Schubert Eisenstein series AND
 Poisson summation for Schubert varieties

YoungJu Choie

POSTECH, KOREA
Arithmetic Quantum Field Theory

March 272024

What is it?

Schubert Eisenstein series are defined by restricting the summation in a degenerate Eisenstein series to a particular Schubert variety.

It occurred in the work of Eisenstein series, Kronecker limit formula and connection among Eisenstein series, multiple Dirichlet series and Kashiwara crystals, etc, in disguised form.

Bump (1984), Bump-Goldfeld (1984), Vinogradov and Takhtajan (1978), Brubaker-Bump- Friedberg (2011) etc

STUDY

- In the case of $G L_{2}$ this is known case (only two cases)
- In the case of $G L_{3}$ over \mathbb{Q} it is known that these Schubert Eisenstein series have meromorphic continuations in all parameters (Bump- C)
- and conjectured the same is true in general .
- We revisit this problem.

Recent Progress

- It turns out that one can relate this conjecture to the program of Braverman-Kazhdan aimed at establishing generalizations of the Poisson summation formula.
- We prove the Poisson summation formula for certain schemes closely related to Schubert varieties and use it to refine and establish the conjecture in many cases.
- These results are joint work with Jayce Getz.

A GENERAL G

set up
(1) G : a split reductive group over a global field F (ex: $G=G L_{n}, F=\mathbb{Q}$)
(2) B : a Borel subgroup of G (ex: B upper triangular)
(3) T : a maximal torus of G
(1) $W=N(T) / T$: Weyl group (ex: permutation)
(6) \hat{T} : the maximal torus of the L-group $\hat{G}(\mathbb{C})$
(0) χ_{ν} : a character on $T(F) \backslash T\left(\mathbb{A}_{F}\right)$ parametried by $\nu \in \hat{T}(\mathbb{C})$
(1) \mathbb{A}_{F} : the adele ring of F
(8) $f_{\nu} \in \operatorname{In} d_{B\left(\mathbb{A}_{F}\right)}^{G\left(\mathbb{A}_{F}\right)}\left(\chi_{\nu}\right)$: an element of the corresponding induced representation, so that

$$
f_{\nu}(b g)=\left(\delta^{\frac{1}{2}} \chi_{\nu}\right)(b) f_{\nu}(g), b \in B
$$

Eisenstein Series and Flag variety

(1) From Bruhat decomposition $G=\cup_{w \in W} B w B$

$$
X:=B \backslash G=\cup_{w \in W} Y_{w}, \quad Y_{w}:=\operatorname{Im}(B w B \rightarrow B \backslash G) \text { Schubert cell }
$$

(2) Schubert variety

$$
X_{w}:=\overline{Y_{w}}=\cup_{u \leq w} Y_{u} \text { with Bruhat order } " \leq "
$$

(3) Schubert Eisenstein series

$$
E_{w}\left(g, f_{\nu}\right)=\sum_{\gamma \in X_{w}(F)} f_{\nu}(\gamma g)
$$

Schubert Eisenstein Series

For each $w \in W$,

$$
E_{w}\left(g, f_{\nu}\right)=\sum_{\gamma \in X_{w}(F)} f_{\nu}(\gamma g)
$$

Remark.

(1) If $w \in W$ is the long Weyl group element $w_{0}, E_{w_{0}}\left(g, f_{\nu}\right)$ is the usual Eisenstein series, so automorphic in G!
(2) In general $E_{w}\left(g, f_{\nu}\right)$ is no longer automorphic in G !

Question

(1) What is this?
(2) How to compute this ?
(3) What is good for?

Bott-Samelson Varieties

How to understand this?: we use

the relationship among Bott-Samelson varieties, Schubert varieties and Bott-Samelson Factorization
(1) α_{i} : simple roots
$\sigma_{i} \in W$: the corresponding simple reflections
(2) $\mathfrak{w}=\left(\sigma_{i_{1}}, \sigma_{i_{2}}, \cdots, \sigma_{i_{k}}\right):$ a reduced decomposition of $w \in W$, which is a product of simple reflections $w=\sigma_{i_{1}} \cdots \sigma_{i_{k}} \in W$
(3) P_{j} : the minimal parabolic subgroup generated by
B and the one-dimensional unipotent subgroup $U_{\alpha_{j}}$ tangent to $-\alpha_{j}$.
(1) define a left action of B^{k} on $P_{i_{1}} \times \cdots P_{i_{k}}$ by

$$
\left(b_{1}, \cdots, b_{k}\right) \cdot\left(p_{i_{1}}, \cdots, p_{i_{k}}\right)=\left(b_{1} p_{i_{1}} b_{2}^{-1}, b_{2} p_{i_{2}} b_{3}^{-1}, \cdots, b_{k} p_{i_{k}}\right)
$$

(0. The quotient $B^{k} \backslash\left(P_{i_{1}} \times \cdots \times P_{i_{k}}\right)$ is the Bott-Samelson variety $Z_{\mathfrak{w}}$

Relationship between Bott-Samelson varieties and Schubert varieties

(1) There is a morphism between Bott-Samelson varieties and Schubert variety

$$
B S_{\mathfrak{w}}: Z_{\mathfrak{w}} \longrightarrow X_{w}
$$

induced by the multiplication map that sends

$$
\left(p_{i_{1}}, \cdots, p_{i_{k}}\right) \rightarrow p_{i_{1}} \cdots p_{i_{k}}
$$

(2) This map is a surjective birational morphism.
(3) Bott-Samelson varieties $Z_{\mathfrak{w}}$ are always nonsingular, so this gives a resolution of the singularities of X_{w}.

A Bott-Samelson factorization

(1) If $B S_{\mathfrak{w}}: Z_{\mathfrak{w}} \longrightarrow X_{w}$ is an isomorphism:
(1) every $\gamma \in X_{w}$ can be written, uniquely,

$$
\begin{gathered}
\gamma=\iota_{\alpha_{1}}\left(\gamma_{1}\right) \cdots \iota_{\alpha_{k}}\left(\gamma_{k}\right), \\
\iota_{\alpha_{i}}: S L_{2} \hookrightarrow G
\end{gathered}
$$

the embedding (Chevalley embedding) of $S L_{2}$ into G corresponding to a simple root α_{i} so that the image of $\iota_{\alpha_{i}}$ lies in the Levi subgroup of P_{i}
(2) Using this factorization Schubert Eisenstein series can be written as building up the Schubert Eisenstein series by repeating $S L_{2}$ summations:

$$
E_{\sigma_{1} \cdots \sigma_{k}}\left(g, f_{\nu}\right)=\sum_{\gamma_{k} \in B_{S L(2)} \backslash S L(2, F)} E_{\sigma_{1} \cdots \sigma_{k-1}}\left(\iota_{\alpha_{k}}\left(\gamma_{k}\right) g, f_{\nu}\right)
$$

(2) Even if $B S_{\mathfrak{w}}: Z_{\mathfrak{w}} \longrightarrow X_{w}$ is not an isomorphism, a modification of this method should be applicable

$G=G L_{3}(\mathbb{R})$

$G=G L_{3}, K=O(3), Z=\operatorname{Cent}(G)$
(1) (Iwasawa decomposition)

$$
g=y_{0}\left(\begin{array}{ccc}
y_{1} y_{2} & x_{1} y_{2} & x_{3} \\
& y_{2} & x_{2} \\
& & 1
\end{array}\right) k_{0} \in G / Z K, \quad y_{0} \neq 0
$$

(2) with the Langlands parameters $\nu=\left(\nu_{1}, \nu_{2}\right) \in \mathbb{C}^{2}$, take

$$
\left(\delta^{\frac{1}{2}} \chi_{\nu}\right)\left(\begin{array}{ccc}
y_{1} y_{2} & x_{1} y_{2} & x_{3} \\
& y_{2} & x_{2} \\
& & 1
\end{array}\right)=\left|y_{1}\right|^{2 \nu_{1}+\nu_{2}}\left|y_{2}\right|^{\nu_{1}+2 \nu_{2}}
$$

(3) so

$$
f_{\nu}(g)=\left|y_{1}\right|^{2 \nu_{1}+\nu_{2}}\left|y_{2}\right|^{\nu_{1}+2 \nu_{2}} f\left(k_{0}\right), f\left(k_{0}\right)=1
$$

(1) $W=\left\langle\sigma_{1}=\left(\begin{array}{ll}1 & \\ 1 & 1\end{array}\right), \sigma_{2}=\left(\begin{array}{ll}1 & \\ & 1\end{array}\right)\right\rangle$

$G=G L_{3}(\mathbb{R})$

(1) (Bruhat decomposition)

$$
G=\cup_{w \in W} B w B \text {, with Borel subgroup } B
$$

(2)

$$
\begin{gathered}
\text { Flag variety } X:=B \backslash G=\cup_{w \in W} Y_{w}, \\
\text { Schubert cell } Y_{w}:=\operatorname{Im}(B w B \rightarrow B \backslash G)
\end{gathered}
$$

(3) Schubert variety

$$
X_{w}=\overline{Y_{w}}=\cup_{u \leq w} Y_{u}
$$

(1) Study

$$
E_{w}\left(g, f_{\nu}\right)=\sum_{\gamma \in X_{w}(\mathbb{Z})} f_{\nu}(\gamma g)
$$

Schubert Eisenstein series

$$
w \in\left\{i d, \sigma_{1}, \sigma_{2}, \sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{1}, \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}=w_{0}\right\}
$$

$G L_{3}$ (BuMP-C)

Using Bott-Samelson factorization we get :
(1) for $w=\sigma_{1}$,

$$
E_{\sigma_{1}}\left(g, f_{\nu_{1}, \nu_{2}}\right)=\left(y_{1} y_{2}^{2}\right)^{\frac{1}{2} \nu_{1}+\nu_{2}} E\left(\frac{3 \nu_{1}}{2}, \tau_{1}\right)
$$

with $G L_{2}$-Eisenstein series $E\left(s, \tau_{1}\right)=\sum_{c, d \in \mathbb{Z},(c, d) \neq(0,0)} \frac{y_{1}{ }^{s}}{\left|c \tau_{1}+d\right|^{s}}$
(2) Similarly for $w=\sigma_{2}$
(3) for $w=\sigma_{1} \sigma_{2}$,

$$
E_{\sigma_{1} \sigma_{2}}\left(g, f_{\nu_{1}, \nu_{2}}\right)=\sum_{\gamma_{2} \in B_{S L_{2}}(\mathbb{Z}) \backslash S L_{2}(\mathbb{Z})} E_{\sigma_{1}}\left(\left(\begin{array}{ll}
1 & \\
& \gamma_{2}
\end{array}\right) g, f_{\nu_{1}, \nu_{2}}\right)
$$

(9) similarly for $w=\sigma_{2} \sigma_{1}$

These are the case when $B S_{\mathfrak{w}}: Z_{\mathfrak{w}} \longrightarrow X_{w}$ is an isomorphism

$G L_{3}$ (BuMP-C)

(1) Note two reduced words $\mathfrak{w}=\left(\sigma_{1}, \sigma_{2}, \sigma_{1}\right)$ or $\mathfrak{w}=\left(\sigma_{2}, \sigma_{1}, \sigma_{2}\right)$ representing long element $w_{0}=\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$
(2) If \mathfrak{w} is either of these, $B S_{\mathfrak{w}}: Z_{\mathfrak{w}} \rightarrow X_{w}$ is not isomorphism
(3) But since it is birational, it is a local isomorphism on the complement of a closed subvariety
(9) $B S_{\mathfrak{w}}: Z_{\mathfrak{w}} \rightarrow X_{w_{0}}$ consists of discarding the auxiliary piece of data, which is a subvariety of $X_{w_{0}}$, where $B S_{\mathfrak{w}}$ has a fiber that consists of more than one point
(6) still possible

$$
\begin{aligned}
E_{w_{0}}\left(g, f_{\nu_{1}, \nu_{2}}\right)= & \sum_{\gamma_{3} \in B_{S L_{2}}(\mathbb{Z}) \backslash S L_{2}(\mathbb{Z})}\left(E_{\sigma_{1} \sigma_{2}}-E_{\sigma_{1}}\right)\left(\left(\begin{array}{ll}
\gamma_{3} & \\
& 1
\end{array}\right) g, f_{\nu_{1}, \nu_{2}}\right) \\
& +E_{\sigma_{1}}\left(g, f_{\nu_{1}, \nu_{2}}\right)
\end{aligned}
$$

$G L_{3}$ CASE: (BuMP-C)

Application a connection with Kronecker limit formula for totally real cubic field:
(1) Expansion of Eisenstein series at $\nu_{1}=\nu_{2}=0$:

$$
E_{w_{0}}\left(g, f_{\nu_{1}, \nu_{2}}\right)=\frac{\kappa(g)}{\nu_{1}}+\cdots
$$

(2) $\kappa(g)$ appear in the first Kronecker limit formula of totally real cubic field K over \mathbb{Q} (Bump-Goldfeld (1983))

- \mathfrak{a} : an ideal class of K
- associate \mathfrak{a} to a compact torus of $G L_{3}$
- L_{a} : the period of $\kappa(g)$ over this torus

$$
\lim _{s \rightarrow 0}\left(\zeta(s, \mathfrak{a})-\frac{\rho}{s}\right)=L_{\mathfrak{a}}
$$

$G L_{3}$ CASE: (BuMP-C)

(1) $\kappa(g)$ can be expressed in terms of Schubert Eisenstein series

$$
\begin{gathered}
\kappa(g)=\frac{\rho}{3} \zeta^{*}(2)\left[\hat{E}_{\sigma_{2} \sigma_{1}}^{* *}(g ; 0,0)+E_{\sigma_{1}}^{* *}(g ; 1,0)\right]+c_{0} \\
\kappa(g)=\frac{\rho}{3} \zeta^{*}(2)\left[\hat{E}_{\sigma_{1} \sigma_{2}}^{* *}(g ; 1,0)+\phi_{\sigma_{2}}(g)\right]+c_{0}^{\prime}
\end{gathered}
$$

(2) As a result, at the point where the residue is taken the Schubert Eisenstein series can be promoted to the full $G L_{3}$ automorphicity in the sense of the following:
write

$$
E_{\sigma_{1}}^{*}\left(g ; \nu_{1}, \nu_{2}\right)=\frac{\rho}{2 \nu_{1}}+\phi_{\sigma_{1}}\left(g ; \nu_{2}\right)+0\left(\nu_{1}\right)
$$

Then $\phi_{\sigma_{1}}\left(g ; \nu_{2}\right)$ is essentially $G L_{2}$-automorphic form

$G=G L_{3}:($ Bump-C $)$

Results (C-Bump) contains:
(1) $E_{w}\left(g, f_{\nu}\right)$ on $G L_{3}, w \in W$, have meromorphic continuation to all values of the parameters $\nu=\left(\nu_{1}, \nu_{2}\right)$
(2) $E_{w}\left(g, f_{\nu}\right)$ have some functional equations
(3) a Whittaker coefficient of $E_{\sigma_{1} \sigma_{2}}$, whose p-part is related to the Demazure character

This is a generalization of the Casselman-Shalika formula that express the Whittaker coefficients of Eisenstein series in terms of characters of irreducible representations of the L-group
(1) more \cdots, \cdots

Conjecture for general G

Conjecture

(Bump-C (2014))

- The Schubert Eisenstein series always have meromorphic continuation to all values of the parameters
- Although they will not have the full group of functional equations that Eisenstein series has, they should have some functional equations
- linear combinations of Schubert Eisenstein series can be entire, that is, have no poles in the parameters.
- It may be possible to associate a Whittaker function with E_{w}. This would be an Euler product whose p-part may be expressed in terms of Demazure characters.
- more \cdots, \cdots,

Recent Progress

Instead of using Bott-Samalson factorization
it turns out that one can relate this conjecture to the program of Braverman-Kazhdan aimed at establishing generalizations of the Poisson summation formula.

From now on this is a joint work with Jayce Getz

Another approach

REMARK.

(1) Braverman and Kazhdan introduced the conjectures, now called "Poisson summation conjecture", generalizing the Fourier transform and the Poisson summation formula
(2) Their conjectures may imply that quite general Langlands L-functions have meromorphic continuations and functional equations
(3) Roughly it is about the existence of a nice "Schwartz space " over a spherical variety :

- a spherical variety X for a reductive group G over F is G-variety with an open dense Borel -orbit in X.
- For instance Flag varieties, symmetric spaces are spherical

Poisson Summation conjecture (ROUGH form)

Braveman-Kazhdan, Ngô, Lafforgue, Sakellaridis, etc :

Conjecture

G: a reductive group

- Assume X is a G - spherical variety with smooth locus $X^{\text {sm }}$.
- Then there should be a Schwartz space $\mathcal{S}\left(X\left(\mathbb{A}_{F}\right)\right)<C^{\infty}\left(X^{\mathrm{sm}}\left(\mathbb{A}_{F}\right)\right)$ and a map (Fourier transform)

$$
\mathcal{F}_{X}: \mathcal{S}\left(X\left(\mathbb{A}_{F}\right)\right) \longrightarrow \mathcal{S}\left(X\left(\mathbb{A}_{F}\right)\right)
$$

- satisfying a certain "twisted-equivariance property" under $G\left(\mathbb{A}_{F}\right)$ such that for $f \in \mathcal{S}\left(X\left(\mathbb{A}_{F}\right)\right)$ satisfying certain local conditions

$$
\sum_{x \in X^{\mathrm{sm}}(F)} f(x)=\sum_{x \in X^{\mathrm{sm}}(F)} \mathcal{F}_{X}(f)(x)
$$

refered as " Poisson summation conjecture"

KNOWN CASES

known cases

(1) The only case that is completely understood is that of a vector space
(2) Braverman-Kazhdan space:
(3) Triples of quadratic spaces: Getz-Liu, Getz-Hsu
(1) generalized Schubert varieties: C-Getz
(more...

Note that the above cases are not necessarily spherical

Braverman-Kazhdan space

Braverman-Kazhdan space

- $P<G$: a parabolic subgroup
- $P=M N$ Levi-decomposition
- $P^{d e r}=[P, P], M^{a b}=M / M^{d e r}$
- $X_{P}^{0}:=P^{d e r} \backslash G$: Braverman-Kazhdan space
- there is a left and right action of $M^{a b} \times G$ on X_{P}^{0}

$$
\begin{aligned}
& X_{P}^{0} \times M^{a b} \times G \rightarrow X_{P}^{0} \\
& (x, m, g) \rightarrow m^{-1} \times g
\end{aligned}
$$

- $X_{P}=\overline{X_{P}^{0}}$: affine closure

PLÜCKER EMBEDDING

How to study this space?
Use Plücker embedding

$$
P I_{P}: X_{P} \rightarrow V_{P}:=\prod_{\beta \in \Delta_{P}} V_{\beta}
$$

where V_{β} is an irreducible representation of G with of highest weight dual to coroot β^{\vee}

This embedding is a closed immersion

PLÜCKER EMBEDDING

ExAMPLE

$G=S L_{3}, P=B$

$$
P I_{P}: X_{p} \rightarrow V_{P}=\prod V_{\beta}
$$

- Take a suitable ordering simple root β_{1}, β_{2} of T in B
- $V_{\beta_{1}}, V_{\beta_{2}}$ are standard representations $\mathbb{G}_{a}{ }^{3}, \wedge^{2} \mathbb{G}_{a}{ }^{3}$

Choose $(0,0,1)$ and $(0,1,0) \wedge(0,0,1)$ as the highest weight vectors

- Then
-

$$
P I_{P}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right)=(c, b \wedge c)
$$

(2) $P_{P}\left(X_{P}\right)=$ the cone C points in F-algebra R are given by

$$
C(R)=\left\{\left(v_{1}, v_{2}\right) \in R^{3} \times \wedge^{2} R^{3}: v_{1} \wedge v_{2}=0\right\}
$$

Recipe : action and Pairing

(1) an embedding

$$
\begin{gathered}
P l_{P}: X_{P} \rightarrow V_{P}:=\prod_{\beta \in \Delta_{P}} V_{\beta} \text { is } M^{a b} \text {-equivariant: } \\
P l_{P}\left(m^{-1} g\right)=\omega_{p}(m) P l_{P}(g)
\end{gathered}
$$

with an isomorphism

$$
\omega_{P}: M^{a b} \rightarrow \mathbb{G}_{m}
$$

(2) a paring between X_{P} and $X_{P^{*}}$

- Take an opposite parabolic P^{*} of P
- V_{P}^{\vee} a representation of G dual to V_{P}
- There is an embedding $P l_{P^{*}}: X_{P^{*}} \rightarrow V_{P}^{\vee}$
- Since there is a paring $<,>: V_{P} \times V_{P}^{\vee} \rightarrow \mathbb{G}_{a}$, it induces

$$
\text { a paring }<,>_{P \mid P^{*}}: X_{P} \times X_{P^{*}} \rightarrow V_{P} \times V_{P}^{\vee} \rightarrow \mathbb{G}_{a}
$$

Intertwining operator and Schwartz space

(1) there is an Intertwining operator

$$
\mathcal{R}_{P \mid P^{*}}: \mathcal{C}^{\infty}\left(X_{P}(F)\right) \rightarrow \mathcal{C}^{0}\left(X_{P^{*}}(F)\right)
$$

given by

$$
\mathcal{R}_{P \mid P^{*}}(f)(y):=\int_{N_{P^{*}}(F)} f(n y) d n
$$

(2) Schwartz space $\mathcal{S}\left(X_{P}\right)$ is defined with the condition that Mellin transformation of f and $\mathcal{R}_{P \mid P^{*}}(f)$ have poles no worse than some product of Γ-factors

$$
\mathcal{S}\left(X_{P}\right) \subset \mathcal{C}^{\infty}\left(X_{P}\right)
$$

Fourier transform

(1) Braverman-Kazhdan defined an explicit unitary isomorphism

$$
\mathcal{F}_{P \mid P^{*}}: L^{2}\left(X_{P}\right) \rightarrow L^{2}\left(X_{P^{*}}\right)
$$

commuting with actions of group $M^{a b} \times G$, by re-normalizing the intertwining operator $\mathcal{R}_{P \mid P^{*}}$

Fourier transform

(1) Getz-Hsu-Leslie (2023) gave an explicit formula:
$\mathcal{F}_{P \mid P^{*}}$ is an isomorphism

$$
\mathcal{F}_{P \mid P^{*}}: \mathcal{S}\left(X_{P}\right) \rightarrow \mathcal{S}\left(X_{P^{*}}\right)
$$

with formula

$$
\mathcal{F}_{P \mid P^{*}}=\mu_{P}^{\text {aug }} \circ \mathcal{F}_{P \mid P^{*}}^{\text {geo }}
$$

where

$$
\mathcal{F}_{P \mid P^{*}}^{g e o}(f)\left(y^{*}\right)=\int_{X_{P}^{0}} f(y) \psi\left(<y, y^{*}>_{P \mid P^{*}}\right) d y
$$

and an augmented operator

$$
\begin{gathered}
\mu_{P}^{\text {aug }}: \mathcal{S}\left(X_{P^{*}}\right) \rightarrow \mathcal{C}^{\infty}\left(X_{P^{*}}\right) \\
f \rightarrow \int_{M^{a b}} \psi\left(w_{p}(m)\right)\left|w_{P}(m)\right|^{s+1} \delta_{P^{*}}^{\frac{\lambda}{2}}(m) f\left(m^{-\lambda} x\right) d m
\end{gathered}
$$

$\lambda \in \mathbb{Z}$ and $s \in \mathbb{C}$ depends on M^{\vee} and N^{\vee}

generalized Schubert Eisenstein series

pursuing Schubert varieties and the Bott-Samelson resolution to study higher rank analogues we observe:
(1) (observation) left side of $X_{w}=\overline{B w B}$ often fixed by larger group then B

$$
\begin{aligned}
& X_{\sigma_{1} \sigma_{2}}=\overline{B \sigma_{1} \sigma_{2} B}=P_{2,1} \sigma_{1} \sigma_{2} P_{1,2}, \\
& P_{2,1}:=\left\{\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
d & h
\end{array}\right) \in S L_{3}\right\}, \quad P_{1,2}:=\left\{\left(\begin{array}{ccc}
a & b & c \\
e & f \\
g & h
\end{array}\right) \in S L_{3}\right\}
\end{aligned}
$$

(2) Instead of pursuing Schubert varieties and the Bott-Samelson resolution to study higher rank analogues of the left hand side of the above equation, we generalize and study the right hand side directly.

Generalized Schubert cells (C-Getz)

(1) a pair of parabolic subgroups $P<P^{\prime} \leq G$ such that P is maximal in P^{\prime}
(0) $Y \subset G$: any variety stable under left multiplication by P^{\prime} (ex: $Y=X_{w}=\overline{B w B}, Y=\overline{P \gamma H}, H \leq G$)

- $Y_{P}:=\operatorname{Im}\left(Y \rightarrow X_{P}^{0}\right)=P^{d e r} \backslash Y$
- Schwartz Space

$$
\mathcal{S}\left(Y_{P}\left(\mathbb{A}_{F}\right)\right) \subset C^{\infty}\left(X_{P}\left(\mathbb{A}_{F}\right)\right)
$$

- $\mathcal{S}\left(Y_{P}\left(\mathbb{A}_{F}\right)\right)$ is preserved under the left action of $M^{a b}$ so we get Mellin transforms

$$
\begin{aligned}
& \mathcal{S}\left(Y_{P}\left(\mathbb{A}_{F}\right)\right) \rightarrow \operatorname{Ind}_{P}^{G}\left(\chi_{\nu}\right) \mid Y_{P} \\
& f \rightarrow f_{\nu}(y)=\int_{M^{a b}(F)} \delta_{P}^{\frac{1}{2}}(m) \chi_{\nu}\left(\omega_{P}(m)\right) f\left(m^{-1} y\right) d m
\end{aligned}
$$

f_{ν} converges absolutely for $\operatorname{Re}\left(\nu_{0}\right)$ large

Result (C- Getz (2022))

Define the following generalized Schubert Eisenstein series: for $f \in \mathcal{S}\left(Y_{P}\left(\mathbb{A}_{F}\right)\right) \rightarrow f_{\nu} \in \operatorname{Ind}_{P}^{G}\left(\chi_{\nu}\right)$

$$
E_{Y_{P}}\left(g, f_{\nu}\right):=\sum_{\gamma \in M^{a b}(F) \backslash Y_{P}(F)} f_{\nu}(\gamma g)
$$

Theorem

(C-Getz (2022))

- Let $f \in \mathcal{S}\left(Y_{P}\left(\mathbb{A}_{F}\right)\right)$ and $f_{\nu} \in \operatorname{Ind}_{P}^{G}\left(\chi_{\nu}\right), \nu=\left(\nu_{0}, \cdots, \nu_{k}\right)$
- Fix ν_{1}, \cdots, ν_{k} such that $\operatorname{Re}\left(\nu_{i}\right)$ is sufficiently large for $1 \leq i \leq k$.
- Then $E_{Y_{P}}\left(g, f_{\nu}\right)$ and $E_{Y_{P^{*}}}\left(g, \mathcal{F}_{P \mid P^{*}}(f)_{\nu}^{*}\right)$ are meromorphic in ν_{0}.
- Moreover one has

$$
E_{Y_{P}}\left(g, f_{\nu}\right)=E_{Y_{P^{*}}}\left(g, \mathcal{F}_{P \mid P^{*}}(f)_{\nu}^{*}\right)
$$

Partial answer of Bump-C

set-up:

- Take w \in G,
- P^{\prime} : the stabilizer of $\overline{P w B}$ under the left action of G
- we may consider the family of generalized Schubert Eisenstein series

$$
E_{P \operatorname{der} \backslash \overline{P_{w B}}}\left(g, f_{\nu}\right)
$$

Then Theorem provides, when $P<P^{\prime}$ is maximal,

REMARK.

(1) one functional equation of $E_{P_{\text {der }} \backslash \overline{P_{w B}}}\left(g, f_{\nu}\right)$ with respect ν_{0}
(2) the meromorphic continuation of $E_{P d e r ~} \frac{P_{w B}}{}\left(g, f_{\nu}\right)$ in ν_{0}
(3) a linear combinations of these generalized Schubert Eisenstein series is entire in ν_{0} for fixed ν_{1}, \cdots, ν_{k}.

PROOF

(1) To prove Theorem we prove Poisson conjecture for Y_{P}
(2) we don't know if $Y_{P}=P^{\text {der }} \backslash Y, Y$ is left invariant under P^{\prime}, is spherical, but it is true for many cases)
(3) we proved meromorphic continuation for one parameter ν_{0} although it should hold for all ν_{j}

Thank you very much!

