Topological and geometrical aspects of spinors in insulating crystals

07/14/2022 9:00 am - 10:00 am

Abstract:  Introducing internal degrees of freedom in the description of crystalline insulators has led to a myriad of theoretical and experimental advances. Of particular interest are the effects of periodic perturbations, either in time or space, as they considerably enrich the variety of electronic responses. Here, we present a semiclassical approach to transport and accumulation of general spinor degrees of freedom in adiabatically driven, weakly inhomogeneous crystals of dimensions one, two and three under external electromagnetic fields. Our approach shows that spatio-temporal modulations of the system induce a spinor current and density that is related to geometrical and topological objects — the spinor-Chern fluxes and numbers — defined over the higher-dimensional phase-space of the system, i.e., its combined momentum-position-time coordinates.

The results are available here: https://arxiv.org/abs/2203.14902

Bio: Ioannis Petrides is a postdoctoral fellow at the School of Engineering and Applied Sciences at Harvard University. He received his Ph.D. from the Institute for Theoretical Physics at ETH Zurich. His research focuses on the topological and geometrical aspects of condensed matter systems.