title: Action of the automorphism group on the Jacobian of Klein’s quartic curve

    Abstract: In a joint work with Dimitri Markouchevitch, we prove that the quotient variety of the 3-dimensional Jacobian of the plane Klein quartic curve by its full automorphism group of order 336 is isomorphic to the 3-dimensional weighted projective space with weights 1,2,4,7.

    The latter isomorphism is a particular case of the general conjecture of Bernstein and Schwarzman suggesting that a quotient of the n-dimensional complex space by the action of an irreducible complex crystallographic group generated by reflections is a weighted projective space.

    In this talk, I will explain this conjecture and the proof of our result. An important ingredient is the computation of the Hilbert function of the algebra of invariant theta-functions on the Jacobian.

    11:45am – 11:50amClosing remarks
    11:50amFree discussions and departure

    * = Online speaker

    CMSA COVID-19 Policies

     

  • 29
    11/29/2022
    20bottfeatureplain-1

    Math Science Lectures in Honor of Raoul Bott: Michael Freedman

    11:00 am-12:30 pm
    11/29/2022

    20bottfeatureplain
    On October 4th and October 5th, 2021, Harvard CMSA hosted the annual Math Science Lectures in Honor of Raoul Bott. This year’s speaker was Michael Freedman (Microsoft). The lectures took place on Zoom.

    This will be the third annual lecture series held in honor of Raoul Bott.

    Lecture 1
    October 4th, 11:00am (Boston time)
    Title: The Universe from a single Particle

    Abstract: I will explore a toy model  for our universe in which spontaneous symmetry breaking – acting on the level of operators (not states) – can produce the interacting physics we see about us from the simpler, single particle, quantum mechanics we study as undergraduates. Based on joint work with Modj Shokrian Zini, see arXiv:2011.05917 and arXiv:2108.12709.

    Video

    Lecture 2
    October 5th, 11:00am (Boston time)
    Title: Controlled Mather Thurston Theorems.

    Abstract: The “c-principle” is a cousin of Gromov’s h-principle in which cobordism rather than homotopy is required to (canonically) solve a problem. We show that in certain well-known c-principle contexts only the mildest cobordisms, semi-s-cobordisms, are required. In physical applications, the extra topology (a perfect fundamental group) these cobordisms introduce could easily be hidden in the UV. This leads to a proposal to recast gauge theories such as EM and the standard model in terms of flat connections rather than curvature. See arXiv:2006.00374  

    Video

     

  • 29
    11/29/2022

    Representation Theory, Calabi–Yau Manifolds, and Mirror Symmetry

    9:00 am-3:30 pm
    11/29/2022-12/01/2022
    CMSA Room G10
    CMSA, 20 Garden Street, Cambridge, MA 02138 USA

    Videos are available on the CMSA Youtube Playlist.

    On November 28 – Dec 1, 2022, the CMSA hosted a Workshop on Representation Theory, Calabi-Yau Manifolds, and Mirror Symmetry.

    Organizers: An Huang (Brandeis University) | Siu-Cheong Lau (Boston University) | Tsung-Ju Lee (CMSA, Harvard) | Andrew Linshaw (University of Denver)

    Scientific Advisor: Shing-Tung Yau (Harvard, Tsinghua)

    Location: Room G10, CMSA, 20 Garden Street, Cambridge MA 02138

    Directions and Recommended Lodging

    The conference was held in hybrid format, both in-person and online.

    The workshop was partially supported by Simons and NSF Grant DMS-2227199.

     

    Speakers: 

    • Tomoyuki Arakawa (Kyoto)
    • Thomas Creutzig (Edmonton)
    • Jonathan Mboyo Esole (Northeastern)
    • Fei Han (National University of Singapore)
    • Shinobu Hosono (Gakushuin University)
    • Flor Orosz Hunziker (Colorado)
    • Cuipo Jiang (Shanghai)
    • Shashank Kanade (Denver)
    • Matt Kerr (Washington University in St. Louis)
    • Carl Lian (Humboldt-Universität zu Berlin)
    • Nai-Chung Conan Leung (CUHK)
    • Ivan Loseu (Yale)
    • Robert McRae (Tsinghua University)
    • Anne Moreau (Université Paris-Saclay, Orsay)
    • Tony Pantev (University of Pennsylvania)
    • Mauricio Romo (Tsinghua University)
    • Bailin Song (USTC)
    • Cumrun Vafa (Harvard University)
    • Chin-Lung Wang (National Taiwan University)
    • Weiqiang Wang (Virginia)
    • Yaping Yang (University of Melbourne)
    • Shing-Tung Yau (Tsinghua University)
    • Chenglong Yu (Tsinghua University)
    • Gufang Zhao (University of Melbourne)

     

    Schedule (Eastern Time)

    Schedule (pdf)

    11/28 (Monday)

    08:30am – 08:55amRefreshments
    08:55am – 09:00amOpening remarks by Horng-Tzer Yau
    09:00am – 09:45amShing-Tung Yau*Title: The Hull-Strominger system through conifold transitions

    Abstract: In this talk I discuss the geometry of C-Y manifolds outside of the Kähler regime and especially describe the Hull-Strominger system through the conifold transitions.

    10:00am – 10:45amChenglong Yu*Title: Commensurabilities among Lattices in PU(1,n)

    Abstract: In joint work with Zhiwei Zheng, we study commensurabilities among certain subgroups in PU(1,n). Those groups arise from the monodromy of hypergeometric functions. Their discreteness and arithmeticity are classified by Deligne and Mostow. Thurston also obtained similar results via flat conic metrics. However, the classification of the lattices among them up to conjugation and finite index (commensurability) is not completed. When n=1, it is the commensurabilities of hyperbolic triangles. The cases of n=2 are almost resolved by Deligne-Mostow and Sauter’s commensurability pairs, and commensurability invariants by Kappes-Möller and McMullen. Our approach relies on the study of some higher dimensional Calabi-Yau type varieties instead of complex reflection groups. We obtain some relations and commensurability indices for higher n and also give new proofs for existing pairs in n=2.

    11:00am – 11:45amThomas Creutzig*Title: Shifted equivariant W-algebras

    Abstract: The CDO of a compact Lie group is a family of VOAs whose top level is the space of functions on the Lie group. Similar structures appear at the intersections of boundary conditions in 4-dimensional gauge theories, I will call these new families of VOAs shifted equivariant W-algebras. I will introduce these algebras, construct them and explain how they can be used to quickly prove the GKO-coset realization of principal W-algebras.

    11:45am – 1:30 pmLunch
    01:30pm – 02:15pmCumrun VafaTitle: Reflections on Mirror Symmetry

    Abstract: In this talk I review some of the motivations leading to the search and discovery of mirror symmetry as well as some of the applications it has had.

    02:30pm – 03:15pmJonathan Mboyo EsoleTitle: Algebraic topology and matter representations in F-theory

    Abstract: Recently, it was observed that representations appearing in geometric engineering in F-theory all satisfy a unique property: they correspond to characteristic representations of embedding of Dynkin index one between Lie algebras. However, the reason why that is the case is still being understood. In this talk, I will present new insights, giving a geometric explanation for this fact using K-theory and the topology of Lie groups and their classifying spaces. In physics, this will be interpreted as conditions on the charge of instantons and the classifications of Wess-Zumino-Witten terms.

    03:15pm – 03:45 pmBreak
    03:45pm – 04:30pmWeiqiang WangTitle: A Drinfeld presentation of affine i-quantum groups

    Abstract: A quantum symmetric pair of affine type (U, U^i) consists of a Drinfeld-Jimbo affine quantum group (a quantum deformation of a loop algebra) U and its coideal subalgebra U^i (called i-quantum group). A loop presentation for U was formulated by Drinfeld and proved by Beck. In this talk, we explain how i-quantum groups can be viewed as a generalization of quantum groups, and then we give a Drinfeld type presentation for the affine quasi-split i-quantum group U^i. This is based on joint work with Ming Lu (Sichuan) and Weinan Zhang (Virginia).

    04:45pm – 05:30pmTony PantevTitle: Decomposition, anomalies, and quantum symmetries

    Abstract: Decomposition is a phenomenon in quantum physics which converts quantum field theories with non-effectively acting gauge symmetries into equivalent more tractable theories in which the fields live on a disconnected space. I will explain the mathematical content of decomposition which turns out to be a higher categorical version of Pontryagin duality. I will examine how this duality interacts with quantum anomalies and secondary quantum symmetries and will show how the anomalies can be canceled by homotopy coherent actions of diagrams of groups. I will discuss in detail the case of 2-groupoids which plays a central role in anomaly cancellation, and will describe a new duality operation that yields decomposition in the presence of anomalies. The talk is based on joint works with Robbins, Sharpe, and Vandermeulen.

     

    11/29 (Tuesday)

     

    Refreshments
    09:00am – 09:45amRobert MacRae*Title: Rationality for a large class of affine W-algebras

    Abstract: One of the most important results in vertex operator algebras is Huang’s theorem that the representation category of a “strongly rational” vertex operator algebra is a semisimple modular tensor category. Conversely, it has been conjectured that every (unitary) modular tensor category is the representation category of a strongly rational (unitary) vertex operator algebra. In this talk, I will describe my results on strong rationality for a large class of affine W-algebras at admissible levels. This yields a large family of modular tensor categories which generalize those associated to affine Lie algebras at positive integer levels, as well as those associated to the Virasoro algebra.

    10:00am – 10:45amBailin Song*Title: The global sections of chiral de Rham complexes on compact Calabi-Yau manifolds

    Abstract: Chiral de Rham complex is a sheaf of vertex algebras on a complex manifold. We will describe the space of global sections of the chiral de Rham complexes on compact Calabi-Yau manifolds.

    11:00am – 11:45amCarl Lian*Title: Curve-counting with fixed domain

    Abstract: The fixed-domain curve-counting problem asks for the number of pointed curves of fixed (general) complex structure in a target variety X subject to incidence conditions at the marked points. The question comes in two flavors: one can ask for a virtual count coming from Gromov-Witten theory, in which case the answer can be computed (in principle) from the quantum cohomology of X, or one can ask for the “honest” geometric count, which tends to be more subtle. The answers are conjectured to agree in the presence of sufficient positivity, but do not always. I will give an overview of some recent results and open directions. Some of this work is joint with Alessio Cela, Gavril Farkas, and Rahul Pandharipande.

    11:45am – 01:30pmLunch
    01:30pm – 02:15pmChin-Lung WangTitle: A blowup formula in quantum cohomology

    Abstract: We study analytic continuations of quantum cohomology $QH(Y)$ under a blowup $\phi: Y \to X$ of complex projective manifolds along the extremal ray variable $q^{\ell}$. Under $H(Y) = \phi^* H(X) plus K$ where $K = \ker \phi_*$, we show that (i) the restriction of quantum product along the $\phi^*H(X)$ direction, denoted by $QH(Y)_X$, is meromorphic in $x := 1/q^\ell$, (ii) $K$ deforms uniquely to a quantum ideal $\widetilde K$ in $QH(Y)_X$, (iii) the quotient ring $QH(Y)_X/\widetilde K$ is regular over $x$, and its restriction to $x = 0$ is isomorphic to $QH(X)$. This is a joint work (in progress) with Y.-P. Lee and H.-W. Lin.

    02:30pm – 03:15pmIvan LoseuTitle: Quantizations of nilpotent orbits and their Lagrangian subvarieties

    Abstract: I’ll report on some recent progress on classifying quantizations of the algebras of regular functions of nilpotent orbits (and their covers) in semisimple Lie algebras, as well as the classification of quantizations of certain Lagrangian subvarieties. An ultimate goal here is to understand the classification of unitary representations of real semisimple Lie groups.

    03:15pm – 03:45pmBreak
    03:45pm – 04:30pmMatt Kerr*Title: $K_2$ and quantum curves

    Abstract: The basic objects for this talk are motives consisting of a curve together with a $K_2$ class, and their mixed Hodge-theoretic invariants.

    My main objective will be to explain a connection (recently proved in joint work with C. Doran and S. Sinha Babu) between (i) Hodge-theoretically distinguished points in the moduli of such motives and (ii) eigenvalues of operators on L^2(R) obtained by quantizing the equations of the curves.

    By local mirror symmetry, this gives evidence for a conjecture in topological string theory (due to M. Marino, A. Grassi, and others) relating enumerative invariants of toric CY 3-folds to spectra of quantum curves.

    04:45pm – 05:30pmFlor Orosz HunzikerTitle: Tensor structures associated to the N=1 super Virasoro algebra

    Abstract:  We have recently shown that there is a natural category of representations associated to the N=1 super Virasoro vertex operator algebras that have braided tensor structure. We will describe this category and discuss the problem of establishing its rigidity at particular central charges. This talk is based on joint work in progress with Thomas Creutzig, Robert McRae and Jinwei Yang.

     

     

     

    11/30 (Wednesday)

    08:30am – 09:00amRefreshments
    09:00am – 09:45amTomoyuki ArakawaTitle: 4D/2D duality and representation theory

    Abstract: This talk is about the 4D/2D duality discovered by Beem et al. rather recently in physics. It associates a vertex operator algebra (VOA) to any 4-dimensional superconformal field theory, which is expected to be a complete invariant of thl theory. The VOAs appearing in this manner may be regarded as chiralization of various symplectic singularities and their representations are expected to be closely related with the Coulomb branch of the 4D theory. I will talk about this remarkable 4D/2D duality from a representation theoretic perspective.

    10:00am – 10:45amShashank KanadeTitle: Combinatorics of principal W-algebras of type A

    Abstract: The combinatorics of principal W_r(p,p’) algebras of type A is controlled by cylindric partitions. However, very little seems to be known in general about fermionic expressions for the corresponding characters. Welsh’s work explains the case of Virasoro minimal models W_2(p,p’). Andrews, Schilling and Warnaar invented and used an A_2 version of the usual (A_1) Bailey machinery to give fermionic characters (up to a factor of (q)_\infty) of some, but not all, W_3(3,p’) modules. In a recent joint work with Russell, we have given a complete set of conjectures encompassing all of the remaining modules for W_3(3,p’), and proved our conjectures for small values of p’. In another direction, characters of W_r(p,p’) algebras also arise as appropriate limits of certain sl_r coloured Jones invariants of torus knots T(p,p’), and we expect this to provide further insights on the underlying combinatorics.

    11:00am – 11:45amGufang ZhaoTitle: Quasimaps to quivers with potentials

    Abstract: This talk concerns non-compact GIT quotient of a vector space, in the presence of an abelian group action and an equivariant regular function (potential) on the quotient. We define virtual counts of quasimaps from prestable curves to the critical locus of the potential. The construction borrows ideas from the theory of gauged linear sigma models as well as recent development in shifted symplectic geometry and Donaldson-Thomas theory of Calabi-Yau 4-folds. Examples of virtual counts arising from quivers with potentials are discussed. This is based on work in progress, in collaboration with Yalong Cao.

    11:45am – 01:30pmGroup Photo, Lunch
    01:30pm – 02:15pmYaping YangTitle: Cohomological Hall algebras and perverse coherent sheaves on toric Calabi-Yau 3-folds

    Abstract: Let X be a smooth local toric Calabi-Yau 3-fold. On the cohomology of the moduli spaces of certain sheaves on X, there is an action of the cohomological Hall algebra (COHA) of Kontsevich and Soibelman via “raising operators”. I will discuss the “double” of the COHA that acts on the cohomology of the moduli space by adding the “lowering operators”. We associate a root system to X. The double COHA is expected to be the shifted Yangian of this root system. We also give a prediction for the shift in terms of an intersection pairing. We provide evidence of the aforementioned expectation in various examples. This is based on my joint work with M. Rapcak, Y. Soibelman, and G. Zhao

    02:30pm – 03:15pmFei HanTitle: Graded T-duality with H-flux for 2d sigma models

    Abstract: T-duality in string theory can be realised as a transformation acting on the worldsheet fields in the two-dimensional nonlinear sigma model. Bouwknegt-Evslin-Mathai established the T-duality in a background flux for the first time upon compactifying spacetime in one direction to a principal circle by constructing the T-dual maps transforming the twisted cohomology of the dual spacetimes. In this talk, we will describe our recent work on how to promote the T-duality maps of Bouwknegt-Evslin-Mathai in two aspects. More precisely, we will introduce (1) graded T-duality, concerning the graded T-duality maps of all levels of twistings; (2) the 2-dimensional sigma model picture, concerning the double loop space of spacetimes. This represents our joint work with Mathai.

    03:15pm – 3:45pmBreak
    03:45pm – 04:30pmMauricio RomoTitle: Networks and BPS Counting: A-branes view point

    Abstract: I will review the countings of BPS invariants via exponential/spectral networks and present an interpretation of this counting as a count of certain points in the moduli space of A-branes corresponding to degenerate Lagrangians.

    04:45pm – 05:30pmShinobu HosonoTitle: Mirror symmetry of abelian fibered Calabi-Yau manifolds with ρ = 2

    Abstract: I will describe mirror symmetry of Calabi-Yau manifolds fibered by (1,8)-polarized abelian surfaces, which have Picard number two. Finding a mirror family over a toric variety explicitly, I  observe that mirror symmetry of all related Calabi-Yau manifods arises from the corresponding boundary points, which are not necessarily toric boundary points.  Calculating Gromov-Witten invariants up to genus 2, I find that the generating functions are expressed elliptic (quasi-)modular forms, which reminds us the modular anomaly equation found for elliptic surfaces. This talk is based on a published work with Hiromichi Takaki (arXiv:2103.08150).

    06:00pmBanquet @ Royal East Restaurant, 782 Main St, Cambridge, MA 02139

     

    12/1 (Thursday)

    08:30am – 09:00amRefreshments
    09:00am – 09:45amConan Nai Chung Leung*Title: Quantization of Kahler manifolds

    Abstract: I will explain my recent work on relationships among geometric quantization, deformation quantization, Berezin-Toeplitz quantization and brane quantization.

    10:00am – 10:45amCuipo Jiang*Title: Cohomological varieties associated to vertex operator algebras

    Abstract: We define and examine the cohomological variety of a vertex algebra, a notion cohomologically dual to that of the associated variety, which measures the smoothness of the associated scheme at the vertex point.  We study its basic properties. As examples, we construct a closed subvariety of the cohomological variety for rational affine vertex operator algebras constructed from finite dimensional simple Lie algebras. We also determine the cohomological varieties of the simple Virasoro vertex operator algebras. These examples indicate that, although the associated variety for a rational $C_2$-cofinite vertex operator algebra is always a simple point, the cohomological variety can have as large a dimension as possible. This talk is based on joint work with Antoine Caradot and Zongzhu Lin.

    11:00am – 11:45amAnne Moreau*Title: Action of the automorphism group on the Jacobian of Klein’s quartic curve

    Abstract: In a joint work with Dimitri Markouchevitch, we prove that the quotient variety of the 3-dimensional Jacobian of the plane Klein quartic curve by its full automorphism group of order 336 is isomorphic to the 3-dimensional weighted projective space with weights 1,2,4,7.

    The latter isomorphism is a particular case of the general conjecture of Bernstein and Schwarzman suggesting that a quotient of the n-dimensional complex space by the action of an irreducible complex crystallographic group generated by reflections is a weighted projective space.

    In this talk, I will explain this conjecture and the proof of our result. An important ingredient is the computation of the Hilbert function of the algebra of invariant theta-functions on the Jacobian.

    11:45am – 11:50amClosing remarks
    11:50amFree discussions and departure

    * = Online speaker

    CMSA COVID-19 Policies

     

  • 30
    11/30/2022
    20bottfeatureplain-1

    Math Science Lectures in Honor of Raoul Bott: Michael Freedman

    11:00 am-12:30 pm
    11/30/2022

    20bottfeatureplain
    On October 4th and October 5th, 2021, Harvard CMSA hosted the annual Math Science Lectures in Honor of Raoul Bott. This year’s speaker was Michael Freedman (Microsoft). The lectures took place on Zoom.

    This will be the third annual lecture series held in honor of Raoul Bott.

    Lecture 1
    October 4th, 11:00am (Boston time)
    Title: The Universe from a single Particle

    Abstract: I will explore a toy model  for our universe in which spontaneous symmetry breaking – acting on the level of operators (not states) – can produce the interacting physics we see about us from the simpler, single particle, quantum mechanics we study as undergraduates. Based on joint work with Modj Shokrian Zini, see arXiv:2011.05917 and arXiv:2108.12709.

    Video

    Lecture 2
    October 5th, 11:00am (Boston time)
    Title: Controlled Mather Thurston Theorems.

    Abstract: The “c-principle” is a cousin of Gromov’s h-principle in which cobordism rather than homotopy is required to (canonically) solve a problem. We show that in certain well-known c-principle contexts only the mildest cobordisms, semi-s-cobordisms, are required. In physical applications, the extra topology (a perfect fundamental group) these cobordisms introduce could easily be hidden in the UV. This leads to a proposal to recast gauge theories such as EM and the standard model in terms of flat connections rather than curvature. See arXiv:2006.00374  

    Video

     

< 2022 >
November
«
»
  • 01
    11/01/2022

    SPACETIME AND QUANTUM MECHANICS, TOTAL POSITIVITY AND MOTIVES

    9:48 pm
    11/01/2022-12/31/2010

    Recent developments have poised this area to make serious advances in 2019, and we feel that bringing together many of the relevant experts for an intensive semester of discussions and collaboration will trigger some great things to happen. To this end, the organizers will host a small workshop during fall 2019, with between 20-30 participants. They will also invite 10-20 longer-term visitors throughout the semester. Additionally, there will be a seminar held weekly on Thursdays at 2:30pm in CMSA G10.

    Organizers:

    .

    Workshops:

     

    Here is a partial list of the mathematicians and physicists who have indicated that they will attend part or all of this special program as a visitor:

  • 01
    11/01/2022

    Mathematical Biology

    9:45 pm-9:46 pm
    11/01/2022-12/31/2010

    During Academic year 2018-19, the CMSA will be hosting a Program on Mathematical Biology.

    Just over a century ago, the biologist, mathematician and philologist D’Arcy Thompson wrote “On growth and form”. The book was a visionary synthesis of the geometric biology of form at the time. It also served as a call for mathematical and physical approaches to understanding the evolution and development of shape.

    In the century since its publication, we have seen a revolution in biology following the discovery of the genetic code, which has uncovered the molecular and cellular basis for life, combined with the ability to probe the chemical, structural, and dynamical nature of molecules, cells, tissues and organs across scales. In parallel, we have seen a blossoming of our understanding of spatiotemporal patterning in physical systems, and a gradual unveiling of the complexity of physical form. And in mathematics and computation, there has been a revolution in terms of posing and solving problems at the intersection of computational geometry, statistics and inference.  So, how far are we from realizing a descriptive, predictive and controllable theory of biological shape?

    In Fall 2018, CMSA will focus on a program that aims at recent mathematical advances in describing shape using geometry and statistics in a biological context, while also considering a range of physical theories that can predict biological shape at scales ranging from macromolecular assemblies to whole organ systems

    The CMSA will be hosting three workshops as part of this program. The Workshop on Morphometrics, Morphogenesis and Mathematics will take place on October 22-26. 

    A workshop on Morphogenesis: Geometry and Physics will take place on December 3-6, 2018.

    A workshop on Invariance and Geometry in Sensation, Action and Cognition will take place on April 15-17, 2019.

  • 01
    11/01/2022

    THE SIMONS COLLABORATION IN HOMOLOGICAL MIRROR SYMMETRY

    9:49 pm
    11/01/2022-12/23/2010

    The Simons Collaboration program in Homological Mirror Symmetry at Harvard CMSA and Brandeis University is part of the bigger Simons collaboration program on Homological mirror symmetry (https://schms.math.berkeley.edu) which brings to CMSA experts on algebraic geometry, Symplectic geometry, Arithmetic geometry, Quantum topology and mathematical aspects of high energy physics, specially string theory with the goal of proving the homological mirror symmetry conjecture (HMS) in full generality and explore its applications. Mirror symmetry, which emerged in the late 1980s as an unexpected physical duality between quantum field theories, has been a major source of progress in mathematics. At the 1994 ICM, Kontsevich reinterpreted mirror symmetry as a deep categorical duality: the HMS conjecture states that the derived category of coherent sheaves of a smooth projective variety is equivalent to the Fukaya category of a mirror symplectic manifold (or Landau-Ginzburg model). We are happy to announce that the Simons Foundation has agreed to renew funding for the HMS collaboration program for three additional years.

    A brief induction of the Brandeis-Harvard CMSA HMS/SYZ research agenda and team members are as follow:


    Directors:


    Shing-Tung Yau (Harvard University)

    Born in Canton, China, in 1949, S.-T. Yau grew up in Hong Kong, and studied in the Chinese University of Hong Kong from 1966 to 1969. He did his PhD at UC Berkeley from 1969 to 1971, as a student of S.S. Chern. He spent a year as a postdoc at the Institute for Advanced Study in Princeton, and a year as assistant professor at SUNY at Stony Brook. He joined the faculty at Stanford in 1973. On a Sloan Fellowship, he spent a semester at the Courant Institute in 1975. He visited UCLA the following year, and was offered a professorship at UC Berkeley in 1977. He was there for a year, before returning to Stanford. He was a plenary speaker at the 1978 ICM in Helsinki. The following year, he became a faculty member at the IAS in Princeton. He moved to UCSD in 1984. Yau came to Harvard in 1987, and was appointed the Higgins Professor of Mathematics in 1997. He has been at Harvard ever since. Yau has received numerous prestigious awards and honors throughout his career. He was named a California Scientist of the Year in 1979. In 1981, he received a Oswald Veblen Prize in Geometry and a John J. Carty Award for the Advancement of Science, and was elected a member of the US National Academy of Sciences. In 1982, he received a Fields Medal for “his contributions to partial differential equations, to the Calabi conjecture in algebraic geometry, to the positive mass conjecture of general relativity theory, and to real and complex MongeAmpre equations”. He was named Science Digest, America’s 100 Brightest Scientists under 40, in 1984. In 1991, he received a Humboldt Research Award from the Alexander von Humboldt Foundation in Germany. He was awarded a Crafoord Prize in 1994, a US National Medal of Science in 1997, and a China International Scientific and Technological Cooperation Award, for “his outstanding contribution to PRC in aspects of making progress in sciences and technology, training researchers” in 2003. In 2010, he received a Wolf Prize in Mathematics, for “his work in geometric analysis and mathematical physics”. Yau has also received a number of research fellowships, which include a Sloan Fellowship in 1975-1976, a Guggenheim Fellowship in 1982, and a MacArthur Fellowship in 1984-1985. Yau’s research interests include differential and algebraic geometry, topology, and mathematical physics. As a graduate student, he started to work on geometry of manifolds with negative curvature. He later became interested in developing the subject of geometric analysis, and applying the theory of nonlinear partial differential equations to solve problems in geometry, topology, and physics. His work in this direction include constructions of minimal submanifolds, harmonic maps, and canonical metrics on manifolds. The most notable, and probably the most influential of this, was his solution of the Calabi conjecture on Ricci flat metrics, and the existence of Kahler-Einstein metrics. He has also succeeded in applying his theory to solve a number of outstanding conjectures in algebraic geometry, including Chern number inequalities, and the rigidity of complex structures of complex projective spaces. Yau’s solution to the Calabi conjecture has been remarkably influential in mathematical physics over the last 30 years, through the creation of the theory of Calabi-Yau manifolds, a theory central to mirror symmetry. He and a team of outstanding mathematicians trained by him, have developed many important tools and concepts in CY geometry and mirror symmetry, which have led to significant progress in deformation theory, and on outstanding problems in enumerative geometry. Lian, Yau and his postdocs have developed a systematic approach to study and compute period integrals of CY and general type manifolds. Lian, Liu and Yau (independently by Givental) gave a proof of the counting formula of Candelas et al for worldsheet instantons on the quintic threefold. In the course of understanding mirror symmetry, Strominger, Yau, and Zaslow proposed a new geometric construction of mirror symmetry, now known as the SYZ construction. This has inspired a rapid development in CY geometry over the last two decades. In addition to CY geometry and mirror symmetry, Yau has done influential work on nonlinear partial differential equations, generalized geometry, Kahler geometry, and general relativity. His proof of positive mass conjecture is a widely regarded as a cornerstone in the classical theory of general relativity. In addition to publishing well over 350 research papers, Yau has trained more than 60 PhD students in a broad range of fields, and mentored dozens of postdoctoral fellows over the last 40 years.


    Professor Bong Lian (Brandeis University)

    BongBorn in Malaysia in 1962, Bong Lian completed his PhD in physics at Yale University under the direction of G. Zuckerman in 1991. He joined the permanent faculty at Brandeis University in 1995, and has remained there since. Between 1995 and 2013, he had had visiting research positions at numerous places, including the National University of Taiwan, Harvard University, and Tsinghua University. Lian received a J.S. Guggenheim Fellowship in 2003. He was awarded a Chern Prize at the ICCM in Taipei in 2013, for his “influential and fundamental contributions in mathematical physics, in particular in the theory of vertex algebras and mirror symmetry.” He has also been co-Director, since 2014, of the Tsinghua Mathcamp, a summer outreach program launched by him and Yau for mathematically talented teenagers in China. Since 2008, Lian has been the President of the International Science Foundation of Cambridge, a non-profit whose stated mission is “to provide financial and logistical support to scholars and universities, to promote basic research and education in mathematical sciences, especially in the Far East.” Over the last 20 years, he has mentored a number of postdocs and PhD students. His research has been supported by an NSF Focused Research Grant since 2009. Published in well over 60 papers over 25 years, Lian’s mathematical work lies in the interface between representation theory, Calabi-Yau geometry, and string theory. Beginning in the late 80’s, Lian, jointly with Zuckerman, developed the theory of semi-infinite cohomology and applied it to problems in string theory. In 1994, he constructed a new invariant (now known as the Lian- Zuckerman algebra) of a topological vertex algebra, and conjectured the first example of a G algebra in vertex algebra theory. The invariant has later inspired a new construction of quantum groups by I. Frenkel and A. Zeitlin, as semi-infinite cohomology of braided vertex algebras, and led to a more recent discovery of new relationships between Courant algebroids, A-algebras, operads, and deformation theory of BV algebras. In 2010, he and his students Linshaw and Song developed important applications of vertex algebras in equivariant topology. Lian’s work in CY geometry and mirror symmetry began in early 90’s. Using a characteristic p version of higher order Schwarzian equations, Lian and Yau gave an elementary proof that the instanton formula of Candelas et al implies Clemens’s divisibility conjecture for the quintic threefold, for infinitely many degrees. In 1996, Lian (jointly with Hosono and Yau) answered the so-called Large Complex Structure Limit problem in the affirmative in many important cases. Around the same year, they announced their hyperplane conjecture, which gives a general formula for period integrals for a large class of CY manifolds, extending the formula of Candelas et al. Soon after, Lian, Liu and Yau (independently by Givental) gave a proof of the counting formula. In 2003, inspired by mirror symmetry, Lian (jointly with Hosono, Oguiso and Yau) discovered an explicit counting formula for Fourier-Mukai partners, and settled an old problem of Shioda on abelian and K3 surfaces. Between 2009 and 2014, Lian (jointly with Bloch, Chen, Huang, Song, Srinivas, Yau, and Zhu) developed an entirely new approach to study the so-called Riemann-Hilbert problem for period integrals of CY manifolds, and extended it to general type manifolds. The approach leads to an explicit description of differential systems for period integrals with many applications. In particular, he answered an old question in physics on the completeness of Picard-Fuchs systems, and constructed new differential zeros of hypergeometric functions.


    Denis Auroux (Harvard University)

    AurouxDenis Auroux’s research concerns symplectic geometry and its applications to mirror symmetry. While his early work primarily concerned the topology of symplectic 4-manifolds, over the past decade Auroux has obtained pioneering results on homological mirror symmetry outside of the Calabi-Yau setting (for Fano varieties, open Riemann surfaces, etc.), and developed an extension of the SYZ approach to non-Calabi-Yau spaces.After obtaining his PhD in 1999 from Ecole Polytechnique (France), Auroux was employed as Chargé de Recherche at CNRS and CLE Moore Instructor at MIT, before joining the faculty at MIT in 2002 (as Assistant Professor from 2002 to 2004, and as Associate Professor from 2004 to 2009, with tenure starting in 2006). He then moved to UC Berkeley as a Full Professor in 2009.
    Auroux has published over 30 peer-reviewed articles, including several in top journals, and given 260 invited presentations about his work. He received an Alfred P. Sloan Research Fellowship in 2005, was an invited speaker at the 2010 International Congress of Mathematicians, and in 2014 he was one of the two inaugural recipients of the Poincaré Chair at IHP. He has supervised 10 PhD dissertations, won teaching awards at MIT and Berkeley, and participated in the organization of over 20 workshops and conferences in symplectic geometry and mirror symmetry.




    Senior Personnel:

    Artan Sheshmani (Harvard CMSA)

    unnamedArtan Sheshmani’s research is focused on enumerative algebraic geometry and mathematical aspects of string theory. He is interested in applying techniques in algebraic geometry, such as, intersection theory, derived category theory, and derived algebraic geometry to construct and compute the deformation invariants of algebraic varieties, in particular Gromov-Witten (GW) or Donaldson-Thomas (DT) invariants. In the past Professor Sheshmani has worked on proving modularity property of certain DT invariants of K3-fibered threefolds (as well as their closely related Pandharipande-Thomas (PT) invariants), local surface threefolds, and general complete intersection Calabi-Yau threefolds. The modularity of DT/PT invariants in this context is predicted in a famous conjecture of  string theory called S-duality modularity conjecture, and his joint work has provided the proof to some cases of it, using degenerations, virtual localizations, as well as wallcrossing techniques. Recently, Sheshmani has focused on proving a series of dualities relating the various enumerative invariants over threefolds, notably the GW invariants and invariants that arise in topological gauge theory. In particular in his joint work with Gholampour, Gukov, Liu, Yau he studied DT gauge theory and its reductions to D=4 and D=2 which are equivalent to local theory of surfaces in Calabi-Yau threefolds. Moreover, in a recent joint work with Yau and Diaconescu, he has studied the construction and computation of DT invariants of Calabi-Yau fourfolds via a suitable derived categorical reduction of the theory to the DT theory of threefolds. Currently Sheshmani is interested in a wide range of problems in enumerative geometry of CY varieties in dimensions 3,4,5.

    Artan has received his PhD and Master’s degrees in pure mathematics under Sheldon Katz and Thomas Nevins from the University of Illinois at Urbana Champaign (USA) in 2011 and 2008 respectively. He holds a Master’s degree in Solid Mechanics (2004) and two Bachelor’s degrees, in Mechanical Engineering and Civil Engineering from the Sharif University of Technology, Tehran, Iran.  Artan has been a tenured Associate Professor of Mathematics with joint affiliation at Harvard CMSA and center for Quantum Geometry of Moduli Spaces (QGM), since 2016. Before that he has held visiting Associate Professor and visiting Assistant Professor positions at MIT.

    An Huang (Brandeis University)

    unnamedThe research of An Huang since 2011 has been focused on the interplay between algebraic geometry, the theory of special functions and mirror symmetry. With S. Bloch, B. Lian, V. Srinivas, S.-T. Yau, X. Zhu, he has developed the theory of tautological systems, and has applied it to settle several important problems concerning period integrals in relation to mirror symmetry. With B. Lian and X. Zhu, he has given a precise geometric interpretation of all solutions to GKZ systems associated to Calabi-Yau hypersurfaces in smooth Fano toric varieties. With B. Lian, S.-T. Yau, and C.-L. Yu, he has proved a conjecture of Vlasenko concerning an explicit formula for unit roots of the zeta functions of hypersurfaces, and has further related these roots to p-adic interpolations of complex period integrals. Beginning in 2018, with B. Stoica and S.-T. Yau, he has initiated the study of p-adic strings in curved spacetime, and showed that general relativity is a consequence of the self-consistency of quantum p-adic strings. One of the goals of this study is to understand p-adic A and B models.

    An Huang received his PhD in Mathematics from the University of California at Berkeley in 2011. He was a postdoctoral fellow at the Harvard University Mathematics Department, and joined Brandeis University as an Assistant Professor in Mathematics in 2016.



    Siu Cheong Lau (Boston University)
    unnamed

    The research interest of Siu Cheong Lau lies in SYZ mirror symmetry, symplectic and algebraic geometry.  His thesis work has successfully constructed the SYZ mirrors for all toric Calabi-Yau manifolds based on quantum corrections by open Gromov-Witten invariants and their wall-crossing phenomenon.  In collaboration with N.C. Leung, H.H. Tseng and K. Chan, he derived explicit formulas for the open Gromov-Witten invariants for semi-Fano toric manifolds which have an obstructed moduli theory.  It has a beautiful relation with mirror maps and Seidel representations.   Recently he works on a local-to-global approach to SYZ mirror symmetry.  In joint works with C.H. Cho and H. Hong, he developed a noncommutative local mirror construction for immersed Lagrangians, and a natural gluing method to construct global mirrors.  The construction has been realized in various types of geometries including orbifolds, focus-focus singularities and pair-of-pants decompositions of Riemann surfaces.

    Siu-Cheong Lau has received the Doctoral Thesis Gold Award (2012) and the Best Paper Silver Award (2017) at the International Congress of Chinese Mathematicians.  He was awarded the Simons Collaboration Grant in 2018.  He received a Certificate of Teaching Excellence from Harvard University in 2014.


    Affiliates:

    • Netanel Rubin-Blaier (Cambridge)
    • Kwokwai Chan (Chinese University of Hong Kong)
    • Mandy Cheung (Harvard University, BP)
    • Chuck Doran (University of Alberta)
    • Honsol Hong (Yonsei University)
    • Shinobu Hosono (Gakushuin University, Japan)
    • Conan Leung (Chinese University of Hong Kong)
    • Yu-shen Lin (Boston University)
    • Hossein Movassati (IMPA Brazil)
    • Arnav Tripathhy (Harvard University, BP)

     

    Postdocs:

    • Dennis Borisov
    • Tsung-Ju Lee
    • Dingxin Zhang
    • Jingyu Zhao
    • Yang Zhou

    Jobs:

    Postdoctoral Fellowship in Algebraic Geometry

    Postdoctoral Fellowship in Mathematical Sciences

     

    To learn about previous programming as part of the Simons Collaboration, click here.

  • 01
    11/01/2022

    TOPOLOGICAL ASPECTS OF CONDENSED MATTER

    9:44 pm
    11/01/2022-12/28/2013

    During Academic year 2018-19, the CMSA will be hosting a Program on Topological Aspects of Condensed Matter. New ideas rooted in topology have recently had a big impact on condensed matter physics, and have highlighted new connections with high energy physics, mathematics and quantum information theory. Additionally, these ideas have found applications in the design of photonic systems and of materials with novel mechanical properties. The aim of this program will be to deepen these connections by foster discussion and seeding new collaborations within and across disciplines.

    As part of the Program, the CMSA will be hosting two workshops:

    .

    Additionally, a weekly Topology Seminar will be held on Mondays from 10:00-11:30pm in CMSA room G10.

    Here is a partial list of the mathematicians who have indicated that they will attend part or all of this special program
    NameTentative Visiting Dates

    Jason Alicea

    11/12/2018-11/16/2018
    Maissam Barkeshli4/22/2019 – 4/26/2019
    Xie Chen4/15-17/2019 4/19-21/2019 4/24-30/2019

    Lukasz Fidkowski

    1/7/2019-1/11/2019

    Zhengcheng Gu

    8/15/2018-8/30/2018 & 5/9/2019-5/19/2019

    Yin Chen He

    10/14/2018-10/27/2018
    Anton Kapustin8/26/2018-8/30/2018 & 3/28/2019-4/5/2019

    Michael Levin

    3/11/2019-3/15/2019
    Yuan-Ming Lu4/29/2019-6/01/2019

    Adam Nahum

    4/2/2019- 4/19/2019

    Masaki Oshikawa

    4/22/2019-5/22/2019
    Chong Wang 10/22/2018-11/16/2018

    Juven Wang

    4/1/2019-4/16/2019
    Cenke Xu 8/26/2018-10/1/2018

    Yi-Zhuang You

    4/1/2019-4/19/2019

    Mike Zaletel

    5/1/2019-5/10/2019
  • 01
    11/01/2022

    Topological Insulators and Mathematical Science – Conference and Program

    2:00 pm-7:00 pm
    11/01/2022-09/17/2014

    The CMSA will be hosting a conference on the subject of topological insulators and mathematical science on September 15-17.  Seminars will take place each day from 2:00-7:00pm in Science Center Hall D, 1 Oxford Street, Cambridge, MA.

< 2022 >
November
«
»
  • 01
    11/01/2022
    20bottfeatureplain-1

    Math Science Lectures in Honor of Raoul Bott: Michael Freedman

    11:00 am-12:30 pm
    11/01/2022

    20bottfeatureplain
    On October 4th and October 5th, 2021, Harvard CMSA hosted the annual Math Science Lectures in Honor of Raoul Bott. This year’s speaker was Michael Freedman (Microsoft). The lectures took place on Zoom.

    This will be the third annual lecture series held in honor of Raoul Bott.

    Lecture 1
    October 4th, 11:00am (Boston time)
    Title: The Universe from a single Particle

    Abstract: I will explore a toy model  for our universe in which spontaneous symmetry breaking – acting on the level of operators (not states) – can produce the interacting physics we see about us from the simpler, single particle, quantum mechanics we study as undergraduates. Based on joint work with Modj Shokrian Zini, see arXiv:2011.05917 and arXiv:2108.12709.

    Video

    Lecture 2
    October 5th, 11:00am (Boston time)
    Title: Controlled Mather Thurston Theorems.

    Abstract: The “c-principle” is a cousin of Gromov’s h-principle in which cobordism rather than homotopy is required to (canonically) solve a problem. We show that in certain well-known c-principle contexts only the mildest cobordisms, semi-s-cobordisms, are required. In physical applications, the extra topology (a perfect fundamental group) these cobordisms introduce could easily be hidden in the UV. This leads to a proposal to recast gauge theories such as EM and the standard model in terms of flat connections rather than curvature. See arXiv:2006.00374  

    Video

     

  • 01
    11/01/2022

    Kardar-Parisi-Zhang dynamics in integrable quantum magnets

    9:00 am-10:30 am
    11/01/2022

    Quantum Matter Seminar

    Speaker: Francisco Machado  (Berkeley/Harvard)

    Title: Kardar-Parisi-Zhang dynamics in integrable quantum magnets

    Abstract: Although the equations of motion that govern quantum mechanics are well-known, understanding the emergent macroscopic behavior that arises from a particular set of microscopic interactions remains remarkably challenging. One particularly important behavior is that of hydrodynamical transport; when a quantum system has a conserved quantity (i.e. total spin), the late-time, coarse-grained dynamics of the conserved charge is expected to follow a simple, classical hydrodynamical description. However the nature and properties of this hydrodynamical description can depend on many details of the underlying interactions. For example, the presence of additional dynamical constraints can fundamentally alter the propagation of the conserved quantity and induce slower-than-diffusion propagation. At the same time, the presence of an extensive number of conserved quantities in the form of integrability, can imbue the system with stable quasi-particles that propagate ballistically through the system.

    In this talk, I will discuss another possibility that arises from the interplay of integrability and symmetry; in integrable one dimensional quantum magnets with complex symmetries, spin transport is neither ballistic nor diffusive, but rather superdiffusive. Using a novel method for the simulation of quantum dynamics (termed Density Matrix Truncation), I will present a detailed analysis of spin transport in a variety of integrable quantum magnets with various symmetries. Crucially, our analysis is not restricted to capturing the dynamical exponent of the transport dynamics and enables us to fully characterize its universality class: for all superdiffusive models, we find that transport falls under the celebrated Kardar-Parisi-Zhang (KPZ) universality class.

    Finally, I will discuss how modern atomic, molecular and optical platforms provide an important bridge to connect the microscopic interactions to the resulting hydrodynamical transport dynamics. To this end, I will present recent experimental results, where this KPZ universal behavior was observed using atoms confined to an optical lattice.

    [1] Universal Kardar-Parisi-Zhang dynamics in integrable quantum systems
    B Ye†, FM*, J Kemp*, RB Hutson, NY Yao
    (PRL in press) – arXiv:2205.02853

    [2] Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion
    D Wei, A Rubio-Abadal, B Ye, FM, J Kemp, K Srakaew, S Hollerith, J Rui, S Gopalakrishnan, NY Yao, I Bloch, J Zeiher
    Science (2022) — arXiv:2107.00038

     

    https://www.youtube.com/watch?v=65DjgbX30FU&list=PL0NRmB0fnLJQAnYwkpt9PN2PBKx4rvdup&index=27

  • 02
    11/02/2022
    20bottfeatureplain-1

    Math Science Lectures in Honor of Raoul Bott: Michael Freedman

    11:00 am-12:30 pm
    11/02/2022

    20bottfeatureplain
    On October 4th and October 5th, 2021, Harvard CMSA hosted the annual Math Science Lectures in Honor of Raoul Bott. This year’s speaker was Michael Freedman (Microsoft). The lectures took place on Zoom.

    This will be the third annual lecture series held in honor of Raoul Bott.

    Lecture 1
    October 4th, 11:00am (Boston time)
    Title: The Universe from a single Particle

    Abstract: I will explore a toy model  for our universe in which spontaneous symmetry breaking – acting on the level of operators (not states) – can produce the interacting physics we see about us from the simpler, single particle, quantum mechanics we study as undergraduates. Based on joint work with Modj Shokrian Zini, see arXiv:2011.05917 and arXiv:2108.12709.

    Video

    Lecture 2
    October 5th, 11:00am (Boston time)
    Title: Controlled Mather Thurston Theorems.

    Abstract: The “c-principle” is a cousin of Gromov’s h-principle in which cobordism rather than homotopy is required to (canonically) solve a problem. We show that in certain well-known c-principle contexts only the mildest cobordisms, semi-s-cobordisms, are required. In physical applications, the extra topology (a perfect fundamental group) these cobordisms introduce could easily be hidden in the UV. This leads to a proposal to recast gauge theories such as EM and the standard model in terms of flat connections rather than curvature. See arXiv:2006.00374  

    Video

     

  • 02
    11/02/2022
    CMSA Topological Seminar 11.2.22

    Optical axion electrodynamics

    9:00 am-10:00 am
    11/02/2022
    CMSA Room G10
    CMSA, 20 Garden Street, Cambridge, MA 02138 USA

    Topological Quantum Matter Seminar

    Speaker: Junyeong Ahn (Harvard)

    Title: Optical axion electrodynamics

    Abstract: Electromagnetic fields in a magneto-electric medium behave in close analogy to photons coupled to the hypothetical elementary particle, the axion. This emergent axion electrodynamics is expected to provide novel ways to detect and control material properties with electromagnetic fields. Despite having been studied intensively for over a decade, its theoretical understanding remains mostly confined to the static limit. Formulating axion electrodynamics at general optical frequencies requires resolving the difficulty of calculating optical magneto-electric coupling in periodic systems and demands a proper generalization of the axion field. In this talk, I will introduce a theory of optical axion electrodynamics that allows for a simple quantitative analysis. Then, I will move on to discuss the issue of the Kerr effect in axion antiferromagnets, refuting the conventional wisdom that the Kerr effect is a measure of the net magnetic moment. Finally, I will apply our theory to a topological antiferromagnet MnBi2Te4.

    References:
    [1] Theory of Optical Axion Electrodynamics, J. Ahn, S.Y. Xu, A.Vishwanath, arXiv:2205.06843

  • 02
    11/02/2022
    CMSA Colloquium 11.02.22

    Doping and inverting Mott insulators on semiconductor moire superlattices

    12:45 pm-1:45 pm
    11/02/2022
    CMSA Room G10
    CMSA, 20 Garden Street, Cambridge, MA 02138 USA

    Speaker: Liang Fu (MIT)

    Title: Doping and inverting Mott insulators on semiconductor moire superlattices

    Abstract: Semiconductor bilayer heterostructures provide a remarkable platform for simulating Hubbard models on an emergent lattice defined by moire potential minima. As a hallmark of Hubbard model physics, the Mott insulator state with local magnetic moments has been observed at half filling of moire band. In this talk, I will describe new phases of matter that grow out of the canonical 120-degree antiferromagnetic Mott insulator on the triangular lattice. First, in an intermediate range of magnetic fields, doping this Mott insulator gives rise to a dilute gas of spin polarons, which form a pseudogap metal. Second, the application of an electric field between the two layers can invert the many-body gap of a charge-transfer Mott insulator, resulting in a continuous phase transition to a quantum anomalous Hall insulator with a chiral spin structure. Experimental results will be discussed and compared with theoretical predictions.

Get Latest Updates In Your Inbox

  • This field is for validation purposes and should be left unchanged.