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This Paper: ANN Efficient Estimation of Average Derivative in NPIVs

- Nonparametric Instrumental Variables model: E[Y1 − h0(Y2) | X ] = 0

- Para. of interest: β0 ≡ E[a(Y2)∇1h0(Y2)]

- (weighted a(·) > 0) average partial derivative of h(Y2) wrt its first argument of Y2.
- a causal/policy parameter with continuous endogenous treatment.

- Difficulty: unknown NPIV function h0 depends on moderately high-dim and
endogenous Y2 without known sparsity.

- iid sample: {Zi = (Y1i ,Y2i ,Xi)}n
i=1 for typical economic survey data size n

- Aim: ANN sieve efficient estimation and inference for β0

2 / 44



Why ANNs ?
- ANNs are compositions of simple functions

σj(Wjx + bj), j = 1, ...,L, activation σj(·) is
nonlinear, e.g., ReLU max(t ,0).

- Hornik, Stinchcombe and White (1989):
universal denseness property of multi-layer
ANN. DNN = ANN with hidden layer L > 1

- Deep learning L >> 1 is very successful in
image processing, natural language processing,...
many areas with huge + high quality data.

- Enthusiasm for using ReLU-ANN with L ≥ 2 for
average treatment effects: e.g., Farrell, Liang
and Misra (2021), Athey, Imbens, Metzger and
Munro (2021), ...
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Questions that motivate our paper

For NPIV models E[Y1 − h0(Y2)|X ] = 0 with high-dim continuous endogenous/exogenous
regressors Y2,

- will deep-layer/overparameterized/overfitted ANNs be advantageous?

- will multi-layer ReLU-ANNs perform better than other ANNs?

- will ANNs (nonlinear sieves) perform better than splines (linear sieves)?

- using ANNs, which procedure might perform better in finite samples: efficient score
equation vs optimal criterion ?
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Rest of the Talk

- Recall semiparametric efficiency bound for β0 = E[a(Y2)∇1h0(Y2)]

- Two types of efficient estimation for β0:
- efficient score/influence estimation
- optimal minimum distance (MD) estimation.

- ANN approximation error rates for function h0.
- Monte Carlo comparisons of many inefficient and efficient estimators for β0:

- various ANN sieve MD estimators
- ANN sieve MD vs spline sieve MD vs AGMM estimators
- ANN sieve MD vs sieve score vs cross-fit sieve score estimators
- various ways to compute standard errors.

- Empirical illustrations: averaged price elasticity in endogenous demand curves
- Conclusion and extension.

5 / 44



Rest of the Talk

- Recall semiparametric efficiency bound for β0 = E[a(Y2)∇1h0(Y2)]

- Two types of efficient estimation for β0:
- efficient score/influence estimation
- optimal minimum distance (MD) estimation.

- ANN approximation error rates for function h0.
- Monte Carlo comparisons of many inefficient and efficient estimators for β0:

- various ANN sieve MD estimators
- ANN sieve MD vs spline sieve MD vs AGMM estimators
- ANN sieve MD vs sieve score vs cross-fit sieve score estimators
- various ways to compute standard errors.

- Empirical illustrations: averaged price elasticity in endogenous demand curves
- Conclusion and extension.

6 / 44



Recall semiparametric efficiency bound for β0
- Efficiency bound for β0 in sequential moments Ai and Chen (2012):

E[Y1 − h0(Y2) | X ] = 0, β0 = E[a(Y2)∇1h0(Y2)].

- The semiparametric efficient influence function (IF) for β0 is

ψe(Z , β0) = a(Y2)∇1h0(Y2)− β0 − Γ(X )[Y1 − h0(Y2)]︸ ︷︷ ︸
orthogonalized residuals

+
E[v?

e (Y2)|X ]

Σ(X )︸ ︷︷ ︸
αe(X ), Riesz

(Y1−h0(Y2)),

(1)
where

Γ(X ) ≡ Cov(a(Y2)∇1h0(Y2)− β0,Y1 − h0(Y2) | X )

Σ(X )
, Σ(X ) ≡ Var(Y1 − h0(Y2) | X )

and E[v?
e (Y2)|X ] is one solution to an optimization problem. Definition of v?

e

- The efficient variance for β0 is: Var(ψe(Z , β0)).
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Efficient Score/IF Based Estimation for β0 = E[a(Y2)∇1h0(Y2)]

- Efficient IF moment: E[ψe(Z , β0)] = 0 (Neyman orthogonal moment) [ES]

n

∑
i=1

ψ̂e(zi ; β̂ES) =
n

∑
i=1

(
a(y2i)∇1ĥ(y2i)− β̂ES − [Γ̂(xi)− α̂e(xi)]

(
y1i − ĥ(y2i)

))
= 0,

- ĥ : ANN or spline sieve MD estimator of h0;
- Γ̂ : any consistent (e.g., sieve least squares) plug-in estimator of Γ;
- α̂e = αe(v̂e, Σ̂) : any consistent plug-in estimator of αe = E[v?

e (Y2)|X ]
Σ(X )

.
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Optimal SMD estimation of β0 = E[a(Y2)∇1h0(Y2)]

- Orthogonalized plug-in optimal sieve MD estimation (Ai and Chen (2012))
[OP-OSMD]:

β̂OP(ĥ) =
1
n

n

∑
i=1

[a(y2i)∇1ĥ(y2i)− Γ̂(xi)(y1i − ĥ(y2i))]

- ĥ : ANN or spline sieve MD estimator of h0;
- Γ̂ : any consistent (e.g., sieve least squares) plug-in estimator of Γ;
- Asymptotically linear, normal and efficient:

√
n[β̂OP(ĥOSMD)− β0] =

1√
n

n

∑
i=1

ψe(zi , β0) + op(1) N
(

0,E[(ψe(Z , β0))
2]
)
,
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Inefficient Estimators for β0
- Simple plug-in SMD estimation (Ai and Chen (2007)) [P-ISMD]:

β̂P(ĥ) =
1
n

n

∑
i=1

a(y2i)∇1ĥ(y2i).

√
n[β̂P(ĥ)− β0] =

1√
n

n

∑
i=1

ψie(zi , β0) + op(1) N
(

0,E[(ψie(Z , β0))
2]
)
,

ψie(Z ; β0) = a(Y2)∇1h0(Y2)− β0 + E[v?
ie(Y2)|X ]︸ ︷︷ ︸

αie(X ), Riesz

(Y1 − h0(Y2)).

- Inefficient score/IF based estimation: E[ψie(Z , β0)] = 0. [IS]
n

∑
i=1

ψ̂ie(zi ; β̂IS) =
n

∑
i=1

(
a(y2i)∇1ĥ(y2i)− β̂IS + α̂ie(xi)

(
y1i − ĥ(y2i)

))
= 0,

- ĥ : ANN or spline sieve MD estimator of h0;
- α̂ie : any consistent plug-in estimator of αie(X ) = E[v?

ie(Y2) | X ].
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Comparisons of Estimators for β0 = E[a(Y2)∇1h0(Y2)]

- 3 (first-order) asymptotically equivalent inefficient estimators.
- β̂P = 1

n ∑n
i=1 a(y2i )∇1ĥ(y2i )

- β̂IS = 1
n ∑n

i=1

[
a(y2i )∇1ĥ(y2i ) + α̂ie(xi )(y1i − ĥ(y2i ))

]
- β̂IS−X : split-sample or cross-fit version of β̂IS (inspired by Chernozhukov et al. (2018,

2021)).

- 3 (first-order) asymptotically equivalent efficient estimators.
- β̂OP = 1

n ∑n
i=1

[
a(y2i )∇1ĥ(y2i )− Γ̂(xi )(y1i − ĥ(y2i ))

]
- β̂ES = 1

n ∑n
i=1

[
a(y2i )∇1ĥ(y2i )− [Γ̂(xi )− α̂e(xi )](y1i − ĥ(y2i ))

]
- β̂ES−X : split-sample or cross-fit version of β̂ES .

- ĥ is ANN SMD or spline SMD for h0 solving E[Y1 − h0(Y2)|X ] = 0.
- Γ̂, α̂e, α̂ie are plug-in estimators that all depend on ĥ.
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Sieve Minimum Distance (SMD) Estimation of h0

- NPIV model: E[Y1 − h(Y2) | X ] = 0 iff h = h0 ∈ H
- In sample, let y1, y2, φ(x) be vector/matrices of n observations, with φ(x) an n× dφ

matrix of linear sieve basis for L2(X ).
- For any given h, the residuals are y1 − h(y2)
- Cond. expectation operator E[· | X ] can be approximated using IV sieve φ(x):

Pφ = φ(x)(φ(x)′φ(x))−φ(x)′,

- The SMD estimator (Ai and Chen (2003)):

ĥSMD = argmin
h∈Hn

‖ Pφ[y1 − h(y2)]︸ ︷︷ ︸
residuals projected onto IV sieve

‖2
Ŵ for a weighting matrix Ŵ ,

Hn is a sieve for H, can be nonlinear (e.g., ANN) or linear (e.g., spline).
- ĥISMD for Ŵ = I; and ĥOSMD for Ŵ a consistent estimate of [Σ(X )]−1.
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Sieve approximation error rates

- Linear sieves (polynomials, splines, orthogonal wavelets) typically have approximation
rates (in ‖·‖∞):

O
(
(sieve terms)−smoothness/dimension

)
(for h0(Y2) ∈ Hölder smooth class) Linear sieve details

- Curse of dimensionality: given smoothness, approximation error rates goes worse as
dim(Y2) grows.

- For single hidden layer ANNs, Makovoz (1996); Chen and White (1999) show that the
approximation rates (in L2 norm) are

o
(

(Number of neurons)−1/2
)

(for h0(Y2) ∈ Barron (1993) class), Nonlinear sieve details
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Examples of nonlinear sieves: Multi-Layer ANNs
- Feedforward ANNs are compositions of simple functions

fσj ,Wj ,bj (x) = σj(Wjx + bj), j = 1, ...,L,

activation σj(·) is applied component-wise; known and nonlinear; e.g.,
- Sigmoid activation σj(t) = 1

1+e−t . ReLU activation σj(t) = max(t ,0).
- ANN sieves: ANN (f1, . . . , fL) ={

WL+1fσL,WL,bL ◦ · · · ◦ fσ1,W1,b1 + bL+1 : W1, . . . ,WL+1,b1, . . . ,bL+1 conformable
}

- Complexity/flexibility of ANN (f1, . . . , fL) is intuitively in terms of
- L hidden layers, max dimension of width Wl , or growth of norm ‖(W ,b)‖.

- For multi-layer ReLU ANNs, Yarotsky (2017); Schmidt-Hieber (2019); Shen et al.
(2021b) approximation error rates under different settings

- For other activation ANNs, all kinds of approximation error rates, see e.g., Shen et al.
(2021a)
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Monte Carlo Design 2
Y2 = [R1,R2,X2, X̃ ], X = [X1,X2,X3, X̃ ], β0 = E[∇1h0(Y2)] = 1.

Y1 = h0(Y2) + U = R1 + h01(R2) + h02(X2) + h03(X̃ ) + U

X is marginally uniform

h01 : R→ R t 7→ 1
1 + exp(−t)

h02 : R→ R t 7→ log(1 + t)

h03 : Rdx̃ → R x̃ 7→ 5x̃3
1 + x̃2 ·max

j

(
x̃j ∨ 0.5

)
+ 0.5 exp(−x̃dx̃ )

- R1 = X1 + U + 0.5U2, R2 = Φ
[
Φ−1(X3) + 0.5U3

]
.

- U = (U1 + U2 + U3)/3×
√
(X 2

1 + X 2
2 + X 2

3 )/3. U1,U2,U3 iid ∼ N (0,1).
- Two settings we tweak:

- Dimension of X̃ : {0,5,10}. Y2 contains up to 13 continuous covariates.
- Correlation between X̃ and [X1,X2,X3]: {Yes,No}

- Sample sizes n = 1000,5000. (1000 Monte Carlo replications, 1000 bootstrap runs)
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Plug-in ANN SMD estimators (MC2)
n = 5000

0.75 1.00 1.25

dim(X) = 0, corr(X, X) = N, 1L

dim(X) = 0, corr(X, X) = N, 3L

dim(X) = 5, corr(X, X) = N, 1L

dim(X) = 5, corr(X, X) = N, 3L

dim(X) = 5, corr(X, X) = Y, 1L

dim(X) = 5, corr(X, X) = Y, 3L

dim(X) = 10, corr(X, X) = N, 1L

dim(X) = 10, corr(X, X) = N, 3L

dim(X) = 10, corr(X, X) = Y, 1L

dim(X) = 10, corr(X, X) = Y, 3L

MC 2
NP

0.75 1.00 1.25

MC 2
PL

0.75 1.00 1.25

MC 2
PA (NN)

0.75 1.00 1.25

MC 2
PA (SPL)

relu [P-ISMD]
relu [(O)P-OSMD]
sigmoid [P-ISMD]
sigmoid [(O)P-OSMD]

Figure: Monte Carlo Mean ±1 Monte Carlo Stdev

NP Nonparametric; PL Partial Linear; PA(NN) Partially Additive Neural Net; PA(SPL) Partially Additive Spline. 19 / 44



Summary of MC findings for plug-in ANN SMDs so far

- Choices of ANN activation functions (ReLU vs Sigmoid) and number of layers do not
matter much. Consistent with ANN approximation theory.

- ANN SMDs can perform well after several hyper-parameters tuning.
- ANN OP-OSMD ANN has smaller bias than ANN P-ISMD.
- ANN SMDs are sometimes numerically unstable (optimization doesn’t converge).
- ANN SMDs are not too sensitive to choice of IV sieve, but seem less biased using

larger IV sieves in complex DGPs (MC2 with correlations among [R1,R2], [X1,X2,X3]
and X̃ ).

- Multi-layer ANNs seem not fully “adaptive” to underlying true partially linear additive
structure of the DGPs.

- Bad idea to apply ANN to estimate functions of scalar variable h01(R2) and h02(X2).
Better to use linear sieves (such as splines) for functions of low-dim covariates.
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Comparing Plug-in ANN SMDs to Other Estimators of β0

- Simple plug-in β̂P = 1
n ∑n

i=1∇1ĥ(y2i) [P-ISMD]

- Orthogonal plug-in β̂OP = 1
n ∑n

i=1

[
∇1ĥ(y2i)− Γ̂(xi)(y1i − ĥ(y2i))

]
[OP-OSMD]

- Identity-weighted score β̂IS = 1
n ∑n

i=1

[
∇1ĥ(y2i) + α̂ie(xi)(y1i − ĥ(y2i))

]
[IS]

- Efficient score β̂ES = 1
n ∑n

i=1

[
∇1ĥ(y2i)− [Γ̂(xi)− α̂e(xi)](y1i − ĥ(y2i))

]
[ES]

- Split-sample score-based estimators [IS-X, ES-X]

- ĥ is ANN SMD or spline SMD for h0.
- Γ̂, α̂e, α̂ie are plug-in estimators that all depend on ĥ.
- Simple plug-in using adversarial GMM ĥ of Dikkala et al. (2020) [AGMM]
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A horse-race among efficient estimators of β0

MC2, Optimally-weighted estimators, Nonparametric, n = 5000

0.9 1.0 1.1

OP-OSMD (NN)

ES (NN)

ES-X (NN)

OP-OSMD (Spline)

ES (Spline)

ES-X (Spline)

dim(X) = 0
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 5
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 5
corr(X, X) = Y

0.9 1.0 1.1

dim(X) = 10
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 10
corr(X, X) = Y

Varying width 1L sigmoid
3L relu
3L sigmoid
Spline(2, 2)
Spline(3, 2)

Figure: Monte Carlo Mean ±1 Monte Carlo Stdev

OP-OSMD Optimal SMD; ES Efficient Score; ES-X Split Sample Efficient Score
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Sensitivity of ES/ES-X to estimation of Σ(X )−1 in
αe(X ) = E[v ∗e (Y2)|X ]Σ(X )−1

MC2, ES/ES-X estimators of β0, Nonparametric, n = 5000

0.9 1.0 1.1

ES (NN, 100 nearest neighbors)
ES (NN, true inverse variance)

ES (NN, plug in identity variance)
ES (NN, 5 nearest neighbors)

ES (Spline, 100 nearest neighbors)
ES (Spline, 5 nearest neighbors)

ES (Spline, projection)
ES-2X (NN, 5 nearest neighbors)

ES-2X (NN, 100 nearest neighobrs)
ES-2X (Spline, 5 nearest neighbors)

ES-2X (Spline, 100 nearest neighbors)
ES-5X (NN, 5 nearest neighbors)

ES-5X (NN, 100 nearest neighbors)

dim(X) = 0
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 5
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 5
corr(X, X) = Y

0.9 1.0 1.1

dim(X) = 10
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 10
corr(X, X) = Y

3L relu
3L sigmoid
Varying width 1L sigmoid

Figure: Monte Carlo Mean ±1 SE estimates

NB: the OP-SMD estimation of h and the sieve projection estimation of Γ both involve an estimator of Σ, which are held
fixed. We only vary the estimation of Σ−1 in αe . 23 / 44



A horse-race among estimators of β0

- Spline SMD estimators and ANN OP-OSMD estimators work very well
- ANN score estimators seem less biased than ANN SMD estimators, and also works

well with the right tuning parameters
- (Two-fold) cross-fitting estimators have comparable performance in large samples and

slightly poorer performance in smaller samples
- ANN ES estimators are sensitive to estimation of certain nuisance parameters in the

score (Σ−1)
- The sensitivity is not significantly mitigated by two or five-fold cross-fitting here
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Inference

- Estimation of standard errors amounts to estimating the variance of the influence
function

- For SMD estimators, can also consider a multiplier bootstrap that weighs the residuals
with random weights (e.g. ωi

i.i.d.∼ Expo(1)):

Ũi = ωi(Y1i − h(Y2i)),ωi
i.i.d.∼ [1,1],ωi ≥ 0

and use ‖Pφũ‖ as the objective function in SMD estimation
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Inference

MC2, Nonparametric, n = 5000

0.9 1.0 1.1

IS [Varying width, 1L sigmoid]
IS-X [Varying width, 1L sigmoid]

ES [Varying width, 1L sigmoid]
ES-X [Varying width, 1L sigmoid]

P-ISMD [Varying width, 1L sigmoid]
OP-OSMD [Varying width, 1L sigmoid]

IS [3L sigmoid]
IS-X [3L sigmoid]

ES [3L sigmoid]
ES-X [3L sigmoid]

P-ISMD [3L sigmoid]
OP-OSMD [3L sigmoid]

IS [Spl(3, 2)]
ES [Spl(3, 2)]

P-ISMD [Spl(3, 2)]
OP-OSMD [Spl(3, 2)]

dim(X) = 0
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 5
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 5
corr(X, X) = Y

0.9 1.0 1.1

dim(X) = 10
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 10
corr(X, X) = Y

Monte Carlo St.dev
SE
Bootstrapped St.dev

Figure: Monte Carlo Mean ±1 SE estimates

NB: Bootstrap SE based on one realization of the data
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Inference

MC2, Nonparametric, n = 5000

0.9 1.0 1.1

IS [Varying width, 1L sigmoid]
IS-X [Varying width, 1L sigmoid]

ES [Varying width, 1L sigmoid]
ES-X [Varying width, 1L sigmoid]

P-ISMD [Varying width, 1L sigmoid]
OP-OSMD [Varying width, 1L sigmoid]

IS [3L sigmoid]
IS-X [3L sigmoid]

ES [3L sigmoid]
ES-X [3L sigmoid]

P-ISMD [3L sigmoid]
OP-OSMD [3L sigmoid]

IS [Spl(3, 2)]
ES [Spl(3, 2)]

P-ISMD [Spl(3, 2)]
OP-OSMD [Spl(3, 2)]

dim(X) = 0
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 5
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 5
corr(X, X) = Y

0.9 1.0 1.1

dim(X) = 10
corr(X, X) = N

0.9 1.0 1.1

dim(X) = 10
corr(X, X) = Y

Monte Carlo St.dev
SE
Bootstrapped St.dev

Figure: Monte Carlo Mean ±1 SE estimates

NB: Bootstrap SE based on one realization of the data

- Estimated SEs are
mostly accurate for
spline-SMDs and
ANN-SMDs, but less so
for IS and ES

- (Criterion) bootstrap
inference for SMD
estimators has
reasonable coverage
(not shown here)
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MC 2, but R1 enters through R2
1/2 + R1f2(X2) (more sensitivity check

of ANN SMD)

0.6 0.8 1.0 1.2 1.4

dim(X) = 0, corr(X, X) = N

dim(X) = 5, corr(X, X) = N

dim(X) = 5, corr(X, X) = Y

dim(X) = 10, corr(X, X) = N

dim(X) = 10, corr(X, X) = Y

n = 1000

0.6 0.8 1.0 1.2 1.4

n = 5000

P-ISMD [1L 40W sigmoid]
OP-ISMD [1L 40W sigmoid]
OP-OSMD [1L 40W sigmoid]
Spline(3,2) [P-ISMD]
Spline(3,2) [OP-OSMD]

Figure: Monte Carlo Mean ±1 Monte Carlo Stdev
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Estimation of the partial derivative
In this model, the partial derivative ∇1h0 is of the form f1(R2) + f2(X2), and we evaluate
performance estimating f1, f2

1.0 0.5 0.0 0.5 1.0 1.5 2.0
r1

1

0

1

2

3

f1
EY2[f1(r1, Y2)] [Spline(4, 2)]

EY2[f1(r1, Y2)] [1L 40W sigmoid]

Figure: Estimated f1 versus true f1. Single sample for N = 10,000

Estimated f1 is calculated by taking ∇1ĥ− f2(x2). We plot expectation marginalizing over variables
other than r1.
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Estimation of f1, f2

0.0 0.2 0.4 0.6 0.8 1.0
x2

0.5

0.0

0.5

1.0

1.5

2.0

2.5
f2
EY2[f2(x2, Y2)] [Spline(4, 2)]

EY2[f2(x2, Y2)] [1L 40W sigmoid]

Figure: Estimated f2 versus true f2. Single sample for N = 10,000

Estimated f2 is calculated by taking ∇1ĥ− f1(r1). We plot expectation marginalizing over
variables other than x2.
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Calibration to Gasoline Demand

1.75 1.50 1.25

ES-X [150/300 nearest neighbors]

ES [150/300 nearest neighbors]

ES [5 nearest neighbors]

IS-X

IS

OP-OSMD

P-ISMD

N = 5000

1.75 1.50 1.25

N = 10, 000

depth 1, width 10, relu
depth 1, width 10, sigmoid
depth 1, width 20, relu
depth 1, width 20, sigmoid
depth 3, width 10, relu
depth 3, width 10, sigmoid
depth 3, width 20, relu
depth 3, width 20, sigmoid
Spline
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Main Takeaways from our Monte Carlo Studies
In our experience,

- ANNs are useful for approximating unknown functions of high dimensional
endogenous or exogenous variables.

- Choices of ANN activation (ReLU vs Sigmoid), layers and widths do not matter much
when approximating smooth functions of moderately high dimension (13).

- ANN OP-OSMD and ANN “IS” have smaller biases than ANN P-ISMD.
- Compared to ANN OP-OSMD, ANN ES/ES-X is more sensitive to estimating

weighting matrix and can be more biased.
- Stable inferences are currently more difficult to achieve for ANN based estimators in

NPIV models.
- Spline based estimators (P-SMD, OP-SMD, IS/IS-X, ES/ES-X) for β are less biased,

more stable and accurate, even in NPIV models with high-dimensional (13) continuous
covariates.

- Gap between theory and current practice.
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Rest of the Talk

- Recall semiparametric efficiency bound for β0 = E[a(Y2)∇1h0(Y2)]

- Two types of efficient estimation for β0:
- efficient score/influence estimation
- optimal minimum distance (MD) estimation.

- ANN approximation error rates for function h0.
- Monte Carlo comparisons of many inefficient and efficient estimators for β0:

- various ANN sieve MD estimators
- ANN sieve MD vs spline sieve MD vs AGMM estimators
- ANN sieve MD vs sieve score vs cross-fit sieve score estimators
- various ways to compute standard errors.

- Empirical illustrations: averaged price elasticity in endogenous demand curves
- Conclusion and extension.
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Average Elasticity of Nonparametric Gasoline Demand
P-ISMD OP-OSMD IS

Sigmoid [1L] -1.28 -1.24 -1.12
[-1.69, -0.9] [-1.64, -0.87] (0.22)

Sigmoid [3L] -1.24 -1.28 -1.11
[-1.65, -0.9] [-1.64, -0.87] (0.22)

ReLU [3L] -1.27 -1.25 -1.14
[-1.65, -0.9] [-1.64, -0.87] (0.22)

Spline(3, 2) -1.17 -1.2
[-1.57, -0.8] [-1.6,-0.8]

Blundell et al. (2012) OLS OLS TSLS
-0.83 -0.85 -1.24

(0.148) (0.15) (0.2)

- Data: National Household Travel Survey (Blundell, Horowitz and Parey, 2012)
- 7 Covariates: log gasoline price, log income, household size, driver, household age, number

working, public transit distance
- Instrumenting gasoline price with distance to Gulf of Mexico
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Average Price Derivative of Nonparamatric Multi-Product Demand
Non-organic

IS P-ISMD OP-OSMD

Sigm [1L] -1.649 -1.530 -1.747
(0.04) (0.04) (0.03)

Relu [1L]
-1.648 -1.590 -1.706
(0.04) (0.04) (0.04)

Relu [3L]
-1.648 -1.634 -1.659
(0.04) (0.04) (0.06)

Spline(3,2) -1.611 -1.648 -1.676
(0.04) (0.04) (0.04)

Organic

IS P-ISMD OP-OSMD

Sigm [1L] -3.235 -2.409 -3.382
(0.07) (0.09) (0.06)

Relu [1L]
-3.236 -2.197 -2.129
(0.07) (0.06) (0.08)

Relu [3L]
-3.232 -2.206 -2.122
(0.07) (0.07) (0.14)

Spline(3,2) -3.194 -3.232 -3.124
(0.06) (0.07) (0.06)

- Data: Nielsen strawberry demand data (Compiani, 2019)*
- 6 Covariates: Strawberry Prices (non-organic, organic), Income, Lettuce demand (Taste for organic proxy),

State-level sale of non-strawberry fresh fruits, Average outside good price
- 5 excluded Instruments: 3 Hausman IV (Prices in neighbouring markets), 2 Strawberry spot prices

(marginal cost measures)

*These results do not necessarily represent the views of the Nielsen Company
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Concluding Remarks

- ANNs are useful for approximating unknown functions of high dimensional
endogenous or exogenous variables.

- ANN OP-OSMD and ANN IS/IS-X have smaller biases than ANN P-ISMD.
- In our experience so far, stable and accurate inferences are currently more challenging

to achieve for ANN based estimators in NPIV models.
- Be aware of many free tuning parameters.
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Extensions in Theory: Chen, Liao and Wang (2021)

- Multi-layer ANN optimally weighted quasi likelihood ratio inference for possibly
slower than root-n functionals in general conditional moment restrictions time series
setting:

E[ρ1(Zt ; β01, β02,h0(Y2,t ))] = 0 , E[ρ2(Zt ; β02,h0(·))|Xt ] = 0.

Leading Examples:
- weighted average derivative of nonparametric quantile instrumental variables model,

(endogenous default, conditional value-at-risk, etc))

β01 = E[a(Y2,t )∇1h0(Y2,t )], E[1(Y1,t ≤ h0(Y2,t ))− τ|Xt ] = 0.

- Off-policy evaluation in reinforcement learning, Bellman equation.
- more difficult to implement accurate inference in practice.
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THANK YOU for ATTENDING the TALK!
COMMENTS AREWELCOME!
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Recall semiparametric efficiency bound for β0
Back

- Let σ2
0 ≡ Var(a(Y2)∇1h0(Y2)− β0 − Γ(X )[Y1 − h0(Y2)]), with

Γ(X ) ≡ Cov(a(Y2)∇1h0(Y2)− β0,Y1 − h0(Y2) | X )

Σ(X )
, Σ(X ) ≡ Var(Y1 − h0(Y2) | X )

J0 ≡ inf
r∈W

E

{
(1 + E[a(Y2)∇1r (Y2) + Γ(X )r (Y2)])

2

σ2
0

+
(E[r (Y2) | X ])2

Σ(X )

}
(2)

W = {r : E[Σ(X )−1(E{r (Y2)|X})2] + (E{a(Y2)∇1r (Y2) + Γ(X )r (Y2)})2 < ∞}.
- E[v?

e (Y2)|X ] = (J0)
−1E[r0(Y2)|X ], where r0 is one solution (not necessarily unique) to

the optimization (2).
- Under completeness condition,

v?
e (Y2) = (J0)

−1r0(Y2) =
r0(Y2)σ

2
0

E[1 + a(Y2)∇1r0(Y2) + Γ(X )r0(Y2)]
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Examples of Linear Sieves (Series)
Back

- Let ρ∞n ≡ infg∈Hn ||g − h0||∞ be the sieve approximation errors to
h0 ∈ H = Λp([0,1]d ) (Hölder class) in L∞([0,1]d , leb)-norm.

- Let Hn be a tensor product linear sieve for H, with dim(Hn) = kn.
- The linear sieve approximation error rates for h0 ∈ H = Λp([0,1]d ) are:
Polynomials. ρ∞n = O(k−p/d

n ). (see Timan 63)
Trigonometric polynomials. ρ∞n = O(k−p/d

n ). (see Timan 63)
r−th order Splines (with r > p). ρ∞n = O(k−p/d

n ) (see Schumaker 81).
m−th order Orthogonal wavelets (with m > p). ρ∞n = O(k−p/d

n ) (see Meyer, 92).

- “Curse of Dimensionality”: for fixed smoothness p, the approximation error rate
ρ∞n = O(1) as d = dim(X ) goes to infinity
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Examples of Nonlinear Sieves: Single-hidden Layer ANN
Back

Barron class: H = {h ∈ L2(X , leb) :
∫
Rd |w ||h̃(w)|dw < ∞}, h̃(w) ≡

∫
exp(−iwx)h(x)dx

is the Fourier transform of h.
Sigmoid ANN. sANN(kn) =

{
∑kn

j=1 αjS(γ
′
jx + γ0,j) : γj ∈ Rd , αj ,γ0,j ∈ R

}
, where

S : R → R is a sigmoid activation function, i.e., a bounded non-decreasing function such
that limu→−∞ S(u) = 0 and limu→∞ S(u) = 1. Examples of S():

- heaviside S(u) = 1{u ≥ 0};
- logistic S(u) = 1/(1 + exp{−u});
- Gaussian sigmoid S(u) = (2π)−1/2

∫ u
−∞ exp(−y2/2)dy ;

Barron (1993): sANN(kn) sieve approximation error rate in L2(X , leb)-norm is no slower
than O([kn]−1/2). Makovoz (1996) improved it to O([kn]−1/2−1/(2d)) for the heaviside S;
Chen and White (1999) improved it to O([kn]−1/2−1/(d+1)) for general S. (For other
nonlinear sieves see, e.g. Chen (2007))
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