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Hybrid Zones

A hybrid zone is a narrow
geographic region where two
genetically distinct populations
are found close together and
hybridise to produce offspring of
mixed ancestry.

They are maintained by a balance
between selection and dispersal.

With thanks to Nick Barton and his group



A mathematical model

We focus on selection against heterozygosity

Individuals carry two copies of a gene that occurs as a or A.

Hardy-Weinberg proportions: w = proportion of a-alleles,

aa aA AA

w2 2w(1− w) (1− w)2

Relative fitnesses:
aa aA AA

1 1− s 1



Reproduction

▶ Each heterozygote (aA) produces (1− s) times as many germ
cells (cells of same genotype) as a homozygote (aa or AA);

▶ Germ cells split into effectively infinite pool of gametes
(containing just one copy of gene),

with proportion of type a

w∗ =

(
w2 + w(1− w)(1− s)

)
(
w2 + 2w(1− w)(1− s) + (1− w)2

)
=

w2 + w(1− w)(1− s)

1− 2sw(1− w)

w∗ =
w2 + w(1− w)(1− s)

1− 2sw(1− w)
(s small)

= (1− s)w + s(3w2 − 2w3) +O(s2)

= w + sw(1− w)(2w − 1) +O(s2).

w∗ − w = sw(1− w)(2w − 1) +O(s2).

▶ Each offspring formed by sampling two gametes from the pool
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A deterministic approximation

w∗ − w = sw(1− w)(2w − 1) +O(s2).

In an infinite population, if s = α
M (where M is large), measuring

time in units of M generations,

∆w

∆t
= αw(1− w)(2w − 1) +O(s2).

dw

dt
= αw(1− w)(2w − 1).

Add dispersal:

∂w

∂t
=

m

2
∆w + αw(1− w)(2w − 1).
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Finite population effects? Population size N

▶ 2N gametes sampled at random from pool

▶ Fuse at random to produce offspring

Number type a gametes sampled ∼ Bin(2N,w∗)

▶ E[w̃∗] = w∗

▶ E[(w̃∗ − w∗)2] = 1
2Nw∗(1− w∗) = 1

2Nw(1− w) +O( s
N )

In time unit of M generations, if M/2N → β, s = α/M ,

dw = αw(1− w)(2w − 1)dt+
√

βw(1− w)dBt,

With space, morally

dw =
(m
2
∆w + αw(1− w)(2w − 1)

)
dt+

√
βw(1− w)W (dt, dx)

has no solution in dimensions d ≥ 2, but can modify approach



Finite population effects? Population size N

▶ 2N gametes sampled at random from pool

▶ Fuse at random to produce offspring

Number type a gametes sampled ∼ Bin(2N,w∗)

▶ E[w̃∗] = w∗

▶ E[(w̃∗ − w∗)2] = 1
2Nw∗(1− w∗) = 1

2Nw(1− w) +O( s
N )

In time unit of M generations, if M/2N → β, s = α/M ,

dw = αw(1− w)(2w − 1)dt+
√

βw(1− w)dBt,

With space, morally

dw =
(m
2
∆w + αw(1− w)(2w − 1)

)
dt+

√
βw(1− w)W (dt, dx)

has no solution in dimensions d ≥ 2, but can modify approach



Finite population effects? Population size N

▶ 2N gametes sampled at random from pool

▶ Fuse at random to produce offspring

Number type a gametes sampled ∼ Bin(2N,w∗)

▶ E[w̃∗] = w∗

▶ E[(w̃∗ − w∗)2] = 1
2Nw∗(1− w∗) = 1

2Nw(1− w) +O( s
N )

In time unit of M generations, if M/2N → β, s = α/M ,

dw = αw(1− w)(2w − 1)dt+
√

βw(1− w)dBt,

With space, morally

dw =
(m
2
∆w + αw(1− w)(2w − 1)

)
dt+

√
βw(1− w)W (dt, dx)

has no solution in dimensions d ≥ 2, but can modify approach



Finite population effects? Population size N

▶ 2N gametes sampled at random from pool

▶ Fuse at random to produce offspring

Number type a gametes sampled ∼ Bin(2N,w∗)

▶ E[w̃∗] = w∗

▶ E[(w̃∗ − w∗)2] = 1
2Nw∗(1− w∗) = 1

2Nw(1− w) +O( s
N )

In time unit of M generations, if M/2N → β, s = α/M ,

dw = αw(1− w)(2w − 1)dt+
√
βw(1− w)dBt,

With space, morally

dw =
(m
2
∆w + αw(1− w)(2w − 1)

)
dt+

√
βw(1− w)W (dt, dx)

has no solution in dimensions d ≥ 2, but can modify approach



Finite population effects? Population size N

▶ 2N gametes sampled at random from pool

▶ Fuse at random to produce offspring

Number type a gametes sampled ∼ Bin(2N,w∗)

▶ E[w̃∗] = w∗

▶ E[(w̃∗ − w∗)2] = 1
2Nw∗(1− w∗) = 1

2Nw(1− w) +O( s
N )

In time unit of M generations, if M/2N → β, s = α/M ,

dw = αw(1− w)(2w − 1)dt+
√
βw(1− w)dBt,

With space, morally

dw =
(m
2
∆w + αw(1− w)(2w − 1)

)
dt+

√
βw(1− w)W (dt, dx)

has no solution in dimensions d ≥ 2, but can modify approach



Finite population effects? Population size N

▶ 2N gametes sampled at random from pool

▶ Fuse at random to produce offspring

Number type a gametes sampled ∼ Bin(2N,w∗)

▶ E[w̃∗] = w∗

▶ E[(w̃∗ − w∗)2] = 1
2Nw∗(1− w∗) = 1

2Nw(1− w) +O( s
N )

In time unit of M generations, if M/2N → β, s = α/M ,

dw = αw(1− w)(2w − 1)dt+
√
βw(1− w)dBt,

With space, morally

dw =
(m
2
∆w + αw(1− w)(2w − 1)

)
dt+

√
βw(1− w)W (dt, dx)

has no solution in dimensions d ≥ 2, but can modify approach



Examples of hybrid zones

Maintained by selection?

∂w

∂t
=

m

2
∆w + αw(1− w)(2w − 1)

plus noise

or, eg changes in environment?

©2019, Steven M Carr

Width of zone

≈
√

2m
α
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Zooming out

Applying a diffusive rescaling t 7→ t
ε2
, x 7→ x

ε , the Allen-Cahn
equation becomes

∂w

∂t
=

m

2
∆w +

α

ε2
w(1− w)(2w − 1).

For convenience, set m = 2, α = 1.

For sufficiently regular initial conditions, as ε → 0, the solution
converges to the indicator function of a region whose boundary
evolves according to curvature flow.



(Mean) Curvature flow

▶ Γt : S
1 → R2 smooth embeddings;

▶ nt(u) unit (inward) normal vector to Γt at u;

▶ κ = κt(u) curvature of Γt at u.

∂Γt(u)

∂t
= κt(u)nt(u). Defined up to fixed time T

This point moves faster



The Allen-Cahn equation and curvature flow

d(x, t) = signed distance x to Γt

Γ0 = {x ∈ R2 : w0(x) =
1
2}

w0 >
1
2 inside Γ, < 1

2 outside

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − 1).

w

Γt

w 0 
1 

Theorem (Chen 1992)
Fix T ∗ ∈ (0, T ). Let k ∈ N. There exists ε(k) > 0, and
a(k), c(k) ∈ (0,∞) such that for all ε ∈ (0, ε(k)) and t satisfying
aε2| log ε| ≤ t ≤ T ∗,

1. for x such that d(x, t) ≥ cε| log ε|, we have w(t, x) ≥ 1− εk;

2. for x such that d(x, t) ≤ −cε| log ε|, we have w(t, x) ≤ εk.



A probabilistic proof (E. Freeman, Penington, 2017)

Ternary branching Brownian motion

▶ Individual lifetime
Exp(1/ε2);

▶ During lifetime follows
Brownian motion;

▶ Replaced by three
offspring.



Majority voting in (Historical) BBM

Adaptation of idea of del Masi, Ferrari & Lebowitz (1986)
W (t) = historical ternary BBM.

For a fixed function w0 : R2 → [0, 1], define a voting procedure on
W (t) as follows.

1. Each leaf, independently, votes 1 with probability w0(Wi(t))
and otherwise votes 0.

2. At each branch point the vote of the parent particle is the
majority vote of the votes of its three children.

This defines an iterative voting procedure, which runs inwards from
the leaves of W (t) to the root.
Define Vw0(W (t)) to be the vote associated to the root.



Majority voting and the Allen-Cahn equation

0

00 0 1 1 1 0 0 1 0 1

0

1

0

1

W (t) = historical BBM, branching rate 1
ε2
; w0 : R2 → [0, 1].

w(t, x) = Pε
x [Vw0(W (t)) = 1]

Note that if probability of voting 1 is w, the probability that the
majority of 3 independent votes is 1 is
w3 + 3w2(1− w) = w(1− w)(2w − 1) + w.

solves

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − 1), w(0, x) = w0(x).



Majority voting and the Allen-Cahn equation

0

00 0 1 1 1 0 0 1 0 1

0

1

0

1

W (t) = historical BBM, branching rate 1
ε2
; w0 : R2 → [0, 1].

w(t, x) = Pε
x [Vw0(W (t)) = 1]

Note that if probability of voting 1 is w, the probability that the
majority of 3 independent votes is 1 is
w3 + 3w2(1− w) = w(1− w)(2w − 1) + w.

solves

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − 1), w(0, x) = w0(x).



Majority voting and the Allen-Cahn equation

0

00 0 1 1 1 0 0 1 0 1

0

1

0

1

W (t) = historical BBM, branching rate 1
ε2
; w0 : R2 → [0, 1].

w(t, x) = Pε
x [Vw0(W (t)) = 1]

Note that if probability of voting 1 is w, the probability that the
majority of 3 independent votes is 1 is
w3 + 3w2(1− w) = w(1− w)(2w − 1) + w.

solves

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − 1), w(0, x) = w0(x).



Probabilistic proof of Chen’s result

Representation reduces result to

1. for x with d(x, t) ≥ cε| log ε|, Pε
x [Vw0(W (t)) = 1] ≥ 1− εk;

2. for x with d(x, t) ≤ −cε| log ε|, Pε
x [Vw0(W (t)) = 1] ≤ εk.

Two mechanisms:

▶ Majority voting amplifies voting bias;
(p > 1

2 =⇒ p3 + 3p2(1− p) > p;
p < 1

2 =⇒ p3 + 3p2(1− p) < p)

▶ for two-dimensional BM W and one-dimensional BM B,
couple so that d(Ws, t− s) ≈ Bs when Ws is close to Γt−s

(uses regularity assumptions on initial condition)
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Some heuristics

Small ε =⇒ many rounds of majority voting ; generation of an
interface.
Suppose there is already a sharp (circular) interface.

x

R

For the point x,

Px[Wδt outside ball] = 1/2

Px[Bδt +
1
Rδt > R] = 1/2

x = R− 1
Rδt.

c.f. Merriman-Bence-Osher algorithm



What if homozygotes not equally fit?

Relative fitnesses:
aa aA AA

1 + γs 1− s 1

Equation becomes

∂w

∂t
= ∆w + sw(1− w)((2 + γ)w − 1).

Take γ = O(ε) and rescale:

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − (1− νε)).



Sensitivity to asymmetry (Gooding, 2018)

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − (1− νε)).

Limit a mixture of curvature flow and ‘constant flow’:

∂Γt(u)

∂t
=

(
− ν + κt(u)

)
nt(u). Defined up to fixed time T



Invasions

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − (1− νε)).

In d = 1, travelling wave solution (pushed wave)

w(x, t) =

(
1 + exp

(
− x+ νt

ε

))−1

wave speed −ν, connects 0 at −∞ to 1 at ∞



Blocking (E., Gooding, Letter, 2022)

Consider a domain Ω ⊆ R2 (and containing the x-axis, say)

When do we have invasion?

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − (1− νε)), w(0, x) = 1x1≥0.

Theorem (H. Berestycki et al., 2016) (paraphrased)
Depending on the geometry of the domain:

1. complete invasion;

2. partial propagation;

3. total blocking.

Ω

2R0 2r 0
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A more precise statement


∂w
∂t = ∆w + 1

ε2
w(1− w)(2w − (1− νε));

∂w
∂n = 0, w(x, 0) = 1x1≥0;

Ω

Nr

r
O

Theorem
Suppose r0 < r < d−1

ν ∧R0. Let k ∈ N. Then for ε ∈ (0, ε̂(k))

x ∈ {x = (x1, . . . , xd) : x1 < −r−M(k)ε| log(ε)|} =⇒ w(x, t) ≤ εk.



Other domains

E.g. cylindrical domain:

Ω =
{
(x1, x

′), x1 ∈ R, x′ ∈ Rd−1, ∥x′∥ ≤ H + h(−x1)
}

Key is coupling around a portion of a spherical shell

rH + h(z)

a

eΩ

r 0

α

α

r 0

sin(α)

If r0ν < (d− 1) sinα wave blocked for small ε.



Effect of noise

With space, morally,

dwt =
(m
2
∆w+αw(1−w)(2w− 1)

)
dt+

√
βw(1− w)W (dt, dx)

β inversely proportional to population density

Two dimensions, narrow isthmus (r0 < 1/ν):

Ω

2R0 2r 0

▶ If genetic drift is weak (population density high), the spread of
the favoured type is blocked;

▶ If genetic drift is strong (population density low), the favoured
population spreads across the whole domain, but we have
coexistence.

Proof uses voting on a branching and coalescing system



Conclusion

▶ Space matters

▶ The shape of the domain matters

▶ Noise matters



Where next?

With energy, could extend this approach to traits determined by
the types at a (small) number of genetic loci

▶ What about traits determined by accumulation of small effects
at very large number of loci (plus some environmental noise)?

Simplest case ; the ‘infinitesimal model’.

Even loci on different chromosomes are constrained by a pedigree;
the pedigree mediates the effect of Mendelian inheritance

Noise matters: need a tractable mathematical model that can keep
track of both trait values and ‘pedigree relationships’ between
individuals
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