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Recent Al Breakthroughs
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protein folding, molecule design,...

Image recognition,
reconstruction, generation,
super-resolution,...

super-human play

time-series data natural language

Input Prompt: Recite the first law of robotics

Output:

text generation, translation, chatbots,
text embeddings,...

speech recognition, forecasting



A Dawn of Multi-Agent Applications

Multi-player Game-Playing:
e Superhuman GO, Poker, Gran Turismo
* Human-level Starcraft, Diplomacy

Z ~N(,1)—
boring neural interesting
randomness network randomness

Generative Adversarial Networks (GANSs)
synthetic data generation

e Multi-robot interactions
 Autonomous driving

\° Automated Economic policy design

Authentic Adversarial Adversarial
Input Perturbation Input

Adversarial Training

\ robustifying models against adversarial attacks/




Example: Deep Generative Models

Z~N(0O01I) = Go()

W

Deep Neural Network (DNN)
with well-tuned parameters 6



Example: Deep Generative Models

Y
How to train a Deep Generative Model? Z ~N(0,I)—{ Gg(") —'a ~ Prarget

[Goodfellow et al’14]: Set up a two-player zero-game between a player tuning the parameters 6 of a
Deep Neural Network (called the “generator”) and a player tuning the parameters w of a Deep Neural
Network (called the “discriminator”)

Real or Hailucinated? - Reward discriminator for distinguishing
Discriminator: DNN w/ real from fake images

parameters @ - Reward generator for fooling the
/ v\ discriminator

Hallucinated Images

e yg‘ [Arjovsky-Chintala-Bottou’17]: Wasserstein GAN
ih & axh

(from generator) |
vaeaI Images up(6,w) = IEZNP’”Q“Z [D,(2)] = [EZNN(O’I) D, (G0 (Z))]
(samples from Peypget) ug(0,w) = —up(0,w)
Generator: DNN w/
parameters @ intuition: fixing @, if D,, architecture were rich enough
to capture all 1-Lipschitz functions, then:
Simple T max up (0, w) = Wl(ptarget» Pfake( ))
Randomness Z1, 22y Zn ~ N(O, 1) so min max up (6, w) = min Wl(ptarget: Pfake( ))




A Dawn of Multi-Agent Applications

Multi-player Game-Playing:
e Superhuman GO, Poker, Gran Turismo
* Human-level Starcraft, Diplomacy

\(
Z~N@OIDN— —'a"'Ptarget
boring neural interesting
randomness network randomness

Generative Adversarial Networks (GANSs)
synthetic data generation

AN

4

* Multi-robot interactions
* Autonomous driving

! Automated Economic policy design

Authentic Adversarial Adversarial
Input Perturbation Input

Adversarial Training

\ robustifving models against adversarial attacks/

Important notes and
caveats...




(1) Strategic Behavior does not
emerge from standard training




& (1) Strategic Behavior does not
emerge from standard training
ChatGPT (cont’d)

| am the x player in a game of tic-tac-toe, the other player is o, | am supposed to play next,
and the current board configuration looks as follows. Where should | put x?

x| X
olo|
| |

Based on the current board configuration, you should put an "x" in the middle-right cell to

block your opponent from winning the game.
The updated board would look like this:

x| I
olo|x
| |



(11) Naively trained models can be manipulated

o . N

pig “airliner”

\ gy ! “revolver” “mousetrap” “vulture” “orangutan”

[Athalye, Engstrom, llyas, Kwok ICML 18] [Engstrom et al. 2019]



(111) Training without regard to the presence of
other agents can lead to undesirable consequences

Example: Al for dynamic _

1.9

1.8

A& —

Setting: Duopoly w/ two learned price

symmetric firms ~
Independent Learning: 2 —
firms cannot . B
communicate otherthan ~— | Comp.etltlve

setting prices, observing
their profit and adjusting
their price using some

: Calvano, Calzolari, Denicolo, Pastorello: “Artificial Intelligence, Algorithmic
standard Al algorithm | 5 g

Pricing, and Collusion,” American Economic Review, 2020]



(111) Training without regard to the presence of
other agents can lead to undesirable consequences

Example: Al for dynamic
pricing

Setting: Duopoly w/ two
symmetric firms

Independent Learning:
firms cannot
communicate other than
setting prices, observing
their profit and adjusting
their price using some
standard Al algorithm

16 17 18 1.9

1.5

S m—t—b— b4

\ S
\ s
\ A/
\ / —e— Deviating Agent
. 2 —4A= Non Deviating Agent
. ‘/ ------ Nash Price
e~ Monopoly Price
a yd —— Long run price
| I I I I
0o 1 5 10 15

Time

How
deviations are
punished by
the learned
price policies

[Calvano, Calzolari, Denicolo, Pastorello: “Artificial Intelligence, Algorithmic
Pricing, and Collusion,” American Economic Review, 2020]



(IV) The optimization workhorse of Deep
Learning struggles in multi-agent settings



(IV) The optimization workhorse of Deep
Learning

- STANDARD DEEP LEARNING OPTIMIZATION PROBLEM
ming £(6)

@: high-dimensional
£: nonconvex
essentially only accessible through £(8) and V£(0) queries

9t+1 — Ht —n: V{(Ht) | < ; |

Gradient Descent

Theoretical Guarantee: Even if £ nonconvex, Gradient
Descent efficiently computes local minima

[e.g. Geetal 15, Leeetal’17]
Empirical Finding: Local minima are good enough



(IV) The optimization workhorse of Deep
Learning

Prominent Paradigm:
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(IV) The optimization workhorse of Deep Learning (a.k.a.
Gradient Descent) struggles in multi-agent settings

Multi-player Game-Playing: * Multi-robot interactions
* Superhuman GO, Poker, Gran Turismo * Autonomous driving

* Human-level Starcraft, Diplomacy \° Automated Economic policy design /

v / “Stop Sign’ r) \
;3 ~ P target +

“Yield Sign

boring neural interesting Authentic Adversarial
randomness network randomness Input Perturbation Input
Generative Adversarial Networks (GANSs) Adversarial Training

\ synthetic data generation / K robustifving models against adversarial attacksJ

Ny
AN

Z~NOD— (§§

Practical Experience: While GD converges in single-agent learning settings, GD vs GD (vs GD...) is cyclic
or chaotic in multi-agent settings, and it’s an engineering challenge to make it identify a good solution



(IV) The optimization workhorse of Deep
Learning struggles in multi-agent settings

GAN Training:

- 0: parameters of generator DNN

- w: parameters of discriminator DNN

- u(0, w): how well discriminator distinguishes
real vs fake samples

Natural Algorithm: Simultaneous Gradient Descent/Ascent

Orr1 =0 — 1 - Vou(b, wy)
Wer1 = wp + 1 V,u(fy, wp)

GAN training on MNIST Data:

Target
dist’n:
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GAN training on Gaussian Mixture Data:
Target
dist’n:

Step 0
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Step 25k

pictures from [Metz et al ICLR’17]




(V) Finally Game Theory Breaks

Real or Hallucinated?

f " Real Images (from
& 43l target distribution)

Hallucinated Images (¥ \ - |
(from generator) é LA

Generator: DNN w/
parameters 6

I

Zl!ZZJ ...,ZN ~ N(O,I)

Simple
Randomness



(V) Finally Game Theory Breaks

ﬁetting:

<

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X,, € R4
goal: max u, (x4, ...,x,) goal: max u,(xq, ..., x,) goal: max u, (x4, ..., X,,)
(a.k.a. min € (x4, ..., x,)) (a.k.a. min¥5 (x4, ..., X)) (a.k.a. min €, (x4, ..., X))

[often: wu; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

4

Emerging applications in Machine Learning involve multiple agents who:
> choose high-dimensional strategies x; € X; € R% (e.g. parameters in a DNN)

» maximize utility functions u; (x; ; x_;) that are nonconcave in their own strategy

Issue: Game Theory is fragile when utilities are nonconcave
» in particular, Nash equilibrium (and other types of equilibrium) may not exist
» so what is even our recommendation about reasonable optimization targets?



(V) Finally Game Theory Breaks

N

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X, € R¢n
goal: max uy(xyq, ..., x,) goal: max u,(xq, ..., x,) goal: max u,, (xq, ..., x,,)
\ [often: w; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.] /

[Debreu’52, Rosen’65]: If each u; (x;; x_;) is continuous and concave in x; for all x_; and each
X; is convex and compact, a Nash equilibrium exists.




(V) Finally Game Theory Breaks

N

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X, € R¢n
goal: max uy(xyq, ..., x,) goal: max u,(xq, ..., x,) goal: max u,, (xq, ..., x,,)
\ [often: w; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.] /

[Debreu’52, Rosen’65]: If each u; (x;; x_;) is continuous and concave in x; for all x_; and each
X; is convex and compact, a Nash equilibrium exists.
e.g. Nash equilibrium in finite action games: each X; = A(A4;) and u; multilinear [Nash’50]




(V) Finally Game Theory Breaks

N

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X, € R¢n
goal: max uy(xyq, ..., x,) goal: max u,(xq, ..., x,) goal: max u,, (xq, ..., x,,)
\ [often: w; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.] /

If some u;(x;; x_;) is not concave in x; for all x_;, a Nash equilibrium does not necessarily exist
e.g. two-player zero-sum game: u; (x, x5,) = —u,(x1,x,) = (x; — x)% where x{,x, € [—1,1]




(V) Finally Game Theory Breaks

N

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X, € R¢n
goal: max uy(xyq, ..., x,) goal: max u,(xq, ..., x,) goal: max u,, (xq, ..., x,,)
\ [often: w; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.] /

If some u;(x;; x_;) is not concave in x; for all x_;, a Nash equilibrium does not necessarily exist
e.g. Generative adversarial networks




(V) Finally Game Theory Breaks

A
\ i,
L
B

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X,, C R4n
goal: max uy(xyq, ..., x,) goal: max u,(xq, ..., x,) goal: max u,, (xq, ..., x,,)
\ [often: w; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.] /

If some u;(x;; x_;) is not concave in x; for all x_;, Nash equilibrium does not necessarily exist
[Glicksberg’52]: A Mixed Nash equilibrium does exist if the X;’s are compact and the u;’s are
continuous, but support could be uncountably infinite.




(V) Finally Game Theory Breaks

N

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X, € R¢n
goal: max uy(xyq, ..., x,) goal: max u,(xq, ..., x,) goal: max u,, (xq, ..., x,,)
\ [often: w; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.] /

If some u;(x;; x_;) is not concave in x; for all x_;, Nash equilibrium does not necessarily exist
If the X;’s are non-compact, even mixed Nash/correlated eq does not necessarily exist
e.g. “Guess-the-larger-number” game




Summary so far...

Caveats:
* (1) Strategic Behavior does not emerge from standard training
* (I1) Naively trained models can be manipulated

* (I1l) Training without regard to the presence of other agents can
lead to undesirable (e.g., collusive) consequences

* (IV) The optimization workhorse of Deep Learning (a.k.a. gradient
descent) struggles in multi-agent settings

* (V) Finally, Game Theory (namely the existence of Nash equilibrium
and other types of equilibrium) breaks



Motivating Questions

Caveats:

* (1) Strategic Behavior does not emerge from standard training
Multi-player Game-Playing: * Multi-robot interactions H 1 1
* Superhuman GO, Poker, Gran Turismo * Autonomous driving * (”) Nalvely tralned mOdels can be manIpUIated

* Human-level Starcraft, Diplomacy Automated Economic policy design

* (1l1) Training without regard to the presence of other agents can
lead to undesirable (e.g., collusive) consequences

Yo
A
Y&
A

z-won— ¥EN n . - o * (IV) The optimization workhorse of Deep Learning (a.k.a. gradient
DT RER TR T e Q4 4/ descent) struggles in multi-agent settings
boring neural interesting Authentic Adversar!al Adversarial . . . .
rentomess gettoric R idomness * (V) Finally, Game Theory (namely the existence of Nash equilibrium
Generative Adversarial Networks (GANs) Adversarial Training and Other types Of eqUIIIbrlum) brea kS

\ synthetic data generation / \ robustifving models against adversarial attacks/

What are meaningful and practically attainable optimization targets in this setting?
GENERALIZATIONS OF LOCAL OPTIMUM?

Why does GD vs GD struggle even in two-player zero-sum cases (e.g. GANs)?

INTRACTABILITY? or WRONG METHOD?

Is there a generic optimization framework for Multi-Agent Deep Learning?

OR DO WE NEED STRUCTURE?




Local Nash Equilibrium

ﬁetting:

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X,, € R4
goal: max u, (x4, ...,x,) goal: max u,(xq, ..., x,) goal: max u, (x4, ..., X,,)

u; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.
K [will allow: global constraints (x{, x5, ..., x,) € § ©X;X;] /

Overarching Q: What are meaningful and practically attainable optimization targets in this setting?

“meaningful:” at the very least universal, verifiable with the info that agents have about their loss functions
“practically attainable:” efficiently reachable via gradient descent-like (or similar light-weight) method

Q: Perhaps some generalization to this setting of local optimum?

A weak optimization target: Local Nash Equilibrium [Ratliff-Burden-Sastry’16, Daskalakis-
Panageas’18, Mazumdar-Ratliff’18, Jin-Netrapali-Jordan’20]
A point x* = (xq, ..., X,) € S such that, for each player i, x; is local max of u;(x;; x*;) w.rt. x;

Weakest variant: First-Order Local Nash Equilibrium

Take “local max” to mean “First-order local max” i.e. max w.r.t. first-order Taylor appx




First-Order Local Nash Equilibrium: agent i’s viewpoint

x; best response to x*; as far
as the first-order Taylor
approximation can tell

x; + Ve u(xf 5 x2;)

OR

X = Hsi(xii)(xf + Vo ui (X ; x2;))

a.k.a. fixed point of GD vs GD (vs GD...)

Si(xZ;)



Local Nash Equilibrium: Existence

ﬁetting:

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X,, € R4
goal: max u, (x4, ...,x,) goal: max u,(xq, ..., x,) goal: max u, (x4, ..., X,,)

[often: global constraints (x4, x5, ..., X,;,) € S €X;X;]
k [often: wu; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.] /

Def: A strategy profile x* = (x3, ..., x;,) € §is a (first-order) local Nash equilibrium iff for all i:
X; = Hsi(xii)(x; + Vo u; (x5 x:))
where §;(x*;) = {x;| (x; ; x~;) € §}, and Hsi(xii)(') is the Euclidean projection onto the set §;(x”;)

Proposition: If § is convex and compact, a (first-order) local Nash equilibrium exists.

so both universal and verifiable with the info that players have about their utilities



Local Nash Equilibrium: Existence

ﬁetting:

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X,, € R4
goal: max u, (x4, ...,x,) goal: max u,(xq, ..., x,) goal: max u, (x4, ..., X,,)

[often: global constraints (x4, x5, ..., X,;,) € S €X;X;]
k [often: wu; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.] /

Def: A strategy profile x* = (x3, ..., x;,) € §is a (first-order) local Nash equilibrium iff for all i:
X; = Hgi(xii)(xf + Vo, u; (x5 x*))
where §;(x*;) = {x;| (x; ; x~;) € §}, and Hsi(xii)(') is the Euclidean projection onto the set §;(x”;)

Proposition: If § is convex and compact, a (first-order) local Nash equilibrium exists.

so both universal and verifiable with the info that players have about their utilities

are they practically attainable?



Local Nash Equilibrium: Complexity

/Setting:

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X,, € R4
goal: max u, (x4, ...,x,) goal: max u,(xq, ..., x,) goal: max u, (x4, ..., X,,)

[often: global constraints (x4, x5, ..., X,;,) € S €X;X;]
\ [often: wu; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.] /

Def: A strategy profile x* = (x3, ..., x,) € S is a (first-order) local Nash equilibrium iff for all i:
X; = Hgi(xii)(xf + Vo, (x5 x*))
where §;(x*;) = {x;| (x; ; x~;) € §}, and Hsi(xii)(') is the Euclidean projection onto the set §;(x”;)

Proposition: If § is convex and compact, a (first-order) local Nash equilibrium exists.

Theorem [w/ Skoulakis & Zampetakis STOC’21]: Even in two-player zero-sum smooth non-concave
games, any method accessing the u;’s via value and gradient value queries needs exponentially
many queries (in the dimension and/or 1/¢) to compute even an g-approximate local Nash

X; — Hs(xii)(x; + Ve u; (g ; xii))H <c¢.

equilibrium, i.e. some x™ such that for all i: ‘




Local Nash Equilibrium: Complexity

ﬁetting:

action: x; € X; € R%  action: x, € X, € R%2 action: x,, € X,, € R4
goal: max u, (x4, ...,x,) goal: max u,(xq, ..., x,) goal: max u, (x4, ..., X,,)

[often: global constraints (x4, x5, ..., X,;,) € S €X;X;]
k [often: wu; is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.] /

Def: A strategy profile x* = (x3, ..., x,) € S is a (first-order) local Nash equilibrium iff for all i:
X; = Hsi(xii)(x; + Vo, (x5 x*))
where §;(x*;) = {x;| (x; ; x~;) € §}, and Hsi(xii)(') is the Euclidean projection onto the set §;(x”;)

Proposition: If § is convex and compact, a (first-order) local Nash equilibrium exists.

Theorem [w/ Skoulakis & Zampetakis STOC’21]: Even in two-player zero-sum smooth non-concave
games, any method at all needs super-polynomial-time (in the dimension and/or 1/¢) to compute
even an g-approximate local Nash equilibrium, unless PPAD=P.




The Complexity of Local Nash Equilibrium

~______—— Traveling Salesman Problem

e

NP-complete

Computing approximate Brouwer Fixed
Points of Lipschitz functions, and mixed Nash
equilibria in genereal-sum normal-form
games are both PPAD-complete problems,
i.e. in PPAD and no easier than any problem
in PPAD [Papadimitriou’94, Daskalakis-
Goldberg-Papadimitriou’06, Chen-Deng’06]

Linear
Programming

[Daskalakis-Skoulakis-Zampetakis STOC’21]: Computing local Nash equilibria (even in two-player
zero-sum and smooth) non-concave games is exactly as hard as (i) computing approximate Brouwer

fixed points of Lipschitz functions; (ii) computing mixed Nash equilibria in general-sum normal-form
games; and (iii) at least as hard as any other problem in PPAD.



Why are even two players too many?

Compare properties of objective-improving moves in single-player optimization problems (where
finding approximate local optima is known to be tractable) and better-response dynamics in two-player
zero-sum games (where we show that finding approximate local Nash equilibria is intractable)

21. .
single-agent

non-convex

minimization/

non-concave
.3 Mmaximization

min ° . o
9 8 7
<«——> Mmin

objective value decreases along objective-
improving path, thus: (i) moving along path makes
progress towards (local) optimum

(ii) quantitative version: for bounded objectives (e.g.

continuous objective over compact space), function

value along e-improving path bounds distance from
the end of the path (memory/information gain)

3 2 1
— 2
two-player . %o .l
Zero-sum non- 1 2.‘ |.2
concave game I N
: D 1 2 3
(showing player
2 2
1’'s value) oo, ol e
|.2 2 .2
max . . . 3
I 3 2 1

<« Mmin

better-response paths may be cyclic :S

objective value along non-cyclic e-better-response path does
not reveal information about distance to end of the path!

to turn this intuition into an intractability proof, need to hide

exponentially long better-response path within ambient space

s.t. no matter where the function is queried little information
is revealed about location of local Nash equilibria >



The Topological Nature of Local Nash Equilibrium
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no
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N.B. (red, ) and ( , )
are the only interesting color pairs
(all other color pairs meet
somewhere on the boundary)

(variant of) Sperner’s Lemma: No matter how the internal vertices are colored, there must
and

exist a square containing both red and or both



The Topological Nature of Local Nash Equilibrium
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(variant of) Sperner’s Lemma: No matter how the internal vertices are colored, there must
exist a square containing both red and or both and



The Topological Nature of Local Nash Equilibrium

Y Theorem: Given query access to

\ function C(-) computing colors, need

exhaustive search to find well-colored
squares

Theorem: Given white-box access to

function C(+) computing colors, it is
PPAD-hard to find well-colored
squares

o000 0
.

XX R X

eo00000e0

e0o000000

(variant of) Sperner’s Lemma: No matter how the internal vertices are colored, there must
exist a square containing both red and or both and



From Sperner to Local Nash Equilibrium (impressionistic)

->
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C (-): function computing f (+): Lipschitz w/ Lipschitz gradient

colors of grid points f(x,y): computable w/ local queries to
C(-) around preimage of (x,y)




From Sperner to Local Nash Equilibrium (impressionistic)

%.c. this is intracable %ﬂtractable
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o00000000
C(-): function computing f (+): Lipschitz w/ Lipschitz gradient
colors of grid points f(x,y): computable w/ local queries to

C(-) around preimage of (x,y)



The Complexity of Local Nash Equilibrium

~______—— Traveling Salesman Problem

e

NP-complete

Computing approximate Brouwer Fixed
Points of Lipschitz functions, and mixed Nash
equilibria in genereal-sum normal-form
games are both PPAD-complete problems,
i.e. in PPAD and no easier than any problem
in PPAD [Papadimitriou’94, Daskalakis-
Goldberg-Papadimitriou’06, Chen-Deng’06]

Linear
Programming

[Daskalakis-Skoulakis-Zampetakis STOC’21]: Computing local Nash equilibria (even in two-player
zero-sum and smooth) non-concave games is exactly as hard as (i) computing approximate Brouwer

fixed points of Lipschitz functions; (ii) computing mixed Nash equilibria in general-sum normal-form
games; and (iii) at least as hard as any other problem in PPAD.



Philosophical Corollary (my opinion, debatable)

Not clear how to extend single-agent deep learning paradigm to multiple agents:
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Way Forward: Practical Local Nash Equilibrium

* Practical Local Nash Equilibrium Computation?
* local Nash is intractable in general

e ...but can exploit connection to Brouwer fixed points to obtain 2"%-order dynamics with
guaranteed (albeit necessarily not poly-time) convergence | -Golowich-Skoulakis-
Zampetakis COLT’23]

e turnitinto a 15*-order method by cutting corners

* identify structural properties of games under which it is efficient (beyond worst-case
analysis of games)

local Nash is at (0,0) /\

(@) f1(6,w). (@) f1(6,w).
gradient descent our algorithm: Stay On the Ridge (or STON’R)



Way Forward: Consider Randomized Equilibria

* Local Correlated/Coarse Correlated equilibria?
 what’s a reasonable way to define it in general non-concave games?
e ...50 that it is also guaranteed to exist and is tractable?
* proposal: ||Ey«., [inui (xf5x2 )|l < € (formally: project to the constraint set)
* when p has support 1 this is a local Nash eq, so this exists but is intractable
* is there some polynomial support, so that it is tractable?

* [Cai-Daskalakis-Luo-Wei-Zhang’23]: If § is convex and compact and the u;’s are Lipschitz
and and smooth, a poly-size supported (in the dimension, in 1/¢, in the Lipschitzness and
the smoothness of the utilities) local CCE exists can be computed efficiently (using Gradient

Descent) ©
/901070010010100101¢1
iR : 10100100010 10701010
Rt < 0i0T0701007010100
SRR K+ X e xe—Vl(x) + ' 016 1uTat08 b0 06
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semi-agnostic



Way Forward: Consider Randomized Equilibria (cont.)

* Global Correlated/coarse correlated equilibria?

e exist under compactness, albeit may have uncountably infinite support
* without compactness, they may not exist, e.g. in guess-the-highest-number game
 Under what conditions:

* do finitely supported global CE or CCE exist?
* simple procedures converge to them?

e [Rakhlin-Sridharan-Tewari’15, Hanneke-Livni-Moran’21, -Golowich’22]:

* The minimax theorem holds (in two-player zero-sum non-concave games) and a coarse

correlated equilibrium exists (in multi-player non-concave games) if there is no (scaled)
copy of guess-the-highest-number.

* Formally: the Littlestone/seq Rademacher complexity of the games is finite.
* [Assos-Attias-Dagan-
algorithm

* is guaranteed to converge
* has efficient per iteration computational complexity

-Fishelson’23]: A variant of the Double Oracle



Thank you!

Multi-player Game-Playing:
e Superhuman GO, Poker, Gran Turismo
* Human-level Starcraft, Diplomacy

Z~NOD— &
boring interesting
randomness randomness

Generative Adversarial Networks (GANSs)
synthetic data generation

e Multi-robot interactions
e Autonomous driving

\° Automated Economic policy design

Authentic Adversarial Adversarial
Input Perturbation Input

Adversarial Training

\ robustifving models against adversarial attackSJ




