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Disclaimers:

This lecture includes a brief survey of the period prior to
and soon after the creation of the theory of vertex
algebras, and makes no claim of completeness – the
survey is intended to highlight developments that reflect
the speaker’s own views (and biases) about the subject.
As a short survey of early history, it will inevitably miss
many of the more recent important or even towering
results. Egs. geometric Langlands, braided tensor
categories, conformal nets, applications to mirror
symmetry, deformations of VAs, ....
Emphases are placed on the mutually beneficial
cross-influences between physics and vertex algebras in
their concurrent early developments, and the lecture is
aimed for a general audience.
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1 Early History 1970s – 90s: two parallel universes

2 A fruitful perspective: vertex algebras as higher
commutative algebras

3 Classification: cousins of the Moonshine VOA

4 Speculations



The String Theory Universe

1968: Veneziano proposed a model (using the Euler beta
function) to explain the ‘st-channel crossing’ symmetry in
4-meson scattering, and the Regge trajectory (an angular
momentum vs binding energy plot for the Coulumb
potential).
∼1970: Nambu, Nielsen, and Susskind provided the first
interpretation of the Veneziano amplitude in terms of a
Fock space representation of infinitely many harmonic
oscillators. The n-particle amplitude then became an
n-point correlation function of certain ‘vertex operators’

: eik ·φ(z) :

on a Fock space representation of free bosonic fields φi(z)
of a ‘string’ [Goddard et al 1972].



The String Theory Universe (cont.)

This can be viewed as part of a fundamental theory of
strings, producing fundamental particles of arbitrarily high
spins as string resonances, including gravity. [Scherk et al,
1974].

1981: Polyakov’s path integral formulation of the bosonic
string theory.

1984: Belavin-Polyakov-Zamolodchikov’s conformal
bootstrap program – to systematically study 2d CFTs as
classical string vacua, and models for universal critical
phenomena.
They introduced a powerful mathematical formalism –
OPEs for 2d CFT observables.



The String Theory Universe (cont.)

Eg. The Virasoro OPE of the left moving 2d stress energy
tensor of central charge c (conformal anomaly):

T (z)T (w) ∼ c/2
(z − w)4 +

2T (w)

(z − w)2 +
∂wT (w)

z − w
+ · · ·

1985 –: New generation of physicists to organize 2d CFTs
using representations of rational chiral algebras
(consisting of the left moving operators), and their fusion
rules. A rational chiral algebra has only finite number of
irreducible representations.
Egs. The BPZ classified the Virasoro central charges and
highest weights of the rational minimal model CFTs
using Kac’s determinant formula. (Cf. Y. Zhu’s thesis and
W. Wang’s thesis).



The String Theory Universe (cont.)

Egs. The Wess-Zumino-Witten theory for loop groups of
compact groups gave (unitary) rational CFTs.
Egs. Goddard-Kent-Olive’s coset constructions from
compact Lie groups gave (unitary) rational CFTs.
Moore-Seiberg introduced the fundamental ‘duality axioms’
of CFTs. For the chiral algebra, they imply that matrix
coefficients (or correlation functions) of left moving
operators admit meromorphic continuations on P1. Most
importantly, the operators are formally commutative after
analytic continuations.

Eg. 〈T (z)T (w)〉 = c/2
(z−w)4 .



The Moonshine Universe

1978: McKay found evidence of the existence of an infinite
dimensional Z-graded representation V \ of the
hypothetical Monster group M (independently predicted
by Fisher and Griess in 1973):– the coefficients of the
q-series of j-function can be partitioned by dimensions of
irreducible M-modules:

j(q) = q−1 + 196884q + 21493760q2 + 864299970q3 + · · ·
1 = r1

196884 = r1 + r2

21493760 = r1 + r2 + r3

864299970 = 2r1 + 2r2 + r3 + r4

20245856256 = 3r1 + 3r2 + r3 + 2r4 + r5

= 2r1 + 3r2 + 2r3 + r4 + r6



The Moonshine Universe (cont.)

Thompson: interpreted j(q) as the graded- or q-trace

j(q) = qtrV \1 :=
∑

n

trV \[n]1qn.

This would later become the genus 1 partition function
tr qL0− c

24 of the holomorphic vertex algebra underlying
V \!
Expectation: the q-trace of a general element g ∈M
should be interesting as well.



The Moonshine Universe (cont.)

Conway-Norton computed leading terms of the
hypothetical q-traces, and saw that they agree with
q-series of certain special genus 0 modular functions.
They gave a list of these functions: the McKay-Thompson
series Tg .
The Conway-Norton Moonshine Conjecture:
∃ a graded M-module V \ having the McKay-Thompson
series Tg as its q-traces.
1980: Griess announced his construction of M (the
‘Friendly Giant’). It is the automorphism group of the
Griess algebra, a commutative non-associative algebra of
dimension 196,884. (Cf. Griess’s Harvard CMSA May 6
lecture). This algebra would later become the weight 2
piece V \[2] of the more elaborate
Moonshine Vertex Operator Algebra V \!



The Moonshine Universe (cont.)

1980s: emergence of a representation theory for a class of
interrelated infinite dimensional graded algebras, including
the Virasoro, Kac-Moody algebras, W-algebras, their
various ‘coset’ constructions,...

1980: The Frenkel-Kac construction of level 1 irreducible
representations of affine Kac-Moody Lie algebras, using
‘free bosonic vertex operators’ eα(z), α ∈ L (similar to
physicists : eik ·φ(z) :) where L=a weight lattice of ADE type.

1986: Borcherds axiomatized the notion of a vertex
algebra (VA) by an infinite set of linear operator identities.



The Moonshine Universe (cont.)

1988: Frenkel-Lepowsky-Meurman gave a new definition
(including the Virasoro) of what they called vertex
operator algebras (VOA), based on a Jacobi identity of
formal power series. FLM’s and Borcherds’s formulations
are logically equivalent, but FLM’s is technically and
conceptually a bit easier to work with.
FLM also gave a general Fock space construction of a
lattice VOA VL from any even lattice L. They also
constructed the Z/2 orbifold of VL (a VOA counterpart of
physicists’ orbifold CFT), using the notion of twisted vertex
operators. For the Leech lattice L = L, its Z/2 orbifold V \

would yield the Moonshine VOA, with the correct genus 1
partition function j(q).
(The construction of V \ will be sketched later using a
slightly different formulation of vertex algebras.)



The Moonshine Universe (cont.)

1992: Borcherds announced his solution to the
Conway-Norton Conjecture, the FLM construction of the
Moonshine VOA V \ playing a central role.



The Circle Algebra Formalism

[Lian-Zuckerman, H. Li, 1992-95]

• Let V = ⊕n∈ZV [n] be a Z-graded vector space (always
over C), where V [n] is the weight n subspace of V ;
• V ∗ is the graded dual of V .
• z,w , ... be formal variables (eventually taking values in
C), and are assigned weight -1;
• k ,m,n will typically mean arbitrary integers.
• Let A(z) :=

∑
n∈Z A(n)z−n−1 be a formal power series

with coefficient in a whatever linear space. Its formal
derivative is ∂A(z) :=

∑
n−(n + 1)A(n)z−n−2. Its formal

residue is the 0th coefficient A(0) := Resz A(z).
• The expression (z − w)k means the binomial expansion

(z − w)k :=
∑
n≥0

(
k
n

)
zk−nwn.



The Circle Algebra Formalism (cont.)

Thus (w − z)k means the same with z,w interchanged in
the expansion. (Warning: (z − w)−2 6= (w − z)−2!)
Let CO ≡ CO(V ) be the space of all weight homogeneous
linear maps a(z) : V → V ((z)), where wt a(z) = k iff

a(n) : V [m]→ V [m + k − n − 1], ∀m,n ∈ Z

.
The nth circle product on CO is defined by the following
non-associative operation of weight −n − 1:

a(w)◦nb(w) = Res za(z)b(w)(z−w)n+Res za(z)b(w)(−w+z)n.

Note that CO is closed under the circle products. A
subspace of CO containing 1 and is closed under the circle



The Circle Algebra Formalism (cont.)

products is called a circle algebra. The standard
categorical notions of circle algebras and modules can be
defined without any difficulty.
We say that two operators a,b ∈ CO circle commute if

(z − w)N [a(z),b(w)] = 0 for N >> 0.

Remark: (1) In this case, for any u∗ ∈ V ∗, v ∈ V , both
matrix coefficient series 〈u∗,a(z)b(w)v〉, 〈u∗,b(w)a(z)v〉
converge to the same rational function fa,b(z,w) with
possible poles at z = w , z = 0 and w = 0, in the respective
regions |z| > |w |, |w | > |z|. The converse is also true.
(2) We often write an arbitrary matrix coefficient series
simply as 〈a(z)b(w)〉 when the roles of the vectors u∗, v
are not important.



The Circle Algebra Formalism (cont.)

(3) Circle commutativity of a,b makes computing all their
circle products very easy. For then 〈a(z) ◦n b(z)〉 coincides
with analytic residue at z = w of the function
(z − w)nfa,b(z,w). So we can read off the circle products
by expanding fa,b in powers of (z − w):

fa,b(z,w) =
∑

n

〈a(w) ◦n b(w)〉(z − w)−n−1

(4) This also makes precise physicists’ notion of a ‘short
distance expansion’ or OPE of the product a(z)b(w) on the
Riemann sphere, which they would formally write as

a(z)b(w) = a(w) ◦N b(w)(z − w)−N−1 + · · ·
+ a(w) ◦0 b(w)(z − w)−1+ : a(z)b(w) : .



The Circle Algebra Formalism (cont.)

Our nth circle product then corresponds to their operator
valued contour integral over a circle C centered at z = w :∮

C
a(z)b(w)(z − w)ndz.

(5) Since the Wick product term : a(z)b(w): is universal
(i.e. it has the same form without pole at z = w for any two
operators; in fact a ◦−n−1 b = 1

n! : ∂na b :), one often drops
it from the expansion and write only the polar terms like

a(z)b(w) ∼ a(w)◦Nb(w)(z−w)−N−1+· · ·+a(w)◦0b(w)(z−w)−1

We follow the same convention here, and refer to this
(now) precise formula as the OPE of a,b.



The Circle Algebra Formalism (cont.)

Lemma:(Dong) If a,b, c ∈ CO pairwise circle commute,
then each a ◦n b and c circle commute.
Therefore any set of operators that pairwise circle
commute generates a CCA. This makes it quite easy to
construct CCAs: one needs only to find operators that
circle commute.
Eg. Let V be any highest weight module of the Heisenberg
algebra satisfying the commutator relations

[a(n),a(m)] = nδn+m,01.

Then an easy OPE calculation of
a(z) =

∑
n a(n)z−n−1 ∈ CO(V ) yields

[a(z),a(w)] = (z − w)−2 − (w − z)−2



The Circle Algebra Formalism (cont.)

implying that (z − w)N [a(z),a(w)] = 0 for N ≥ 2. Hence
the operator a(z) generates a CCA A with the OPE

a(z)a(w) ∼ (z − w)−2.

The left regular module. For a CCA A, define
ρA : A → CO(A), a 7→ â(ζ)

â(ζ)b =
∑

n

(a ◦n b)ζ−n−1

If a is homogeneous, then â is also homogeneous of the
same weight. Moreover ρA is a CA homomorphism, hence
defines an A-module structure on the space A, which we
call the left regular module.



The Circle Algebra Formalism (cont.)

Theorem: (L-Zuckerman, H. Li) If A is a CCA, then the
structure (A,1, ∂, ρA) is a vertex algebra in the sense of
Borcherds and FLM. The converse is also true: a VA
naturally gives a CCA.

This shows that CCA and VA are also logically equivalent
notions. One difference however is that CCAs are
technically much easier to work with (thanks to the idea of
OPE’s). Another advantage of CCAs is that it makes it
easier to view them as higher analogues of commutative
algebras – one equipped with infinitely many
non-associative products ◦n, combining to form a
commutative operator product in matrix coefficients. (In
fact, commutative algebras form a full subcategory).



The Moonshine VOA A\ (after FLM)

Let L be any even lattice. Put

VL := FL ⊗ C[L].

FL := C[α(−1), α(−2), ...|α ∈ L] is the polynomial space in
the variables α(−1), α(−2), ..., each linear in α ∈ L. This is
the vacuum Fock space representation of the Heisenberg
algebra with commutator relations

[α(n), β(m)] = n〈α, β〉δm+n,01

where α(n) y FL by the usual annihilation/creation
operators.
C[L] := ⊕α∈LCeα is the group algebra of L.
(Note: L=the ‘momentum lattice’ parametrizing the winding
modes of the bosonic string on the real torus L∗R/L

∗.)



The Moonshine VOA A\ (after FLM) (cont.)

View α(n) ∈ End VL: for n 6= 0, they act on the FL factor,
and α(0) acts the C[L] factor by

α(0)eβ = 〈α, β〉eβ.

Define the operator on VL:

eα(z) := ±eαzα(0) exp

(
−
∑
n<0

α(n)

n
z−n

)
exp

(
−
∑
n>0

α(n)

n
z−n

)

(the physics counterpart of the vertex operator : eik ·φ :.)
The sign ± is defined according to which subspace
FL ⊗ eβ ⊂ VL, eα(z) acts on, determined by a 2-cocycle
defining a group extension of L by Z/2, a technicality we
omit here.



The Moonshine VOA A\ (after FLM) (cont.)

Lemma: If 〈α, β〉 ≥ 0 then eα(z),eβ(w) strictly commute.
Otherwise (z − w)−〈α,β〉[eα(z),eβ(w)] = 0. Hence the
operators eα(z) ∈ CO(VL) generate a CCA AL.

To construct the Moonshine VOA V \, let L = L the Leech
lattice, and consider the involution σ : L→ L, α 7→ −α. Let
Ao := Aσ

L be the induced fixed point subalgebra. Then AL
has a module consisting of ‘twisted’ vertex operators [see
FLM 1988, Ginzparg 1990], and therefore its σ invariant
subspace A1 is an Ao-module. FLM defined

V \ ≡ A\ := Ao ⊕A1.



The Moonshine VOA A\ (after FLM) (cont.)

The space of operators A\ is naturally a CCA. First, Ao
acts on Ao and A1 through their natural Ao-module
structures. Second, as Ao-modules Ao,A1 are cyclically
generated by ao := 1 ∈ Ao, and a twisted operator a1 ∈ A1
of the lowest weight in A1. The latter is also an intertwining
operator a1(ζ) : Ao → A1((ζ)) satisfying the condition that

〈bo(z)a1(w)〉 = 〈a1(w)bo(z)〉

after analytic continuation, for all bo(z) ∈ Ao. This
condition determines uniquely the action of A1 on Ao. In
fact, this condition determines all circle products bo ◦n b1
for bo ∈ Ao,b1 ∈ A1, and that they are elements of A1.
Third, the OPE a1(z)a1(w) [see Chapter 9 of FLM] shows
that a1 ◦n a1 ∈ Ao. Therefore A\ is closed under the circle
products, and contains ao = 1, hence form a CCA.



The Moonshine VOA A\ (after FLM) (cont.)

Finally by a tour de force calculation, FLM proved that the
vertex algebra V \ ≡ A\ has the correct genus 1 partition
function or q-trace of 1 with respect to the Virasoro
structure T (z) above: tr qT0− c

24 = j(q) where T is the
standard Viasoro structure T (z) = 1

2
∑

: αi(z)α∗i (z) : of
central charge 24 = rk L, where the αi , α

∗
i are dual bases

of the lattice L ≡ L∗.

The weight 2 subspace A\[2] equipped with the circle
product ◦1 recovers the 196,884 dimensional Griess
algebra. It is also known that A\ is a ‘holomorphic’ VOA: its
left regular module is its unique simple module [Dong
1993].



Holomorphic VOAs

V \ is an example of a holomorphic VOA.

Holomorphic means it is rational and its module category
has only one simple object, namely V \.

If V is holomorphic, its central charge c is a positive
integer divisible by 8 [Schellekens 1988, Zhu’s thesis
1990].

For c = 8, only example is lattice VOA for the E8 root
lattice. For c = 16, only examples are lattice VOAs for
E8 ⊕ E8, and D+

16 [Dong-Mason 2004].



Holomorphic VOAs (cont.)

For c = 24, things are a bit more interesting. Assuming
further that V is CFT type (i.e. V[0] = C), then the q-trace
must be

χ(V,q) = q−1 + dim V[1] + 196884q + 21493760q2 + · · · ,

i.e., the j-function up to additive constant dim V[1], a
consequence of genus 1 modular invariance [Schellekens
1988].



Holomorphic VOAs (cont.)

Note: If weight 1 subspace V[1] 6= 0, it is either abelian of
rank 24 (in which case V = VL, L=Leech lattice), or V[1]
is a semisimple Lie algebra g [Lian 1988, Schellekens
1988].

If rank(g) = 24 and g is semisimple, then V = VL where L
is a Niemeier lattice characterized by the root system of g.
There are 23 such possibilities.

If rank(g) < 24, Schellekens further considered possible
structures of g such that a simple affine vertex algebra of ĝ
admits an extension having the character j(q) + dimV[1].
(Cf. Frenkel-Kac, Kac-Peterson on structures of unitary
ĝ-modules). There are exactly 46 such possibilities.



Holomorphic VOAs (cont.)

There are thus 1 + 23 + 46 = 70 possibilities in total,
together with V \ which has V \[1] = 0. Schellekens [1988]
then conjectured that there are exactly 71 holomorphic
VOAs with c = 24.
Due to the efforts of many people over the last 26 years
(van Ekeren, Lam, Möller, Scheithauer, Shimakura, and
others), this is now a theorem, with just one exception:
uniqueness of the Moonshine!
For V[1] 6= 0, V exists and is uniquely determined by the
Lie algebra V[1].
For V[1] = 0, is V \ the only one, as conjectured by Igor
Frenkel ∼1987?



VOAs and commutative algebras

VOAs are a natural generalization of commutative
algebras.
There are also several functors from the category of VOAs
to the category of commutative algebras.
Given a VOA V, consider vector space C(V) ⊆V

spanned by all elements of the form
a ◦−2 b = : (∂a)b : | a,b ∈V}.
Set RV = V/C(V). Map V → RV sends a 7→ a.
RV has commutative, associative product a · b = : ab :. It
is called Zhu’s commutative algebra.
Eg: For the Heisenberg VOA H with generating field α,
RH = C[ᾱ].
More generally, if V is strongly generated by a set {αi},
then RV is generated by the corresponding elements {ᾱi}.



VOAs and commutative algebras (cont.)

Zhu’s finiteness condition: V is called C2-cofinite or
lisse if RV is finite-dimensional as a vectors space.
If V is lisse, it has finitely many simple modules.
This plays a key role in Zhu’s modularity theorem: he
proves that if V is C2-cofinite and rational, the span of the
characters of its modules forms a representation of
SL(2,Z).
For many years, it was conjectured that rationality and
C2-cofiniteness are equivalent.
This turns out to be false. First examples of C2-cofinite,
non-rational VOAs are the triplet algebras (Kausch,
Adamovic, Milas).
It is expected that any rational VOA is C2-cofinite, and this
is an important open problem.



VOAs and commutative algebras (cont.)

Def: (Arakawa) X̃V = Spec(RV) is called the associated
scheme of V, and XV = Specm(RV) = (X̃V)red is called
the associated variety.
Geometric properties of XV have important implications for
the representation theory of V.
Def: (Arakawa, Kawasetsu) V is called quasi-lisse if XV

has finitely many symplectic leaves as a Poisson variety
w.r.t. the Poisson bracket {a,b} = a ◦0 b.
Note: Here, the notion of symplectic leaves for Poisson
variety was developed earlier [Brown-Gordon 2003] for a
large class of algebras, including symplectic reflection
algebras of [Etingof-Ginzburg 2002]. The stratification by
symplectic leaves can give deep insights into the
representation theory of the algebra in question.



VOAs and commutative algebras (cont.)

Eg: (Arakawa) If g is a simple Lie algebra and k is an
admissible level for g, the simple affine VOA Lk (g) is
quasi-lisse (one shows that the associated variety lies in
the nilpotent cone of g.)
The quasi-lisse condition is a natural generalization of the
lisse condition.
Thm: (Arakawa, Kawasetsu) If V is quasi-lisse, it has
finitely many simple ordinary modules.



Vertex Algebra Hilbert Problems

Thm: (Hilbert) If G is a reductive group and A is a finitely
generated commutative C-algebra, then the invariant ring
AG is finitely generated.
Many foundational results in commutative algebra were
introduced by Hilbert in connection with this problem (basis
theorem, Nullstellensatz, syzygy theorem, etc.)
Idea of proof: Since G is reductive, AG is a summand of
A, i.e., a subalgebra which is a direct summand.
Any summand of a finitely generated, graded commutative
ring is finitely generated.
Vertex algebra Hilbert problem asks the analogous
question: given a strongly finitely generated (SFG) vertex
algebra V and a reductive group G of automorphisms of
V, is VG also SFG?



Vertex Algebra Hilbert Problems (cont.)

In general, this is false. For example, if V is the abelian
vertex algebra C[α, ∂α, ∂α2, . . . ] with Z2-action
∂ iα 7→ −∂ iα, then VZ2 is not SFG.
It is expected to hold if V is simple, for any reductive G.
Recently, Linshaw and Creutzig have shown that this is
true for a large class of simple VOAs. This includes

1 Free field algebras. These are VOAs like the Heisenberg
algebra where the only nontrivial fields in the OPEs are the
constant terms.

2 Affine vertex algebra V k (g) for any simple Lie superalgebra
g, at generic level k .

3 W-algebra Wk (g, f ) at generic level k , associated to any
simple Lie superalgebra g, and any nilpotent element f ∈ g
[Cf. Drinfeld-Sokolov reduction of BRST complex].

4 Any tensor product of finitely many VOAs of the above
types.



Vertex Algebra Hilbert Problems (cont.)

All the above VOAs admit a certain limit in which the
problem can be handled using classical invariant theory.
Proof is constructive starting from the first and second
fundamental theorems of invariant theory (FFT and
SFT) for G and some finite-dimensional G-module V .
Recall: FFT for G and V is the explicit generating set for
the invariant ring R = C[

⊕
i≥0 Vi ]

G, where each Vi
∼= V .

SFT is the explicit generating set for the ideal of relations
among these generators.
FFT and SFT are known only in a few example, including

1 Standard representations of classical groups (Weyl, 1939),
2 Adjoint representation of classical groups (Procesi, 1976),
3 7-dimensional respresentation of G2 (Schwarz, 1988).

In such cases, explicit minimal strong generating sets for
invariant VOAs can be given.



Vertex Algebra Hilbert Problems (cont.)

This has applications to the coset construction of GKO
and Frenkel-Zhu.
Given a VOA V and a subVOA A, the coset
C = Com(A,V), which is the set of elements of V which
strictly commute with A, is another subalgebra of V.
Homomorphism A ⊗C ↪→V is a conformal embedding,
which implies that there are strong connections between
the representation theory of the three VOAs A, C, and V.
If A is an affine VOA V k (g), then Com(V k (g),V) = Vg[t],
which is also an invariant theory problem.
Often, strong generating type of Vg[t] is the same as that
of (V′)G for some VOA V′, where G is a group with Lie
algebra g.



Vertex Algebra Hilbert Problems (cont.)

Consider the W-algebra Wk (g, f ) for some simple Lie
superalgebra g and nilpotent f ∈ g.

Thm: (Creutzig, Linshaw, 2020) If Wk (g, f ) has affine
subVOA V `(g′) for a reductive Lie algebra g′, then

Ck = Com(V `(g′),Wk (g, f )) = Wk (g, f )g
′[t],

is SFG for generic levels k .

Application: This allows an explicit descriptions of many
new and different coset constructions of W-algebras that
are SFG in VA invariant theory.



Vertex Algebra Hilbert Problems (cont.)

Egs. There is an important class of VOAs YL,M,N [ψ]
recently defined by Gaiotto and Rapcak as cosets of
certain W-algebras and W-superalgebras by affine
subVOAs. Based on considerations from gauge theory,
they are expected to satisfy a symmetry known as triality:
there are nontrivial isomorphisms between three different
Y -algebras after suitable level shifts.
This was proven by Creutzig and Linshaw in the case when
one of the labels L,M,N is zero using above methods.



The Moonshine Cohomology & the Monster

In 1995, L-Zuckerman proposed to study a cohomological
construction based on two key ingredients: the so-called
Lian-Zuckerman algebra and the Moonshine VOA A\. For
any VOA V, put

M∗(V) := H
∞
2
+∗

(Vir ,Cc,A\ ⊗V)

where the right side is the Feigin semi-infinite cohomology
of the Virasoso algebra relative to its center, with coefficient
in the module A\ ⊗V. We call this graded cohomology
group the Moonshine Cohomology Functor. Note that
this group is trivial unless V has central charge 2.



The Moonshine Cohomology & the Monster (cont.)

Theorem:(L-Zuckerman 1991-1994, 2003) For any VOA
V of central charge 2, M∗(V) is a Batalin-Vilkovinsky
algebra. In particular M0(V) is naturally a commutative
algebra with respect to Wick product, and M1(V) a Lie
algebra with respect to the BV bracket.

Eg. If V = VII1,1 , the lattice VOA for the unimodular rank 2
hyperbolic lattice, then M0(V) = C and M1(V) turns out to
be Borcherds’s Monster Lie algebra [See L-Zuckerman
2003 details].



The Moonshine Cohomology & the Monster (cont.)

Note: (1) The BV algebra structure of the Feigin
cohomology was a result of the theory of topological vertex
algebras introduced and developed in the early 90s
[L-Zuckerman 1991-1994], together with Witten’s
construction of the ‘ground ring’ of the c = 1 2d gravity
theory.
(2) The Fischer-Griess Monster group F1 acts as a group
of natural transformations of M∗.
(3) Frenkel-Kostrikin 2010 use the Moonshine functor to
give the first cohomological realization of certain quantum
groups.
Conjecture/Speculation: (L-Zuckerman 1995) F1 is the
full automorphism group of M∗.



A Theory of Chiral Schemes?

Question: Does the geometric notion of schemes and
variaties carry over to CCAs (or VOAs), as higher
commutative algebras? If so, this amounts to enlarging the
category of classical schemes, since ordinary CAs form a
full subcategory of CCAs.
Notations: A,B, ... will denote a CCA. If J,K are
subspaces of A, then JK is the span of all circle products
a ◦n b, with a ∈ J,b ∈ K , n ∈ Z.
Definition/Observation: Let A be a CCA. A subspace
I ⊂ A is left ideal if AI ⊂ I, and likewise for right ideal. If A
is conformal, then any left ideal is a right ideal, and vice
versa. The hypothesis can be weakened, but we assume
this here for simplicity, and any ideal is then 2-sided. An
ideal I ( A is prime if JK ⊂ I implies that J ⊂ I or K ⊂ I,
for any ideals J,K .



A Theory of Chiral Schemes? (cont.)

As in the classical case, the set of ideals is closed under
addition, multiplication, and these operations on ideals are
commutative and distributive (i.e. I(J + K ) = IJ + IK ). Also
maximal ideals are prime.
Given an ideal I, let V (I) = {P ⊂ I|P prime}. We call V (I)
the closed set associated with I. Again as in the classical
case, we have

V (IJ) = V (I) ∪ V (J), V (
∑
α

Iα) = ∩αV (Iα).

Thus we can form an affine scheme SpecA, using prime
ideals of A. Moreover, a morphism of CCAs induces a
morphism of affine schemes. One can also define the
notion of general schemes. We can also use the weight



A Theory of Chiral Schemes? (cont.)

structure of CCA to define a notion of graded ideals and
hence projective schemes. I call this such a scheme a
‘chiral scheme’.
Eg. If A is a simple CCA, i.e. it has no proper ideals, then
SpecA consists of just one point (0), which is prime.
Eg. If H is the Heisenberg CCA generated by one bosonic
field α(z), then H is linearly isomorphic to the polynomial
space C[α, ∂α, ....]. But since H is simple, SpecH = (0).
Eg. Let γ be a weight zero commutative field, i.e.
γ(z)γ(w) ∼ 0. Then the CCA A = C[γ, ∂γ, ...] is a
differential commutative algebra. So we expect SpecA to
be a jet scheme over C = SpecC[γ].



A Theory of Chiral Schemes? (cont.)

Question: What is the precise relationship between the
‘chiral scheme’ of A and the associated scheme of Zhu’s
commutative algebra? Note that if A is weight bounded
below by 0, then both the associated scheme and the
chiral scheme project onto the classical scheme SpecA[0].
So, both are some kinds of bundles of the same classical
scheme.
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