How to train deep neural nets to be strategic

Constantinos (a.k.a. "Costis") Daskalakis

EECS & CSAIL, MIT & Archimedes AI

Recent Al Breakthroughs

molecules

images

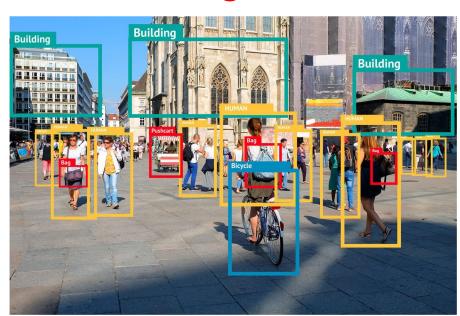
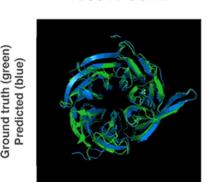


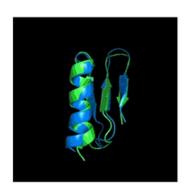
image recognition, reconstruction, generation, super-resolution,...

T0954 / 6CVZ



T0965 / 6D2V

T0955 / 5W9F



protein folding, molecule design,...

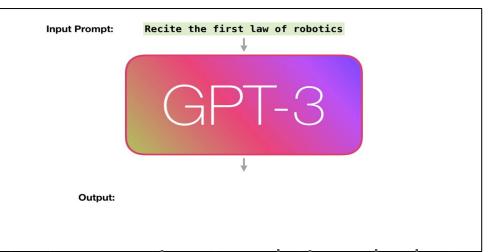
games

super-human play

time-series data

speech recognition, forecasting

natural language



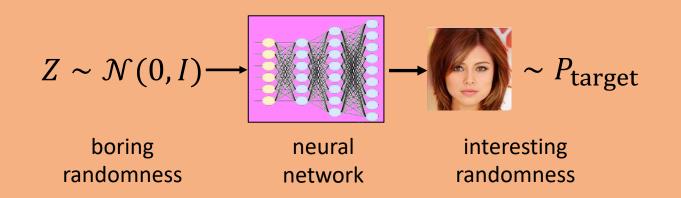
text generation, translation, chatbots, text embeddings,...

A Dawn of Multi-Agent Applications

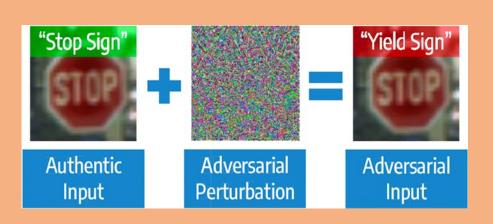
Multi-player Game-Playing:

- Superhuman GO, Poker, Gran Turismo
- Human-level Starcraft, Diplomacy

- Multi-robot interactions
- Autonomous driving
- Automated Economic policy design

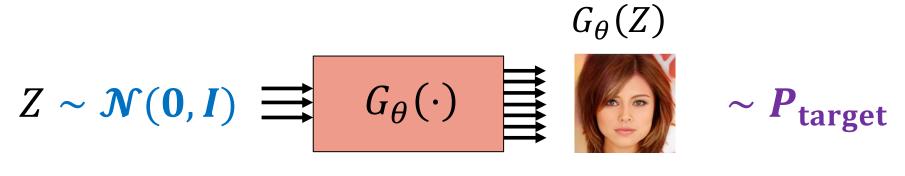


Generative Adversarial Networks (GANs) synthetic data generation



Adversarial Training robustifying models against adversarial attacks

Example: Deep Generative Models



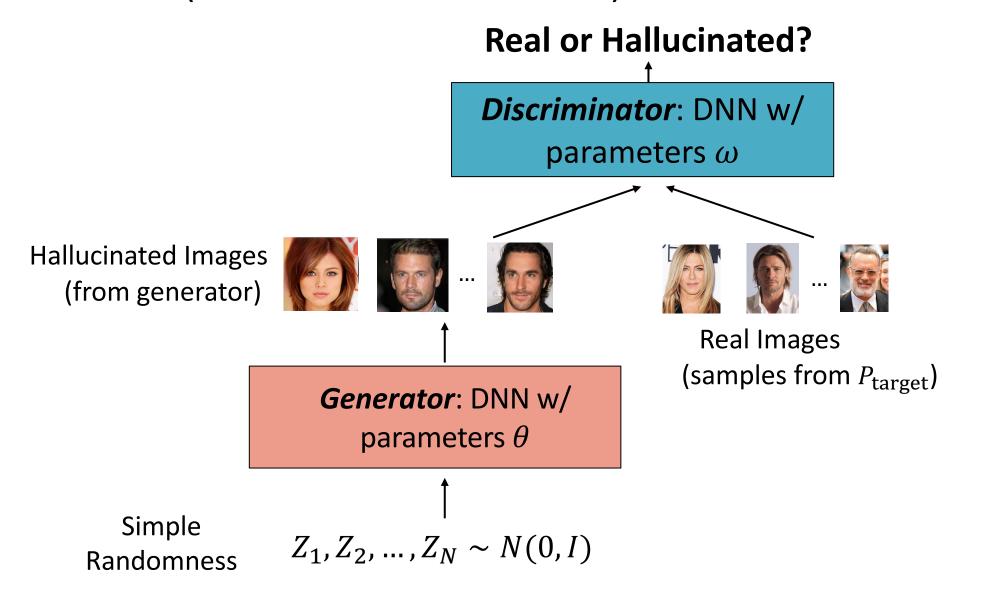
Deep Neural Network (DNN) with well-tuned parameters θ

Example: Deep Generative Models

How to train a Deep Generative Model?

$$Z \sim \mathcal{N}(0, I) \longrightarrow G_{\theta}(\cdot) \longrightarrow \mathbb{Z} \sim P_{\text{targe}}$$

[Goodfellow et al'14]: Set up a **two-player zero-game** between a player tuning the parameters θ of a Deep Neural Network (called the "generator") and a player tuning the parameters ω of a Deep Neural Network (called the "discriminator")



- Reward discriminator for *distinguishing* real from fake images
- Reward generator for *fooling* the discriminator

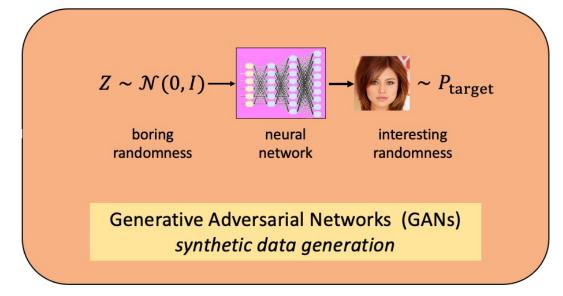
[Arjovsky-Chintala-Bottou'17]: Wasserstein GAN

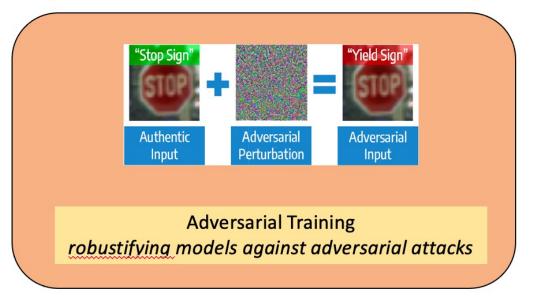
$$u_D(\theta, \mathbf{w}) = \mathbb{E}_{Z \sim P_{real}}[D_{\mathbf{w}}(Z)] - \mathbb{E}_{Z \sim N(0,I)}[D_{\mathbf{w}}(G_{\theta}(Z))]$$
$$u_G(\theta, \mathbf{w}) = -u_D(\theta, \mathbf{w})$$

intuition: fixing θ , if D_w architecture were rich enough to capture all 1-Lipschitz functions, then:

$$\max_{\boldsymbol{w}} u_D(\boldsymbol{\theta}, \boldsymbol{w}) = W_1(p_{\text{target}}, p_{\text{fake}(\boldsymbol{\theta})})$$
so $\min_{\boldsymbol{\theta}} \max_{\boldsymbol{w}} u_D(\boldsymbol{\theta}, \boldsymbol{w}) = \min_{\boldsymbol{\theta}} W_1(p_{\text{target}}, p_{\text{fake}(\boldsymbol{\theta})})$

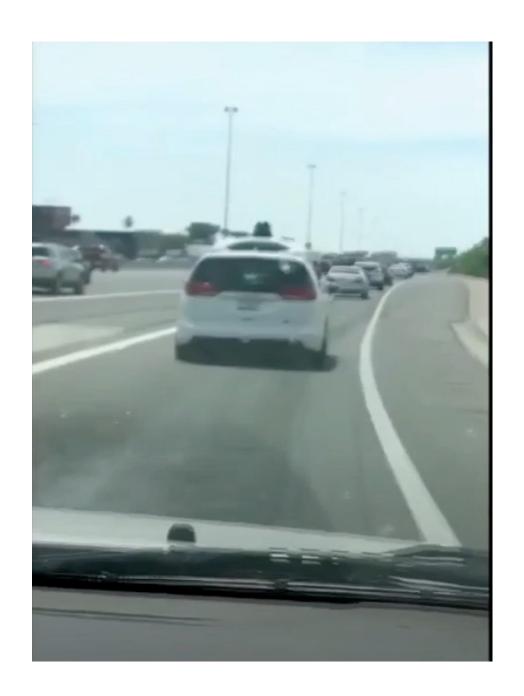
A Dawn of Multi-Agent Applications



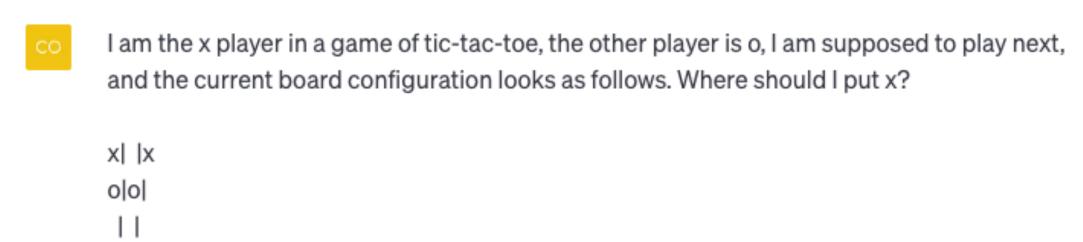


Important notes and caveats...

(I) Strategic Behavior does not emerge from standard training



(I) Strategic Behavior does not emerge from standard training (cont'd)



Based on the current board configuration, you should put an "x" in the middle-right cell to block your opponent from winning the game.

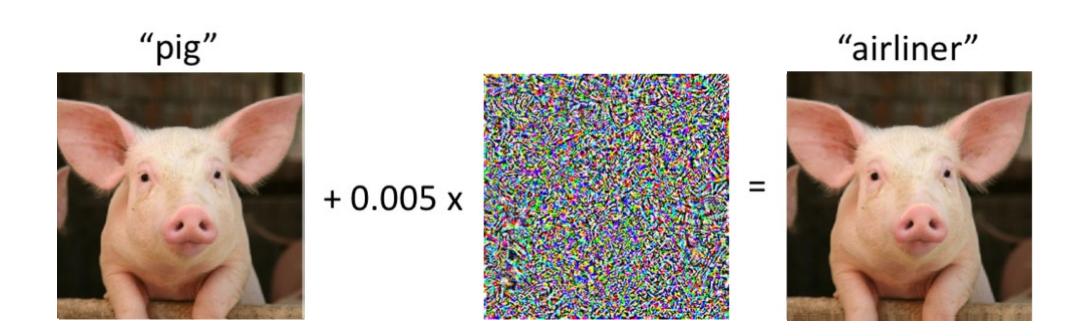
自由导

The updated board would look like this:

x||x

ololx

(II) Naively trained models can be manipulated



[Athalye, Engstrom, Ilyas, Kwok ICML'18]

"revolver"

"mousetrap"

"vulture"

"orangutan"

[Engstrom et al. 2019]

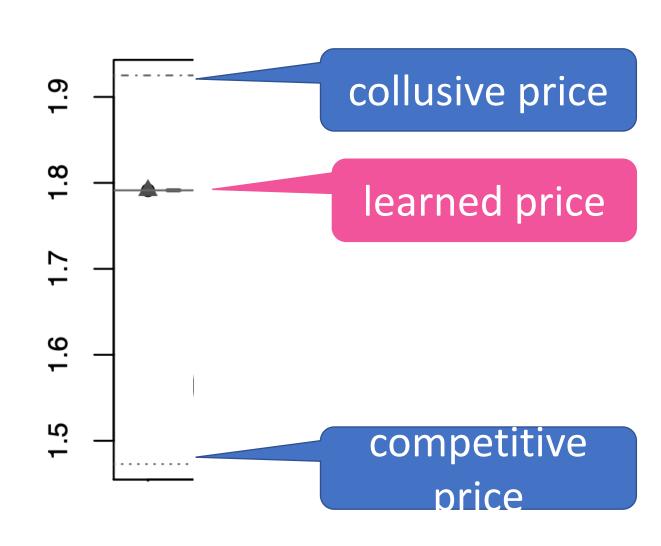
(III) Training without regard to the presence of other agents can lead to undesirable consequences

Example: Al for dynamic pricing

Setting: Duopoly w/ two symmetric firms

Independent Learning:

firms cannot communicate other than setting prices, observing their profit and adjusting their price using some standard AI algorithm



[Calvano, Calzolari, Denicolo, Pastorello: "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, 2020]

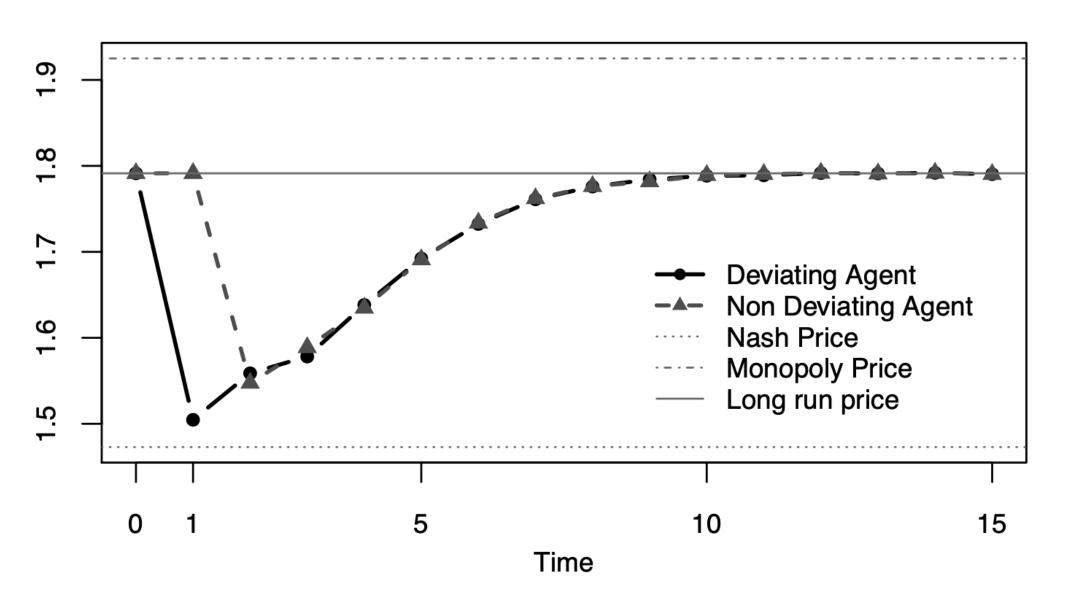
(III) Training without regard to the presence of other agents can lead to undesirable consequences

Example: Al for dynamic pricing

Setting: Duopoly w/ two symmetric firms

Independent Learning:

firms cannot communicate other than setting prices, observing their profit and adjusting their price using some standard AI algorithm



How deviations are punished by the learned price policies

[Calvano, Calzolari, Denicolo, Pastorello: "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, 2020]

$\min_{\theta} \ell(\theta)$

STANDARD DEEP LEARNING OPTIMIZATION PROBLEM

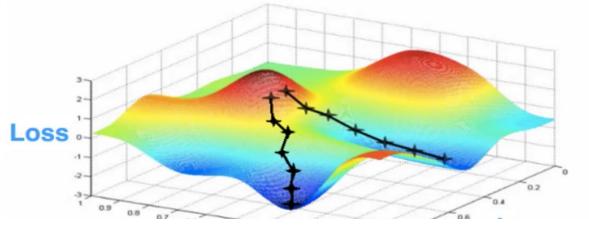
 θ : high-dimensional

ℓ: nonconvex

essentially only accessible through $\ell(\theta)$ and $\nabla \ell(\theta)$ queries

$$\theta_{t+1} = \theta_t - \eta \cdot \nabla \ell(\theta_t)$$

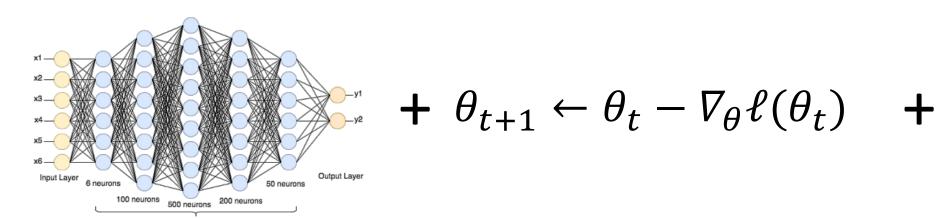
Gradient Descent



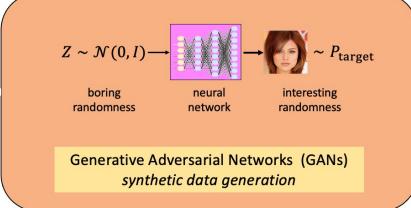
Theoretical Guarantee: Even if ℓ nonconvex, Gradient Descent efficiently computes *local minima* [e.g. Ge et al '15, Lee et al'17]

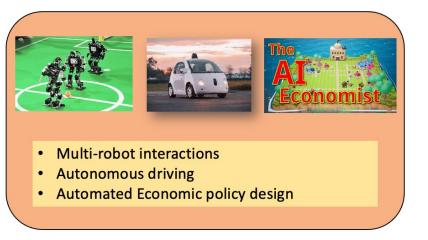
Empirical Finding: Local minima are good enough

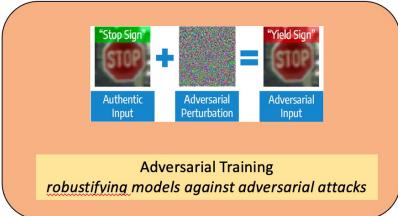
Prominent Paradigm:

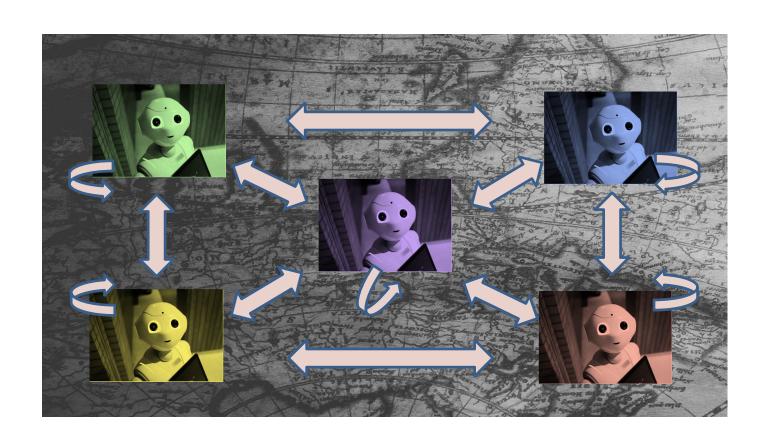


(IV) The optimization workhorse of Deep Learning (a.k.a. Gradient Descent) struggles in multi-agent settings









Practical Experience: While GD converges in single-agent learning settings, GD vs GD (vs GD...) is cyclic or chaotic in multi-agent settings, and it's an engineering challenge to make it identify a good solution

GAN Training:

- θ : parameters of generator DNN
- ω : parameters of discriminator DNN
- $u(\theta, \omega)$: how well discriminator distinguishes real vs fake samples

GAN training on MNIST Data:

Target dist'n:

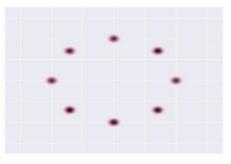
Natural Algorithm: Simultaneous Gradient Descent/Ascent

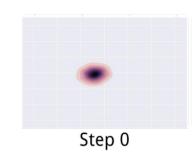
$$\theta_{t+1} = \theta_t - \eta \cdot \nabla_{\theta} u(\theta_t, \omega_t)$$

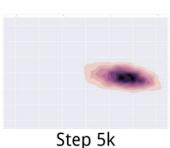
$$\omega_{t+1} = \omega_t + \eta \cdot \nabla_{\omega} u(\theta_t, \omega_t)$$

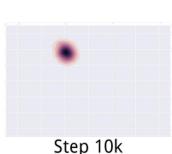
GAN training on Gaussian Mixture Data:

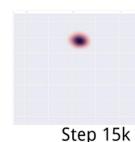
Target dist'n:

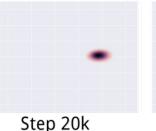


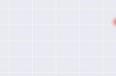






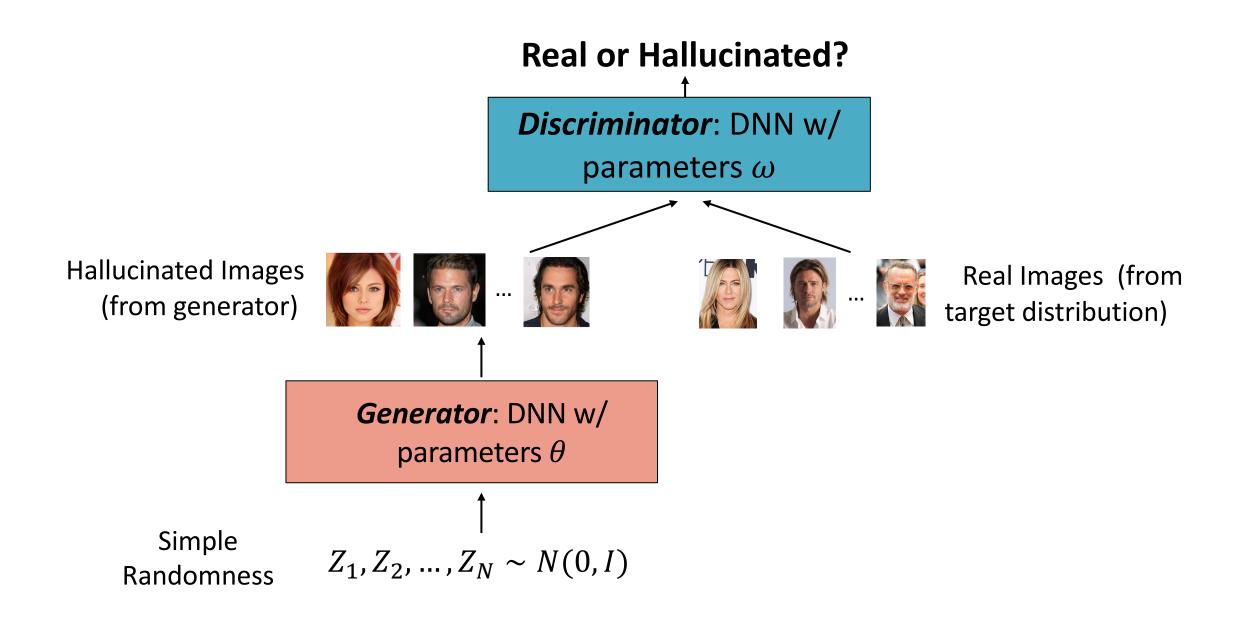




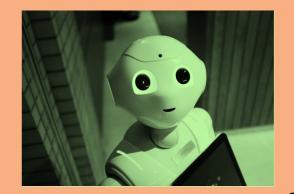


Step 25k

pictures from [Metz et al ICLR'17]

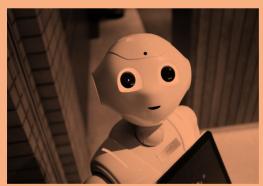


Setting:



action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$

goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$ goal: max $u_n(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$ (a.k.a. $\min \ell_1(x_1, ..., x_n)$) (a.k.a. $\min \ell_2(x_1, ..., x_n)$) (a.k.a. $\min \ell_n(x_1, ..., x_n)$)

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

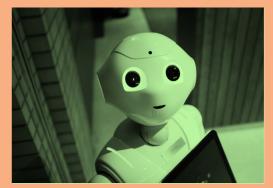
Emerging applications in *Machine Learning* involve multiple agents who:

- \succ choose high-dimensional strategies $x_i \in \mathcal{X}_i \subset \mathbb{R}^{d_i}$ (e.g. parameters in a DNN)
- \triangleright maximize utility functions $u_i(x_i; x_{-i})$ that are **nonconcave** in their own strategy (a.k.a. minimize loss functions that are nonconvex in their own strategy)

Issue: Game Theory is fragile when utilities are nonconcave

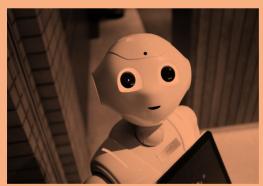
- > in particular, Nash equilibrium (and other types of equilibrium) may not exist
- > so what is even our recommendation about reasonable optimization targets?

Setting:



action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$

goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$

goal: max $u_n(x_1, ..., x_n)$

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

Nash Eq: A collection of x_1^* , ... x_n^* s.t. for all i, x_i : $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Mixed Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i :

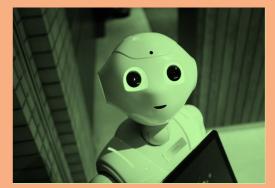
$$E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i; x_{-i}^*)]$$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i :

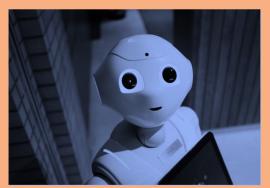
$$E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$$

[Debreu'52, Rosen'65]: If each $u_i(x_i; x_{-i})$ is continuous and concave in x_i for all x_{-i} and each \mathcal{X}_i is convex and compact, a Nash equilibrium exists.

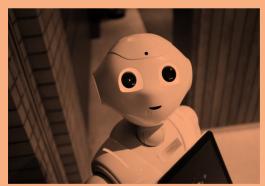
Setting:



goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$



action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$

goal: max $u_n(x_1, ..., x_n)$

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

Nash Eq: A collection of x_1^* , ... x_n^* s.t. for all i, x_i : $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Mixed Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i :

$$E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i; x_{-i}^*)]$$

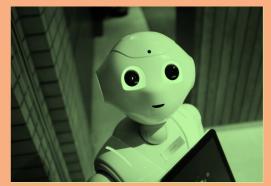
Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i :

$$E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$$

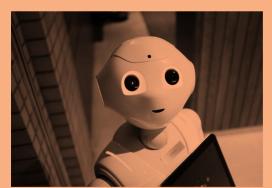
[Debreu'52, Rosen'65]: If each $u_i(x_i; x_{-i})$ is continuous and concave in x_i for all x_{-i} and each \mathcal{X}_i is convex and compact, a Nash equilibrium exists.

e.g. Nash equilibrium in finite action games: each $\mathcal{X}_i = \Delta(A_i)$ and u_i multilinear [Nash'50]

Setting:



action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$ goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$ goal: max $u_n(x_1, ..., x_n)$

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

Nash Eq: A collection of x_1^* , ... x_n^* s.t. for all i, x_i : $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Mixed Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i :

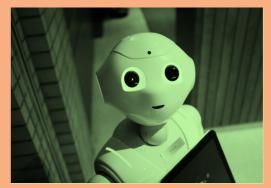
$$E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i; x_{-i}^*)]$$

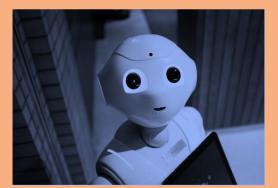
Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i :

$$E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$$

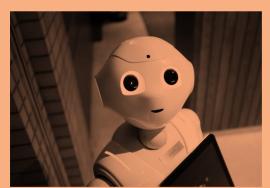
If some $u_i(x_i; x_{-i})$ is not concave in x_i for all x_{-i} , a Nash equilibrium does not necessarily exist e.g. two-player zero-sum game: $u_1(x_1, x_2) = -u_2(x_1, x_2) = (x_1 - x_2)^2$ where $x_1, x_2 \in [-1, 1]$

Setting:





action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$ goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$ goal: max $u_n(x_1, ..., x_n)$

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

Nash Eq: A collection of x_1^* , ... x_n^* s.t. for all i, x_i : $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Mixed Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i :

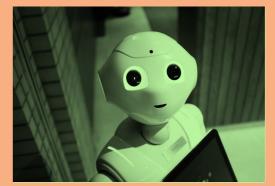
$$E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i; x_{-i}^*)]$$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i :

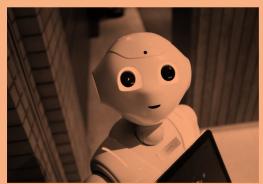
$$E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$$

If some $u_i(x_i; x_{-i})$ is not concave in x_i for all x_{-i} , a Nash equilibrium does not necessarily exist e.g. Generative adversarial networks

Setting:



action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$ goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$

goal: max $u_n(x_1, ..., x_n)$

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

Nash Eq: A collection of x_1^* , ... x_n^* s.t. for all i, x_i : $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Mixed Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i :

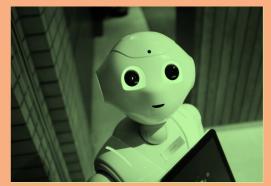
$$E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i; x_{-i}^*)]$$

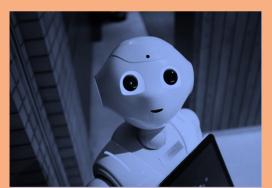
Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i :

$$E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$$

If some $u_i(x_i; x_{-i})$ is not concave in x_i for all x_{-i} , Nash equilibrium does not necessarily exist [Glicksberg'52]: A Mixed Nash equilibrium does exist if the X_i 's are compact and the u_i 's are continuous, but support could be uncountably infinite.

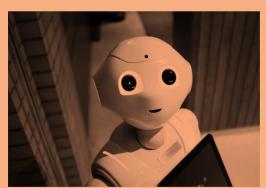
Setting:





action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$

goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$

goal: max $u_n(x_1, ..., x_n)$

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

Nash Eq: A collection of x_1^* , ... x_n^* s.t. for all i, x_i : $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$

Mixed Nash Eq: A collection of distributions $p_1, ..., p_n$ s.t. for all i, x_i :

$$E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p_1 \times \dots \times p_n}[u_i(x_i; x_{-i}^*)]$$

Coarse Correlated Eq: A joint distribution of p s.t. for all i, x_i :

$$E_{x^* \sim p}[u_i(x_i^*; x_{-i}^*)] \ge E_{x^* \sim p}[u_i(x_i; x_{-i}^*)]$$

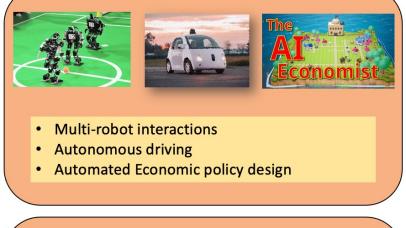
If some $u_i(x_i; x_{-i})$ is not concave in x_i for all x_{-i} , Nash equilibrium does not necessarily exist If the \mathcal{X}_i 's are non-compact, even mixed Nash/correlated eq does not necessarily exist e.g. "Guess-the-larger-number" game

Summary so far...

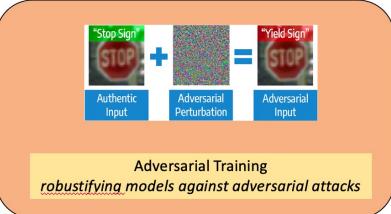
Caveats:

- (I) Strategic Behavior does not emerge from standard training
- (II) Naively trained models can be manipulated
- (III) Training without regard to the presence of other agents can lead to undesirable (e.g., collusive) consequences
- (IV) The optimization workhorse of Deep Learning (a.k.a. gradient descent) struggles in multi-agent settings
- (V) Finally, Game Theory (namely the existence of Nash equilibrium and other types of equilibrium) breaks

Motivating Questions







Caveats:

- (I) Strategic Behavior does not emerge from standard training
- (II) Naively trained models can be manipulated
- (III) Training without regard to the presence of other agents can lead to undesirable (e.g., collusive) consequences
- (IV) The optimization workhorse of Deep Learning (a.k.a. gradient descent) struggles in multi-agent settings
- (V) Finally, Game Theory (namely the existence of Nash equilibrium and other types of equilibrium) breaks

What are meaningful and practically attainable optimization targets in this setting?

GENERALIZATIONS OF LOCAL OPTIMUM?

Why does GD vs GD struggle even in two-player zero-sum cases (e.g. GANs)?

INTRACTABILITY? or WRONG METHOD?

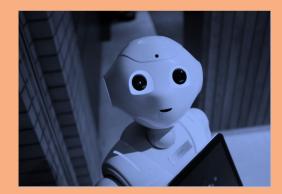
Is there a generic optimization framework for Multi-Agent Deep Learning?

OR DO WE NEED STRUCTURE?

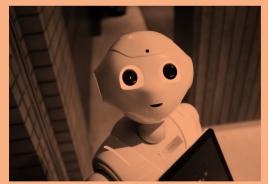
Local Nash Equilibrium

Setting:

action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$



goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$ goal: max $u_n(x_1, ..., x_n)$

 u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.

[will allow: global constraints $(x_1, x_2, ..., x_n) \in \mathcal{S} \subseteq \times_i \mathcal{X}_i$]

Overarching Q: What are meaningful and practically attainable optimization targets in this setting?

"meaningful:" at the very least universal, verifiable with the info that agents have about their loss functions "practically attainable:" efficiently reachable via gradient descent-like (or similar light-weight) method

Q: Perhaps some generalization to this setting of local optimum?

A weak optimization target: Local Nash Equilibrium [Ratliff-Burden-Sastry'16, Daskalakis-

Panageas'18, Mazumdar-Ratliff'18, Jin-Netrapali-Jordan'20]

A point $x^* = (x_1^*, ..., x_n^*) \in \mathcal{S}$ such that, for each player i, x_i^* is local max of $u_i(x_i; x_{-i}^*)$ w.r.t. x_i

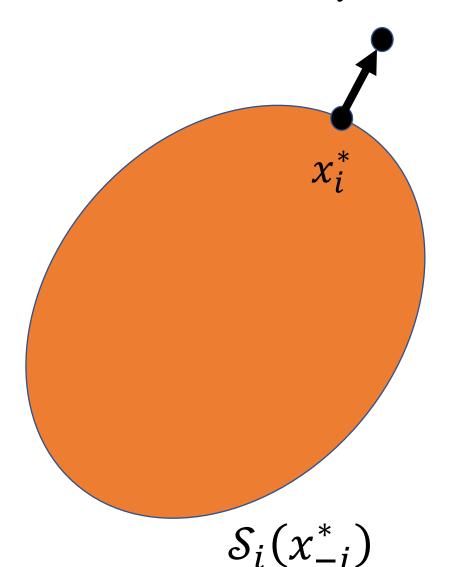
Weakest variant: First-Order Local Nash Equilibrium

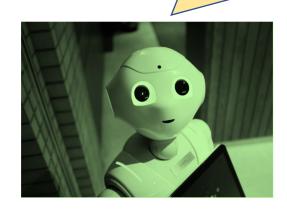
Take "local max" to mean "First-order local max" i.e. max w.r.t. first-order Taylor appx

First-Order Local Nash Equilibrium: agent i's viewpoint

 x_i^* best response to x_{-i}^* as far as the first-order Taylor approximation can tell

$$x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*)$$

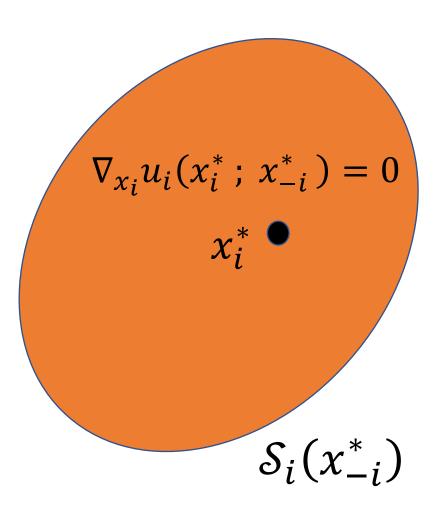




OR

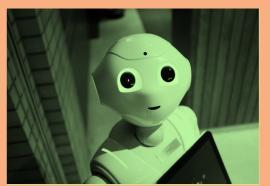
$$x_i^* = \prod_{S_i(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*))$$

a.k.a. fixed point of GD vs GD (vs GD...)

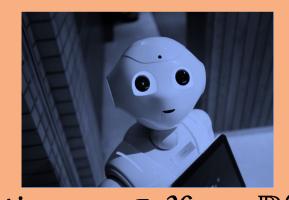


Local Nash Equilibrium: Existence

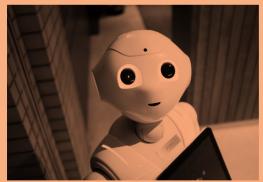
Setting:



action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$



goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$ goal: max $u_n(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$

[often: global constraints $(x_1, x_2, ..., x_n) \in \mathcal{S} \subseteq \times_i \mathcal{X}_i$]

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

Def: A strategy profile $x^* = (x_1^*, ..., x_n^*) \in \mathcal{S}$ is a *(first-order) local Nash equilibrium* iff for all i:

$$x_i^* = \Pi_{\mathcal{S}_i(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*))$$

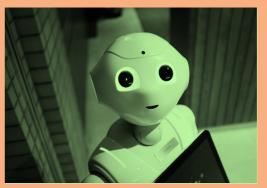
where $S_i(x_{-i}^*) = \{x_i \mid (x_i; x_{-i}^*) \in S\}$, and $\Pi_{S_i(x_{-i}^*)}(\cdot)$ is the Euclidean projection onto the set $S_i(x_{-i}^*)$

Proposition: If S is convex and compact, a (first-order) local Nash equilibrium exists.

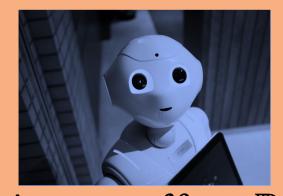
so both universal and verifiable with the info that players have about their utilities

Local Nash Equilibrium: Existence

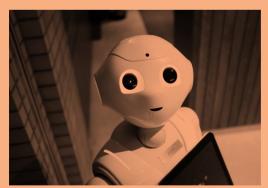
Setting:



action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$



goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$ goal: max $u_n(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$

[often: global constraints $(x_1, x_2, ..., x_n) \in \mathcal{S} \subseteq \times_i \mathcal{X}_i$]

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

Def: A strategy profile $x^* = (x_1^*, ..., x_n^*) \in \mathcal{S}$ is a *(first-order) local Nash equilibrium* iff for all i:

$$x_i^* = \Pi_{S_i(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*))$$

where $S_i(x_{-i}^*) = \{x_i \mid (x_i; x_{-i}^*) \in S\}$, and $\Pi_{S_i(x_{-i}^*)}(\cdot)$ is the Euclidean projection onto the set $S_i(x_{-i}^*)$

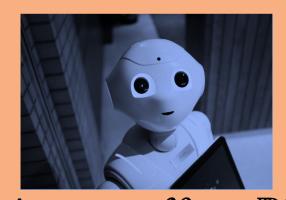
Proposition: If S is convex and compact, a (first-order) local Nash equilibrium exists.

so both universal and verifiable with the info that players have about their utilities are they practically attainable?

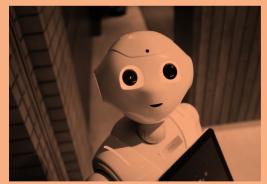
Local Nash Equilibrium: Complexity

Setting:

action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$



goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$ goal: max $u_n(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$

[often: global constraints $(x_1, x_2, ..., x_n) \in \mathcal{S} \subseteq \times_i \mathcal{X}_i$]

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

Def: A strategy profile $x^* = (x_1^*, ..., x_n^*) \in \mathcal{S}$ is a *(first-order) local Nash equilibrium* iff for all i:

$$x_i^* = \Pi_{S_i(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*))$$

where $S_i(x_{-i}^*) = \{x_i \mid (x_i; x_{-i}^*) \in S\}$, and $\Pi_{S_i(x_{-i}^*)}(\cdot)$ is the Euclidean projection onto the set $S_i(x_{-i}^*)$

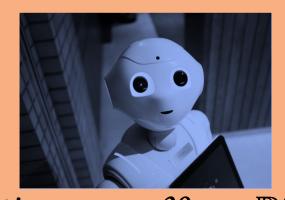
Proposition: If S is convex and compact, a (first-order) local Nash equilibrium exists.

Theorem [w/ Skoulakis & Zampetakis STOC'21]: Even in two-player zero-sum smooth non-concave games, any method accessing the u_i 's via value and gradient value queries needs exponentially many queries (in the dimension and/or $1/\varepsilon$) to compute even an ε -approximate local Nash equilibrium, i.e. some x^* such that for all i: $\|x_i^* - \Pi_{\mathcal{S}(x_{-i}^*)}(x_i^* + \nabla_{x_i}u_i(x_i^*; x_{-i}^*))\| \le \varepsilon$.

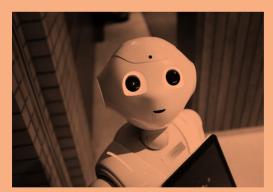
Local Nash Equilibrium: Complexity

Setting:

action: $x_1 \in \mathcal{X}_1 \subset \mathbb{R}^{d_1}$ action: $x_2 \in \mathcal{X}_2 \subset \mathbb{R}^{d_2}$



goal: max $u_1(x_1, ..., x_n)$ goal: max $u_2(x_1, ..., x_n)$ goal: max $u_n(x_1, ..., x_n)$



action: $x_n \in \mathcal{X}_n \subset \mathbb{R}^{d_n}$

[often: global constraints $(x_1, x_2, ..., x_n) \in \mathcal{S} \subseteq \times_i \mathcal{X}_i$]

[often: u_i is Lipschitz and smooth (i.e. has Lipschitz gradient) a.e.]

Def: A strategy profile $x^* = (x_1^*, ..., x_n^*) \in \mathcal{S}$ is a *(first-order) local Nash equilibrium* iff for all i:

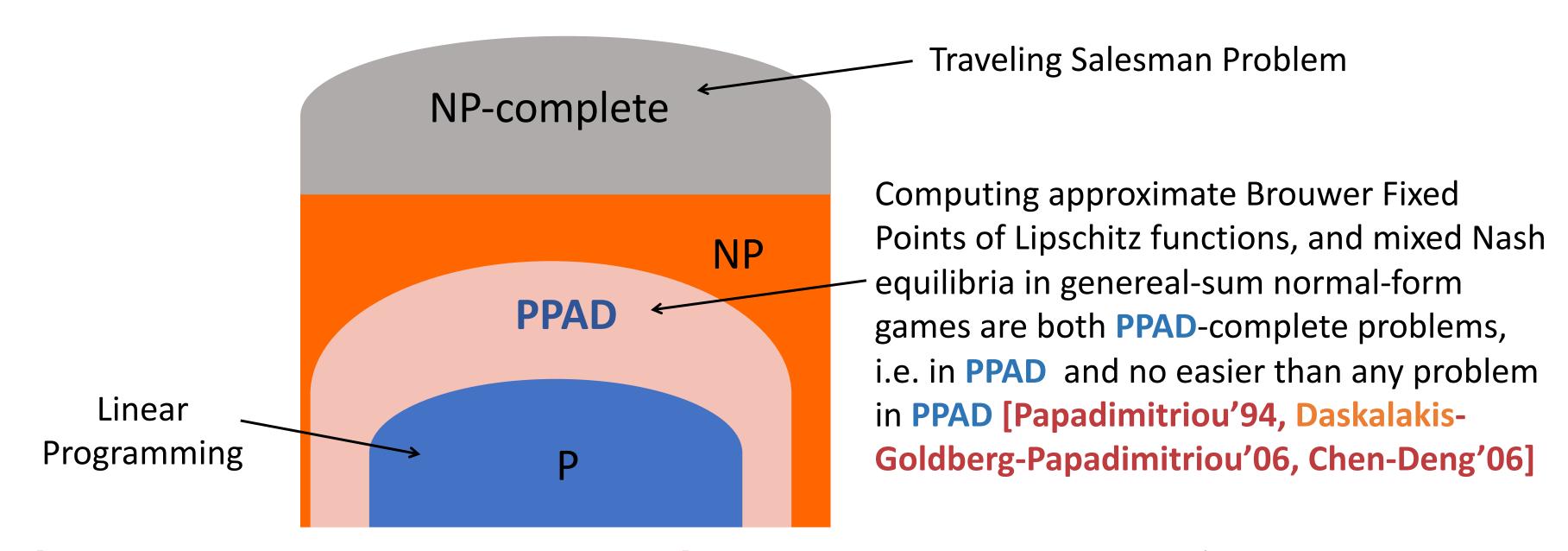
$$x_i^* = \Pi_{S_i(x_{-i}^*)} (x_i^* + \nabla_{x_i} u_i(x_i^*; x_{-i}^*))$$

where $S_i(x_{-i}^*) = \{x_i \mid (x_i; x_{-i}^*) \in S\}$, and $\Pi_{S_i(x_{-i}^*)}(\cdot)$ is the Euclidean projection onto the set $S_i(x_{-i}^*)$

Proposition: If S is convex and compact, a (first-order) local Nash equilibrium exists.

Theorem [w/ Skoulakis & Zampetakis STOC'21]: Even in two-player zero-sum smooth non-concave games, any method at all needs super-polynomial-time (in the dimension and/or $1/\varepsilon$) to compute even an ε -approximate local Nash equilibrium, unless PPAD=P.

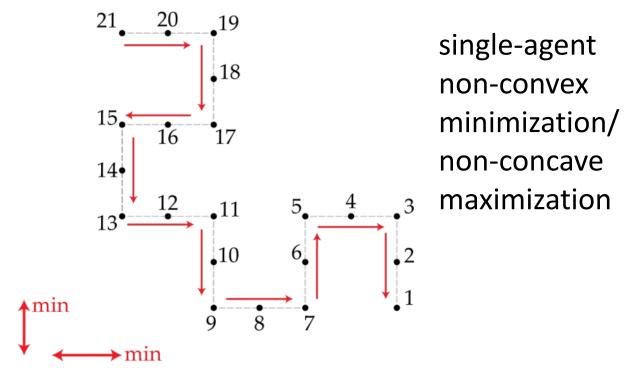
The Complexity of Local Nash Equilibrium



[Daskalakis-Skoulakis-Zampetakis STOC'21]: Computing local Nash equilibria (even in two-player zero-sum and smooth) non-concave games is exactly as hard as (i) computing approximate Brouwer fixed points of Lipschitz functions; (ii) computing mixed Nash equilibria in general-sum normal-form games; and (iii) at least as hard as any other problem in PPAD.

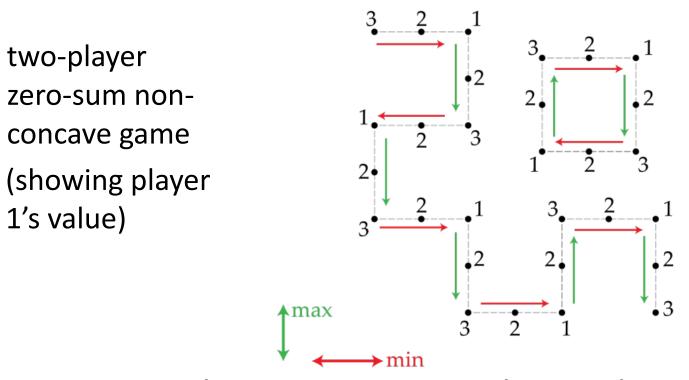
Why are even two players too many?

Compare properties of objective-improving moves in single-player optimization problems (where finding approximate local optima is known to be tractable) and better-response dynamics in two-player zero-sum games (where we show that finding approximate local Nash equilibria is intractable)



objective value decreases along objectiveimproving path, thus: (i) moving along path makes progress towards (local) optimum

(ii) quantitative version: for bounded objectives (e.g. continuous objective over compact space), function value along ε -improving path bounds distance from the end of the path (memory/information gain)

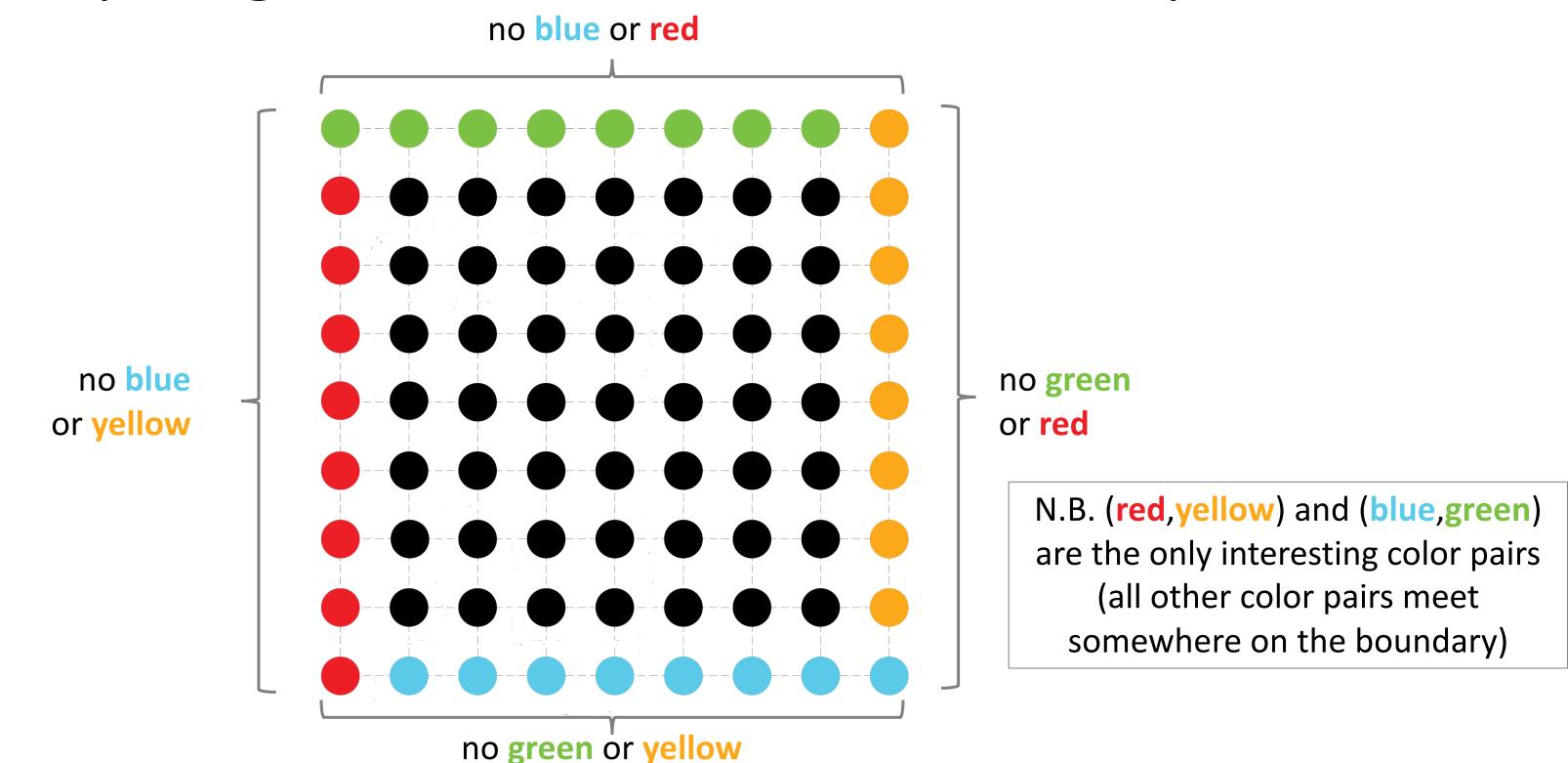


better-response paths may be cyclic: S

objective value along non-cyclic ε -better-response path does not reveal information about distance to end of the path!

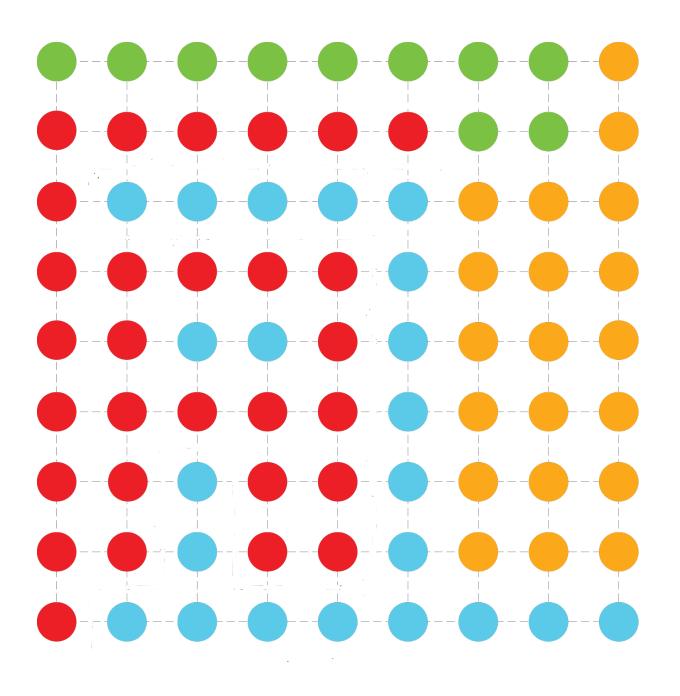
to turn this intuition into an intractability proof, need to hide exponentially long better-response path within ambient space s.t. no matter where the function is queried little information is revealed about location of local Nash equilibria

The Topological Nature of Local Nash Equilibrium



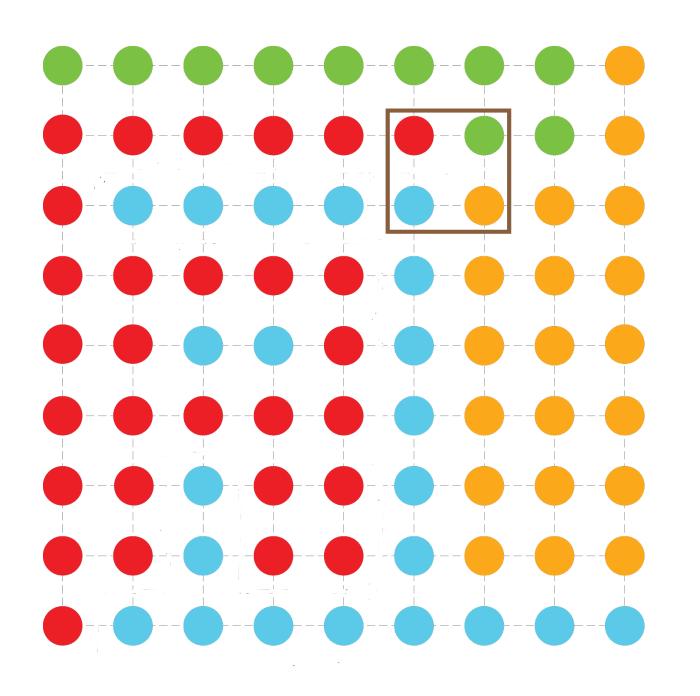
(variant of) Sperner's Lemma: No matter how the internal vertices are colored, there must exist a square containing both red and yellow or both blue and green.

The Topological Nature of Local Nash Equilibrium



(variant of) Sperner's Lemma: No matter how the internal vertices are colored, there must exist a square containing both red and yellow or both blue and green.

The Topological Nature of Local Nash Equilibrium

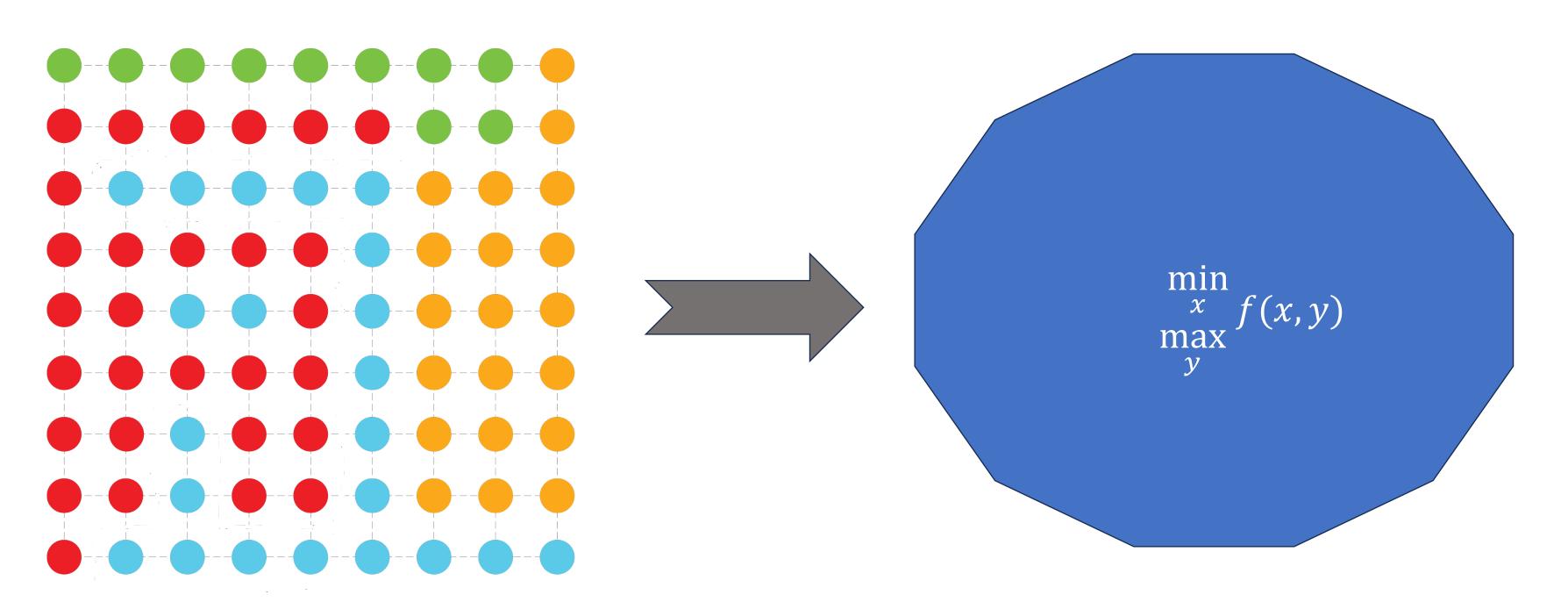


Theorem: Given query access to function $C(\cdot)$ computing colors, need exhaustive search to find well-colored squares

Theorem: Given white-box access to function $C(\cdot)$ computing colors, it is PPAD-hard to find well-colored squares

(variant of) Sperner's Lemma: No matter how the internal vertices are colored, there must exist a square containing both red and yellow or both blue and green.

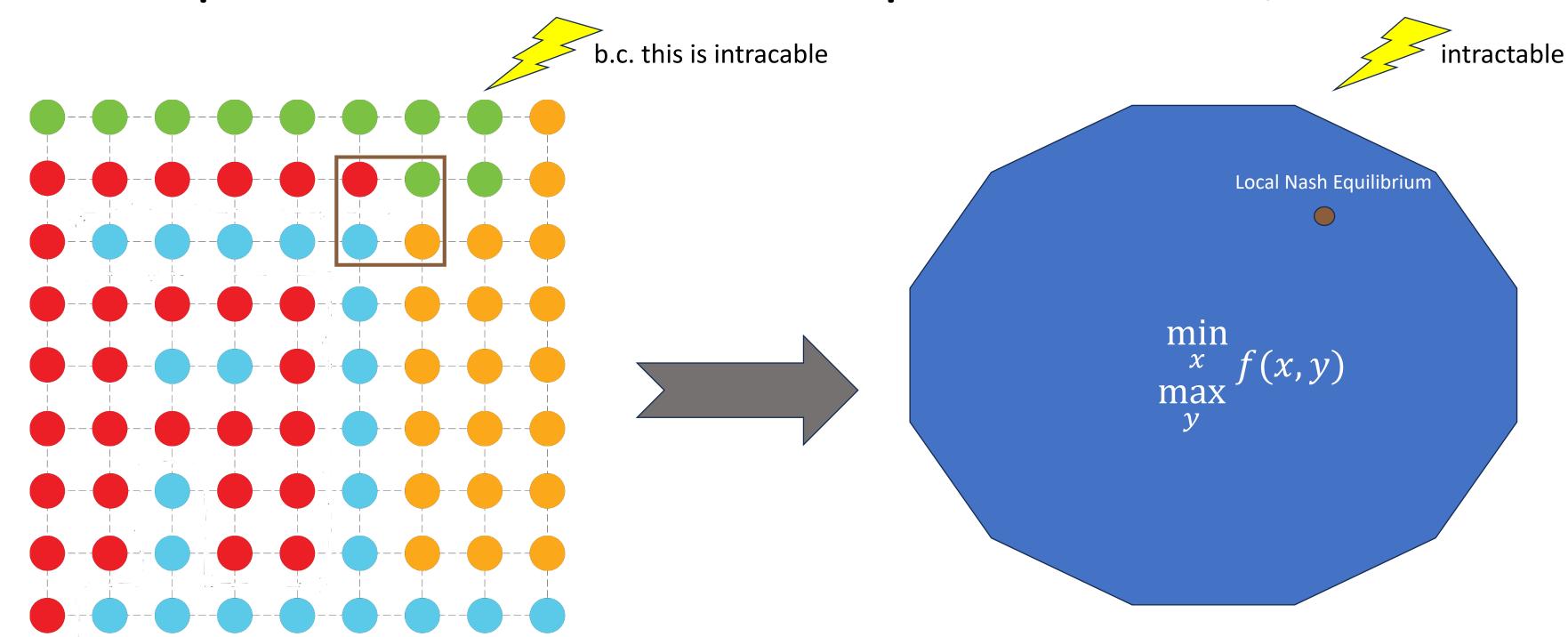
From Sperner to Local Nash Equilibrium (impressionistic)



 $C(\cdot)$: function computing colors of grid points

 $f(\cdot)$: Lipschitz w/ Lipschitz gradient f(x,y): computable w/ local queries to $C(\cdot)$ around preimage of (x,y)

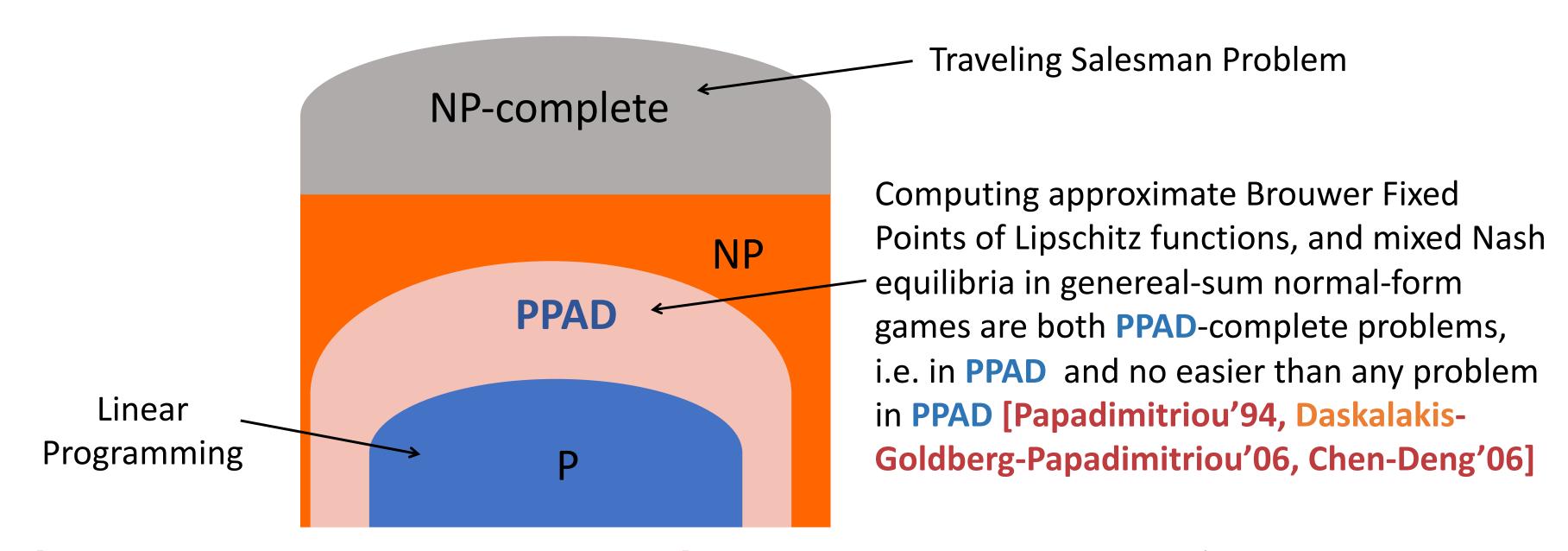
From Sperner to Local Nash Equilibrium (impressionistic)



 $C(\cdot)$: function computing colors of grid points

 $f(\cdot)$: Lipschitz w/ Lipschitz gradient f(x,y): computable w/ local queries to $C(\cdot)$ around preimage of (x,y)

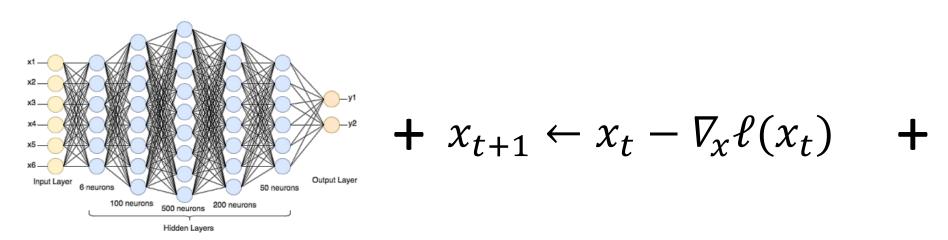
The Complexity of Local Nash Equilibrium



[Daskalakis-Skoulakis-Zampetakis STOC'21]: Computing local Nash equilibria (even in two-player zero-sum and smooth) non-concave games is exactly as hard as (i) computing approximate Brouwer fixed points of Lipschitz functions; (ii) computing mixed Nash equilibria in general-sum normal-form games; and (iii) at least as hard as any other problem in PPAD.

Philosophical Corollary (my opinion, debatable)

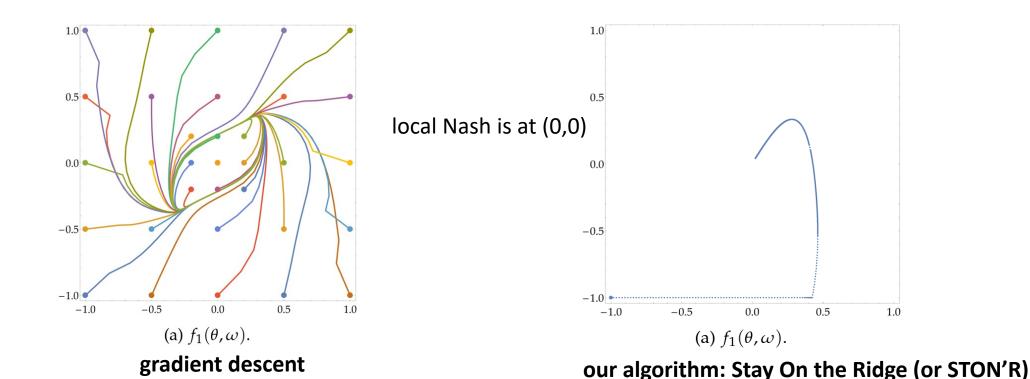
Not clear how to extend single-agent deep learning paradigm to multiple agents:



semi-agnostic

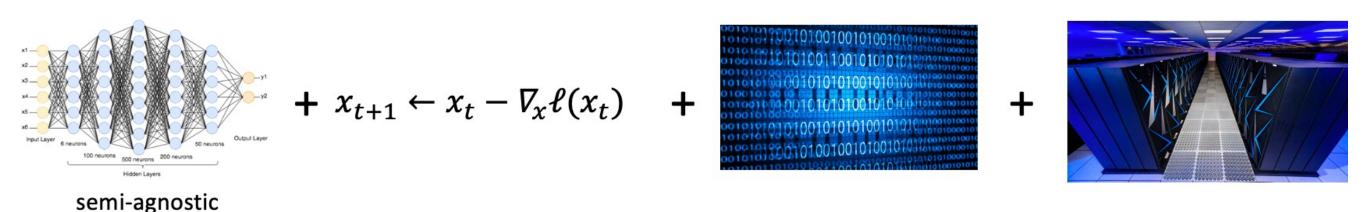
Way Forward: Practical Local Nash Equilibrium

- Practical Local Nash Equilibrium Computation?
 - local Nash is intractable in general
 - ...but can exploit connection to Brouwer fixed points to obtain 2nd-order dynamics with guaranteed (albeit necessarily not poly-time) convergence [Daskalakis-Golowich-Skoulakis-Zampetakis COLT'23]
 - turn it into a 1st-order method by cutting corners
 - identify structural properties of games under which it is efficient (beyond worst-case analysis of games)



Way Forward: Consider Randomized Equilibria

- Local Correlated/Coarse Correlated equilibria?
 - what's a reasonable way to define it in general non-concave games?
 - ...so that it is also guaranteed to exist and is tractable?
 - proposal: $||\mathbb{E}_{x^* \sim p} [\nabla_{x_i} u_i(x_i^*; x_{-i}^*)]|| \le \varepsilon$ (formally: project to the constraint set)
 - when p has support 1 this is a local Nash eq, so this exists but is intractable
 - is there some polynomial support, so that it is tractable?
 - [Cai-Daskalakis-Luo-Wei-Zhang'23]: If \mathcal{S} is convex and compact and the u_i 's are Lipschitz and and smooth, a poly-size supported (in the dimension, in $1/\varepsilon$, in the Lipschitzness and the smoothness of the utilities) local CCE exists can be computed efficiently (using Gradient Descent) \odot



Way Forward: Consider Randomized Equilibria (cont.)

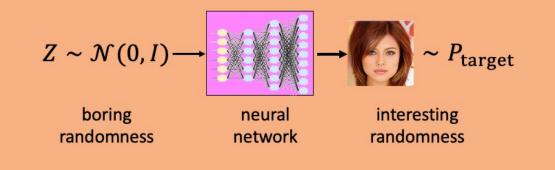
- Global Correlated/coarse correlated equilibria?
 - exist under compactness, albeit may have uncountably infinite support
 - without compactness, they may not exist, e.g. in guess-the-highest-number game
- Under what conditions:
 - do finitely supported global CE or CCE exist?
 - simple procedures converge to them?
- [Rakhlin-Sridharan-Tewari'15, Hanneke-Livni-Moran'21, Daskalakis-Golowich'22]:
 - The minimax theorem holds (in two-player zero-sum non-concave games) and a coarse correlated equilibrium exists (in multi-player non-concave games) if there is no (scaled) copy of guess-the-highest-number.
 - Formally: the Littlestone/seq Rademacher complexity of the games is finite.
- [Assos-Attias-Dagan-Daskalakis-Fishelson'23]: A variant of the Double Oracle algorithm
 - is guaranteed to converge
 - has efficient per iteration computational complexity

Thank you!

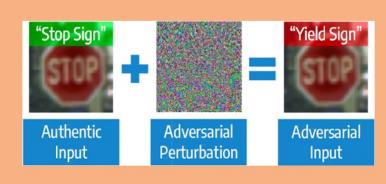
Multi-player Game-Playing:

- Superhuman GO, Poker, Gran Turismo
- Human-level Starcraft, Diplomacy

- Multi-robot interactions
- Autonomous driving
- Automated Economic policy design



Generative Adversarial Networks (GANs) synthetic data generation



Adversarial Training robustifying models against adversarial attacks