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DNN

• Vanilla Deep Neural Nets (DNNs) are reminiscent of the stretch and 
fold dynamics that lead to chaos.

• Each step is a linear map 𝐿 followed by 𝜎, a coordinate-wise non-
linear activation function: 𝜎 ∘ 𝐿𝑖𝑛! ∘ ⋯ ∘ (𝜎 ∘ 𝐿𝑖𝑛").

• These linear maps typically have singular values both >1 and <1.



Logistic Map

• 𝑥#$" = −𝑟 𝑥# 𝑥# − 1 , 𝑟 > 0

• Feigenbaum (4.6…): period doubling, then chaos

• Transition to chaos

• Pomeau-Manville scenario

• Intermittency

• York-Li period 3 ⇒ chaos



Smale Horseshoe Map

• High-order yellow and green stripes 
intersect in an invariant Cantor set 
with chaotic “hyperbolic” dynamics.

• A foundational example of symbolic 
dynamics



Expressibility of Functions (Hilbert’s 13th Problem)
Kolmogrov-Arnold representation theorem (1957)
Given 𝑛 ≥ 2, ∃𝑛(2𝑛 + 1) continuous functions 𝜙!,#: 𝐼 → 𝐼, 1 ≤ 𝑝 ≤ 𝑛, 1 ≤ 𝑞
≤ 2𝑛 + 1 such that for continuous 𝑓: 𝐼$ → 𝐼, there exists continuous 𝛼#: 𝐼
→ 𝐼, 1 ≤ 𝑞 ≤ 2𝑛 + 1 s.t. 𝑓 𝑥%, … , 𝑥$ = ∑#&%'$(%𝛼#(∑!&%$ 𝜙!,# 𝑥! ) (the 𝜙!,# 
can be chosen Lipschitz).

Note. NN has depth 𝐷 = 3 but extravagant nonlinearities. A trade-off in expressibility and trainabilty.



Expressibility of Functions

Sternberg-Ostrand (1989)
For 𝑛 > 2, 𝑋 is a compact metric space of dim ≤ 𝑛 iff ∃ an embedding 
𝑋 ↪ ℝ%#$", 𝑥 ↦ 𝑦, which is “basic,” meaning all continuous 𝑔: 𝑋 → 𝐼 
can be written
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For some continuous 𝛼): 𝐼 → 𝐼 , 1 ≤ 𝑞 ≤ 2𝑛 + 1.



Expressibility of Functions

• But AI has mostly ignored this subject to date. The 𝛼)  and 𝜙+,)  have 
been regarded as too pathological to train.

• I would like to see a quantitative version of Kolmogorov-Arnold-
Ostrand-Sternberg theory.



Expressivity in DNN

• Poole, Lahiri, Raghu, Sohl-Dickstein, 
Ganguli (2016) study the evolving 
differential geometry of Gaussian 
random DNN.

• They report chaotic evolution when 
⁄-! -" ≫ 1, where 𝜎. = weight 

variance, 𝜎/ = off-set variance.



Expressivity in DNN

Question: Are these chaotic graphics approaching a basic embedding? 
Can such an approach be defined in terms of expressivity? Trainability?



Laps Conjecture

Laps Conjecture (very rough)

Expressivity :: depth log laps + 1 ≈ log(#	pastry	layers)

# of pastry layers = laps01234

1 lap 2 laps 3 laps



Power of Data in Quantum Machine Learning

• Huang, Broughton, Mohseni, Babbush, Boixo, Neven, McClean (2022): 
feature (or token) embedding space

Classical

• Naively ℝ"555
• Lots of nonlinear dynamics 

prior to linear separation

Quantum

• ℂ(%#$$$)
• Each picture a different 

basis state
• Linear separation



Caveats

1. Reproducing kernel methods effectively expand classical embedding 
space. 𝑓, 𝑔 6 = ∬𝑑𝑥	𝑑𝑦	𝑓 𝑥 𝐾 𝑥, 𝑦 𝑔(𝑦)

2. Lindenstrauss Theorem. 𝑛 ≈ 𝑐 789 :
;%

  is sufficient dimension to 
embed a finite metric space 𝑋 of 𝑛 points up to inaccuracy 𝜖.



What Could Quantum Offer ML

•Work of S. Iloyd and others have shown super-polynomial qantum 
speed-ups in certain linear algebra tasks.

• This may be useful in the longer term, but is there anything noisy, 
near-term quantum computers might offer?



What Could Quantum Offer ML

• Assuming that chaos is key to ML, it may help to have two separate 
separate understandings.

• I’ve mentioned the classical picture: orbit based.

• There is the spectral picture of quantum mechanics, for which early 
quantum computers will be an experimental window.



What Could Quantum Offer ML
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• From quantum scar—Wikipedia: quantum 
scars along an unstable classic orbit.

• Guttwiller (∼Selberg) trace formula:

semi-classical resolvant length of orbit density of orbit

action along kth closed 
orbit at energy 𝐸

Maslow index



What Could Quantum Offer ML

• Perhaps we can learn what kinds of chaos are useful for learning. If so, 
noisy quantum computers/quantum simulators offer and orthogonal 
approach to creating such dynamics.

• This is the subject of “active matter”: Floquette phases, measurement 
induced phase transitions, streamlining the measurement-action loop.

• In the limit of precision and control, active matter becomes a 
quantum computer.



More Math for LLMs

•What should mathematicians look for in the functioning of large 
language models (LLMs)?

• I’ll offer two suggestions:

1. Emergent tensor structures in trained linear maps: 𝑊,𝑄,𝐾, 𝑉, etc.

2. Orders not induced by a potential function



More Math for LLMs

•With collaborators Moj Shokrian-Zini and Adam Brown, we found 
when minimizing geometric loss functions such as Ricci scalar 
curvature over left invariant metrics on SU(2#) that the principal axis 
often respected an emergent tensor structure.

• For example, minimizing 𝑅(𝑔DL) on SU 8 , all 63 principal axes 
{𝑖𝐻6 , 1 ≤ 𝑘 ≤ 63} take the form 𝐻6 ≈ 𝑗(𝐻",6 ⊗𝐻%,6 ⊗𝐻M,6) for 1 ≤
𝑘 ≤ 63, 𝐻D,6 ∈ 2×2 Hermitian ℎ%, and 𝑗: ℎ%⊗ℎ%⊗ℎ% ≅ ℎN 
induced by some fixed, emergent 𝐽: ℂ%⊗ℂ%⊗ℂ% → ℂN.

See: Michael Freedman & Mojtaba Shokrian-Zini, “The universe from a single particle I-III,” Journal of High Energy Physics (2021) and Mojtaba 
Shokrian-Zini, Adam Brown, & Michael Freedman, “The smallest interacting universe,” Journal of High Energy Physics (2023).



More Math for LLMs

• Like this example from high energy, one may look for emergent tensor 
structures within the highly trained linear operators between inner 
product spaces, e.g., vanilla weight matrices 𝑊, or the specialized 
transformer ingredients: Query, Key, and Value (𝑄,𝐾, 𝑉)



More Math for LLMs

• Given a linear map 𝐿 between inner product spaces, 𝐿: 𝐴 → 𝐵, we 

may ask among all isomorphisms 𝐴O⊗𝐴′′ →
≅
Q 𝐴, 𝐵O⊗𝐵′′ →

≅
/ 𝐵, to 

minimize the tensor rank of 𝑏I" ∘ 𝐿 ∘ 𝑎 ∈ Hom(𝐴O⊗𝐴OO, 𝐵O⊗𝐵OO) 
across the middle ⊗ in 𝑏I" ∘ 𝐿 ∘ 𝑎 ∈ 𝐴O∗ ⊗𝐵O ⊗ (𝐴OO∗ ⊗𝐵OO).

• Notice this is quite distinct from the usual notion of matrix rank, 
which is rank across the middle tensor in 𝐴O⊗𝐴OO ∗⊗ (𝐵O⊗𝐵OO).



More Math for LLMs

• Curiously, “tensor rank”= 1 corresponds to the solution of a highly 
over-determined linear system at the heart of the Kolmogorov-Arnold 
representation theorem.

•When is an 𝑛×𝑚 array of real numbers the sum of values written 
along the axes? For example, for 𝑛 = 𝑚 = 2:

1 −1
−1 1

cannot be, so {log(singular	values) = 1,1, −1,−1} is incompatible 
with tensor rank 1.

a b

c
d



More Math for LLMs

• I’m currently doing numerics of the singular values of ML matrices 
with a U. of Maryland group: Barkeshli, He, and Kalra, looking for 
tensor structures which stand out above the noise background.

• A French school in cognitive science (Slomensky et al.) has proposed 
iterated tensor structures in language, but in a fixed basis, i.e., nouns 
and verbs, “roles” and “fillers” rather than an emergent one.



Non-gradient-like Orders

Rock Paper Scissors (RPS)

Ecology: E. coli �
colicin	producing

resistant
naive

C

R N
Yields to



RPS Cellular Automata



RPS Cellular Automata

• “A million species in every shovelful of dirt” ⇒ competition beyond 
potential functions.

Ecology of mind:

2-cycles:

Intuition

Authority Analysis

Grass

Fence

Grass
Kahnemann-Tversky, Prospect Theory (1979)
Notable reply: Mercier-Sperber, Enigma of Reason



Conclusion

• Classical ML seems to have little use for 𝑖 = −1.

• Perhaps QML is better suited to generate cyclic orders like 𝑒DE, where 
chiral models are readily available. 

• Look for emergent structures within the linear algebra

• Understand how dynamics can inform ML

• Quantify Kolmogorov–Arnold  theory (Laps conjecture).


