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1. Introduction

The exact formulae of arithmetic geometry, most of which are still largely conjectural, are unques-
tionably some of the most mysterious, beautiful, and important questions in mathematics today. In
these three lectures, I want to discuss the history of these exact formulae and the work which has been
done on them in the past. Specifically, I intend to discuss the history of some key discoveries related
to the following questions:- (i) The procedure of infinite descent, (ii) Dirichlet’s class number formula,
(iii) Kummer’s work on cyclotomic fields and Iwasawa’s profound extension of it, (iv) the conjecture of
Birch and Tate, and (v) the conjecture of Birch and Swinnerton-Dyer. I will concentrate on the first key
examples, rather than discussing the more general theorems which followed.

2. Lecture 1

In this first lecture, I will briefly discuss several major discoveries made before 1900, which were
enormously influential in all subsequent work on the exact formulae of arithmetic geometry made in the
20th century.

The first is Fermat’s discovery in the 1630’s of what became known as his method of infinite descent,
which enabled him to prove that there is no right-angled triangle of area 1, all of whose sides have lengths
in Q, the field of rational numbers. His argument can be explained to high school students, and I will
sketch it now, leaving you to fill in the details. Denote a right-angled triangle with side lengths a, b, c (c
will be the length of the hypothenuse) by [a, b, c]. We say the triangle [a, b, c] is primitive if a, b, c are all
integers with greatest common divisor 1. If [a, b, c] is primitive, it is not difficult to see that one of a and
b, say b, must be even, and that there then exist relatively prime positive integers m,n with

a = n2 −m2, b = 2nm, c = n2 +m2.

Suppose now that there exists a primitive ∆1 = [a1, b1, c1] whose area is the square of an integer. Hence,
by the previous remark, there exist relatively prime positive integers m1, n1 such that

a1 = n1
2 −m1

2, b1 = 2n1m1, c1 = n1
2 +m1

2.

Now the area of ∆1 is equal to n1m1(n1 +m1)(n1−m1). We next claim that all of these last four factors
are relatively prime in pairs. Because n1 and m1 are relatively prime, this only needs checking for the
pair n1 +m1 and n1 −m1, and for this pair any common divisor must divide both 2n1 and 2m1, which
is impossible because a1, b1, c1 do not have 2 as a common divisor. Hence there exist positive integers
t, w, u, v such that n1 = t2,m1 = w2, n1 + m1 = u2, n1 −m1 = v2. Since a1 is odd, we see that both u
and v are odd. Also we have

(2.1) 2w2 = (u+ v)(u− v).

Now u and v are relatively prime, and so the greatest common divisor of u + v and u − v must be 2.
Thus the equation (2.1) implies that one of u+ v and u− v must be of the form 2r2 and the other must
be of the form 4s2 for some positive integers r and s. It follows that u = r2 + 2s2 and ±v = r2 − 2s2,
whence

(2.2) t2 = (u2 + v2)/2 = r4 + 4s4.

But then we have a right-angled triangle ∆2 = [r2, 2s2, t], with sides of integral length, whose area is
the square of the integer rs, and whose hypothenuse has length t, which is strictly less than the length
c1 = t4 + w4 of the hypothenuse of our initial triangle ∆1. We can now repeat the argument with ∆2

(divide out the greatest common divisor of the lengths of its sides to get a primitive triangle) instead
of ∆1, and so on. The hypothenuses of the triangles obtained by this descent procedure form a strictly
decreasing sequence of positive integers, and so we obtain a contradiction from this “infinite descent”.
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Fermat himself noted that his proof also showed that, in the special case n = 4, the equation

(2.3) xn + yn = zn

has no solution in integers x, y, z with xyz 6= 0. Indeed, if there was such a non-trivial solution of (2.3),
when n = 4, then defining a = z4 − x4, b = 2x2z2, c = x4 + z4, we would obtain a right-angled triangle
[a, b, c] with area x2y4z2, contradicting Fermat’s proof above. He claimed that the equation (2.3) has no
solution in integers x, y, z with xyz 6= 0 for all integers n ≥ 3, and attempts to prove this conjecture was
one of the main driving forces behind the great developments in number theory made in Germany in the
19th century.

Fermat had presumably come across the problem of proving that there is no right-angled triangle of
area 1 whose sides all have rational lengths, because Arabic, and probably Asian mathematicians, were
interested in the general question of which positive integers N are the area of a right-angled triangle all
of whose sides have rational length. The smallest integer N with this property which the ancients had
found was N = 5 (for example, the triangle [9/6, 40/6, 41/6] has area 5). If N is the area of a rational
right-angled triangle, we will follow the ancients and say N is a congruent number. As must have been
known to the ancients, N will be a congruent number if and only if the elliptic curve

(2.4) C(N) : y2 = x3 −N2x

has a point (x, y) with x, y ∈ Q and y 6= 0. While Fermat’s argument of infinite descent proves that 1 is not
a congruent number, no algorithm has ever been proven that will infallibly show in a finite number of steps
whether or not an arbitrary positive integer N is a congruent number. We shall discuss more fully the
fundamental difficulty which arises in Lecture 2. There was a second mystery about congruent numbers
which appeared in the ancient numerical tables. These tables showed that 5, 6, 7, 13, 14, 15, 21, 22, 23, . . .
are all congruent numbers, and it appeared that all positive integers of the form 8n+5, 8n+6, 8n+7 (n =
0, 1, . . .) are always congruent numbers. There are some positive integers which are congruent numbers
which are not of this form, the smallest of which is 34, but these exceptions are few and far between.
From the point of view of elementary arithmetic this seems utterly mysterious, and the assertion remains
unproven today. However, as we shall explain later, this mystery is explained by the conjecture of Birch
and Swinnerton-Dyer relating the statement to the value at s = 1 of the complex L-series of the elliptic
curve (2.4)

We now turn to the work of Dirichlet. After some early work on (2.3) (in particular, he was the first
to prove the Fermat conjecture for n = 5), Dirichlet in 1837 made the first great discovery linking purely
arithmetic questions to special values of L-functions. Let p be any prime > 3 such that p ≡ 3 mod 4,
define K = Q(

√
−p), and let h denote the class number of K. Let R (resp. N) denote the number of

quadratic residues (resp. quadratic non-residues) modulo p lying in the set {1, 2, . . . , (p− 1)/2}.

Theorem 2.1. (Dirichlet) For all primes p ≡ 7 mod 8, we have h = R −N , and for all primes p > 3
with p ≡ 3 mod 8, we have h = (R−N)/3.

An essential part of Dirichlet’s proof was based on his introduction of what he called L-series. Let
χ(n) = (n/p) be the quadratic character modulo p, and define

L(χ, s) =
∏
q 6=p

(1− χ(q)/qs)−1,

where the product is taken over all primes q 6= p, and s is a complex variable with the real part
> 1. Dirichlet proved that L(χ, s) has an entire analytic continuation, and proved that L(χ, 0) =
R − N or (R − N)/3, according as the prime p > 3 satisfies p ≡ 7 or 3 mod 8. Thus his class number
formula amounts to the assertion that

h = L(χ, 0).

Note that Dirichlet’s theorem implies, in particular, that R > N for all primes p > 3 with p ≡ 3 mod 4.
We remark that no purely arithmetic proof, which does not involve L-values, of this seemingly simple
assertion has ever been found.

The second great discovery of a mysterious link between special values of L-series and arithmetic was
made by Kummer, who had been a school teacher until Dirichlet and Jacobi helped him to be appointed
to a professorship at the University of Breslau. Kummer had also been working on the Fermat equation
(2.3) for n = p any odd prime, using the newly discovered factorization ideas in the ring of algebraic
integers of the field F = Q(ρ), where ρ denotes a primitive p-th root of unity. Kummer’s work led him to
break up the set of all odd prime numbers into two classes. He defined an odd prime p to be regular, or
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irregular, according as p does not, or does, divide the class number of the field F . For example, p = 37
is the first irregular prime. For regular primes p, Kummer was able to settle the Fermat conjecture.

Theorem 2.2. (Kummer) If p is an odd regular prime, the equation xp + yp = zp has no solution in
integers x, y, z with xyz 6= 0.

Kummer’s ideas were subsequently taken up by many other mathematicians in the latter part of the
19th century, but with no success for proving the Fermat conjecture for all irregular primes p.

Even today using high speed computers, it becomes prohibitively difficult numerically to compute
the class number of number fields of even moderately large degree over Q, let alone in the time of
Kummer when only hand computations were possible. Thus, in applying the above theorem to numerical
examples, Kummer was confronted with the problem of deciding which odd prime numbers p are regular.
Presumably, it was this fact which led him to perhaps his most striking discovery. We recall that the
Riemann zeta function is defined, for the real part of the complex variable s > 1, by the Euler product

ζ(s) =
∏
q

(1− 1/qs)−1

where the product is taken over all primes q. It was well known that ζ(s) has an analytic continuation
over the whole complex plane, apart from a simple pole at s = 1. Moreover, it had been proven by Euler
in the 18th century that

ζ(−n) = −Bn+1/(n+ 1) (n = 1, 3, 5, ...),

where the Bernoulli numbers Bn are the rational numbers defined by the expansion

t

et − 1
=

∞∑
n=0

Bnt
n/n! .

Theorem 2.3. (Kummer) The odd prime p is regular if and only if p does not divide the numerator of
any of the rational numbers ζ(−1), ζ(−3), . . . , ζ(4− p).

Using this theorem, it is easy numerically to make a list of regular primes up to a rather large limit (in
fact, today all regular primes up to 12× 106 are known). For example, since

ζ(−31) =
37× 208360028141

16320
,

it follows that 37 is indeed an irregular prime. Today, it still has not been proven that there are infinitely
many regular primes, although the numerical data strongly suggests that about 60.61% of all primes are
regular.

3. Lecture 2

We now begin discussing 20th century work which grew out of these great earlier discoveries of Fermat,
Dirichlet and Kummer.

We recall that an elliptic curve E over Q is a curve of genus 1 defined over Q with a given rational
point on it. The set E(Q) of rational points on E then has a natural abelian group law on it, with
the given rational point being the zero element. By the Riemann–Roch theorem, we can always find an
equation for E of the form

(3.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the coefficients ai ∈ Z.

Theorem 3.1. (Mordell) E(Q) is a finitely generated abelian group.

Mordell’s proof is deceptively simple, and we sketch a not essentially different later version of it. If
u = m/n is a rational number with m,n ∈ Z and relatively prime, we define H(u) = log max(|m|, |n|).
Then Neron and Tate showed that there exists a unique real-valued function H on E(Q) such that
H(2P ) = 4H(P ) and H(P )−H(x(P )) is bounded for P running over E(Q). One then shows that, if m
is any integer ≥ 2 and the Pi form a set of coset representatives of mE(Q) in E(Q), and if we can find a
real number b such that H(Pi) < b for all i, then E(Q) is generated by all P such that H(P ) < b. Thus
Mordell’s theorem will follow if we can prove that E(Q)/mE(Q) is finite. As we now briefly explain, it is
in the proof of this last assertion where probably the most mysterious group in the whole of mathematics
inextricably arises. Let p be any prime, and k a positive integer. Let Q be the algebraic closure of Q,
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and write GQ for the Galois group of Q over Q. Then multiplication by pk gives the exact sequence of
GQ-modules

0→ Epk → E(Q)→ E(Q)→ 0,

whence, taking GQ-cohomology, we obtain the exact sequence

(3.2) 0→ E(Q)/pkE(Q)→ H1(GQ, Epk)→ (H1(GQ, E(Q)))pk → 0.

We now define a subgroup Sel(Epk/Q) of H1(GQ, Epk) by the following local considerations. For each
finite or infinite prime v of Q, let Qv denote the completion of Q at v, and write Gv for its absolute
Galois group. We have a local exact sequence entirely analogous to (3.2) with Q replaced by Qv,
and GQ replaced by Gv, and, since we can view Gv as a subgroup of GQ, there is a restriction map
rv,k : H1(GQ, Epk) → H1(Gv, Epk). We define Sel(Epk/Q) to be the set of all z ∈ H1(GQ, Epk) such

that rv,k(z) ∈ E(Qv)/pkE(Qv) for all places v of Q. Here ”Sel” is used in honour of the Norwegian
mathematician Ernst Selmer, whose ideas systematised earlier work due to Fermat, Mordell, Weil and
others. It is then easily seen that we have an exact sequence

(3.3) 0→ E(Q)/pkE(Q)→ Sel(Epk/Q)→ (X(E/Q))pk → 0,

where
X(E/Q) = Ker(H1(GQ, E(Q))→

∏
v

H1(Gv, E(Qv))

is the Tate–Shafarevich group of E/Q. Classical arguments in algebraic number theory then show:-

Theorem 3.2. For all primes p and all integers k ≥ 1, Sel(Epk/Q) is a finite group which can be
effectively determined by a theoretical algorithm.

It should be stressed that the theoretical algorithm referred to in this theorem is of little practical use in
numerical examples when pk > 5. Nevertheless, in view of (3.3), this result not only proves theoretically
that E(Q)/pkE(Q) is finite, but in addition shows that (X(E/Q))pk is finite, for all primes p and all
integers k ≥ 1. However, the mystery is that the proof does not tell us the orders of the two individual
parts of Sel(Epk/Q). Classically, number-theorists tried to overcome this difficulty by carrying out what

they called higher descents. For each integer k ≥ 1, multiplication by pk−1 defines a GQ-homomorphism
from Epk onto Ep, and this in turn gives rise to a homomorphism dp,k : Sel(Epk/Q) → Sel(Ep/Q).
Writing Selp,k(E/Q) = image of dp,k, we see easily that we then have an exact sequence

0→ E(Q)/pE(Q)→ Selp,k(E/Q)→ pk−1(X(E/Q))pk → 0,

where again the decreasing sequence of subgroups Selp,k(E/Q) (k = 1, 2, . . .) are all theoretically effec-
tively computable. Hence we will be able to find an integer k ≥ 1 such that Selp,k(E/Q) = E(Q)/pE(Q)
if and only if the p-primary subgroup X(E/Q)(p) of X(E/Q) is finite. Here we arrive at one of the
remaining great mysteries of number theory. How can we prove that, for every elliptic curve E/Q
there exists at least one prime p such that X(E/Q)(p) is finite? Even a proof of this weak statement
would have profound implications for some of the most important open classical questions in arithmetic
geometry. However, it has long been conjectured that, we have, much more strongly:-

Conjecture 3.3. For all elliptic curves E, X(E/Q) is finite.

The only general result proven to date about the Tate–Shafarevich group is the following theorem,
whose discovery had important consequences for the formulation of the analytic conjecture which we
shall discuss next.

Theorem 3.4. (Cassels) If X(E/Q) is finite, then its order must be a perfect square.

In retrospect, it now seems surprising that about 120 years were to pass from Dirichlet’s proof of
his wonderful exact formula for the order of the ideal class group of an imaginary field until number-
theorists discovered a precise conjectural analogue of it for elliptic curves defined over Q. This was the
great discovery of Birch and Swinnerton-Dyer in the early 1960’s, which grew out of a series of brilliant
numerical experiments on the early EDSAC computers in Cambridge. We now fix any equation for E/Q
of the form (3.1), which is minimal in the sense that the discriminant ∆ of this equation is as small as
possible in absolute value amongst all such equations. For each prime number p, define Np to be the
integer such that Np − 1 is the number of solutions of the equation (3.1) when viewed as a congruence
modulo p. The complex L-series of E/Q is then defined by the Euler product

(3.4) L(E, s) =
∏
p|∆

(1− tpp−s)−1
∏

(p,∆)=1

(1− tpp−s + p1−2s)−1,
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where tp = p + 1 − Np. This Euler product converges only in the half plane R(s) > 3/2, and when
Birch and Swinnerton-Dyer [1] carried out their work the entire analytic continuation and functional
equation for L(E, s) was only known (thanks to work of Eisenstein, Kronecker, and Deuring) for elliptic
curves with complex multiplication, that is for curves E whose ring of C-endomorphisms EndC(E) is an
order in an imaginary quadratic field K (this family includes, in particular, the curves C(N) defined by
(2.4)). Today, we know the analytic continuation and the following functional equation for L(E, s) for
all elliptic curves E over Q, thanks to the deep work of Andrew Wiles, aided by Richard Taylor [21] and
many others (see the book [7]). The conductor NE of E is defined by NE =

∏
p|∆ pfp , where ∆ is the

discriminant of the minimal equation (3.1) for E, and fp ≥ 1 is an integer arising naturally from the
geometry of the minimal equation (3.1) over Zp. Put

Λ(E, s) = N
−s/2
E (2π)−sΓ(s)L(E, s).

Theorem 3.5. Λ(E, s) is entire, and satisfies the functional equation

(3.5) Λ(E, s) = wEΛ(2− s),
where wE = ±1 can be computed from the geometry of E at the primes p|∆.

Moreover, in view of earlier work of Ribet [18], Wiles’ theorem also proves at last the Fermat conjecture
that, for all integers n ≥ 3, the equation (2.4) has no solution in integers x, y, z with xyz 6= 0. Now let
gE denote the rank of the finitely generated abelian group E(Q).

Conjecture 3.6. (Birch and Swinnerton-Dyer) L(E, s) has a zero at s = 1 of order exactly gE.

In particular, this conjecture predicts that if L(E, 1) 6= 0, then E(Q) must be finite, and this is known
today thanks to ideas which grew out of Iwasawa’s beautiful extension of the work of Kummer on
cyclotomic fields in the case of elliptic curves with complex multiplication [3], and thanks to the work of
Kolyvagin [16] and Gross-Zagier [10] in the case of elliptic curves without complex multiplication. It is
still unknown how to prove that E(Q) is finite implies that L(E, 1) 6= 0. Note also that the functional
equation (3.5) shows that L(E, s) will have a zero at s = 1 of odd order precisely when wE = −1.
Hence Conjecture 3.6 predicts that we must have E(Q) is infinite whenever wE = −1. When E is
the congruent number curve C(N), it has long been known that, assuming N is square free, we have
wC(N) = 1 when N ≡ 1, 2, 3 mod 8, and wC(N) = −1 when N ≡ 5, 6, 7 mod 8. Thus we see that
the Birch-Swinnerton-Dyer conjecture explains conjecturally the ancient mystery of why all square free
positive integers ≡ 5, 6.7 mod 8 seem to be congruent. Unfortunately, at present, it is only known how to
prove this very special consequence of the Birch-Swinnerton-Dyer conjecture if we impose the additional
hypothesis that, for some prime p, the p-primary subgroup of the Tate-Shafarevich group X(C(N)/Q)
is finite.

But what of exact formulae in this settting? Making use of deep earlier work of Gross-Zagier, Kolyvagin
[16] found a remarkable proof that X(E/Q) is finite for those elliptic curves E/Q with L(E, 1) 6= 0,
and Rubin [19] subsequently found a different proof of the same result for elliptic curves with complex
multiplication using an ingenious earlier idea of Thaine [22]. This leads us to the first key case of the exact
formula for the order of X(E/Q) conjectured by Birch and Swinnerton-Dyer. Let ωE = dx/(2y+a1x+a3)
be the canonical holomorphic differential attached to the equation (3.1), and write ΩE for the least
positive real period of ωE . It is known that L(E, 1)/ΩE is a rational number.

Conjecture 3.7. (Birch and Swinnerton-Dyer) If L(E, 1) 6= 0, we have

(3.6) #(X(E/Q)) =
L(E, 1)

ΩE
× #(E(Q))2

tE
, where tE = c∞(E)

∏
p|∆

cp(E).

Here the Tamagawa factors cv(E) are defined as follows. If v = ∞, then c∞(E) is the number of
connected components of E(R), and for v = p a finite prime dividing the discriminant ∆ of our minimal
equation (3.1), we have cp = [E(Qp) : E0(Qp)], where E0(Qp) is the subgroup consisting of those points
whose reduction modulo p is a non-singular point on the curve over Fp obtained by reducing (3.1) modulo
p. Numerically, the right side of (3.6) has been computed for a vast number of elliptic curves E/Q, and
happily it has always turned out to be the square of an integer, in accord with the theorem of Cassels.
More generally, Birch and Swinnerton-Dyer also conjecture an exact formula for the order of X(E/Q)
in terms of the leading term of the Taylor expansion of L(E, s) about s = 1 for all elliptic curves E/Q.
However this formula involves a regulator term coming from the canonical height H on E when ge ≥ 1.
We also stress that so far X(E/Q) has never been proven to be finite for a single elliptic curve E/Q
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with gE ≥ 2, although the work of Kolyvagin and Gross-Zagier also proves that X(E/Q) is finite for
those E such that L(E, s) has a simple zero at s = 1.

We end this lecture with a brief discussion of yet another exact formula in arithmetic geometry,
conjectured by Birch and Tate. The interest of this formula is that it suggests a possible bridge between
the ideas of Dirichlet, Kummer and Iwasawa on the one hand, and the conjecture of Birch and Swinnerton-
Dyer on the other hand. Let J be any field, and write J× for the multiplicative group of J . The Milnor
K2 of J is defined by

K2J = J× ⊗Z J
×/W,

where W is the subgroup of the tensor product generated by all elements a⊗ b with a+ b = 1. If v is any
discrete valuation of J with residue field jv, the formula λv(a, b) = residue class of (−1)v(a)v(b)av(b)/bv(a)

defines a homomorphism λv : K2Jv → j×v called the tame symbol at v. Suppose now that J is a finite
extension of Q, and let φJ : K2J →

∏
v j
×
v be the map given by the tame symbols at all finite places v of

J . The tame kernel R2J is then defined to be the kernel of the map φJ . By a deep theorem of Garland
[9] using methods from differential geometry, R2J is a finite group. We recall that the number field J
is said to be totally real if each embedding of J in C maps J into R. If J is any number field, we recall
that its complex ζ-function ζ(J, s) is defined for R(s) > 1 by the Euler product

ζ(J, s) =
∏
v

(1− (Nv)−s)−1,

where v runs over all finite places of F , and Nv denotes the cardinality of the residue filed jv of v.
Then ζ(F, s) has a meromorphic continuation to the whole complex plane, with a simple pole at s = 1.
Moreover, ζ(J, s) satisfies a simple functional equation relating its values at s and 1 − s. In particular,
this functional equation shows that, when J is a totally real number field, we have ζ(J,−n) 6= 0 for all
odd positive integers n, and work of Klingen and Siegel shows that these values are rational numbers.
Define w2(J) to be the largest positive integer m such that the extension obtained by adjoining the m-th
roots of unity to J has Galois group over J which is annihilated by 2.

Conjecture 3.8. (Birch and Tate). For all totally real number fields J , the tame kernel R2J has order
equal to the absolute value of w2(J)ζ(J,−1).

As we shall explain in the third lecture, the ideas of Iwasawa theory, growing out of Iwasawa’s beautiful
generalization of Kummer’s ideas, do enable us to prove weak forms of both Conjectures 3.7 and 3.8.
More precisely, one can prove the p-part of Conjecture 3.8 for all odd primes p, and the p-part Conjecture
3.7 for all sufficiently large primes p. However, it should also be stressed that the p-part of Conjecture
3.7 for these exceptional small primes p is often the most interesting in the study of classical problems
in number theory.

4. Lecture 3

Let p be any prime, let F∞ be the field obtained by adjoining all p-power roots of unity to Q, and
let F∞ be the maximal real subfield of F∞. We owe to Iwasawa (see [12], [13]) the great discovery that
the p-adic analogue of the Riemann zeta function (the existence of this p-adic analogue had been proven
earlier by Leopoldt and Kubota) has a remarkable Galois module theoretic connexion with the Galois
group

(4.1) X∞ = Gal(M∞/F∞),

where M∞ denotes the maximal abelian p-extension of F∞ which is unramified outside the primes above
p and ∞. In particular, this new insight into the arithmetic of cyclotomic fields yielded, for the first
time, an arithmetic interpretation of the special values ζ(−n) for n = 1, 3, ..., which, thanks to work of
Tate [20], boiled down to the Birch–Tate conjecture for Q when n = 1. It also gave a simple conceptual
explanation for Kummer’s criterion (Theorem 2.2) for an odd prime p to be regular. Moreover, it was
very soon clear that Iwasawa’s remarkable discovery ought to hold in much greater generality, and that
such generalizations could then lead to a path for attacking the conjecture of Birch and Tate for all totally
real number fields J , and also some of the key cases of the conjecture of Birch and Swinnerton-Dyer for
elliptic curves defined over Q. A large body of subsequent work has now born out fully these early hopes.

We first briefly explain Iwasawa’s radical new construction of the p-adic analogue of the Riemann
zeta function given in [13]. While [13] is based on relatively elementary arguments with the classical
Stickelberger ideal, Iwasawa was in fact led to this construction by his earlier deep study in [12] of an
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object closely related to the Galois group X∞ = Gal(M∞/F∞), which will be discussed in the second
part of this lecture. Let

(4.2) G = Gal(F∞/Q).

By the irreducibility of the p-power cyclotomic equation, the action of Gal(F∞/Q) on the group of all p-
power roots of unity gives an isomorphism χ : Gal(F∞/Q)→ Z×p , which we call the cyclotomic character.

In particular, for every even integer k, χk will be a character of G. Iwasawa realized that a basic role is
played by the topological Zp-algebra

(4.3) Λ(G) = lim←−
U

Zp[G/U ],

where U runs over the set of open subgroups of G, and Zp[G/U ] is the Zp-group ring of the finite group
G/U . In fact, it is easily seen we can view Λ(G) as the algebra of Zp-valued measures on G. If f is
any continuous valued function on G with values in Qp, we write

´
G
fdµ for the integral of f against

an element µ of Λ(G). To take account of the fact that the p-adic analogue ζp of the complex Riemann
zeta function ζ(s) also has a pole at s = 1, one defines a pseudo-measure on G to be any element µ of
the ring of fractions at Λ(G) such that (σ − 1)µ belongs to Λ(G) for all σ ∈ G. We recall that, for each
even integer k > 0, Euler proved that ζ(1− k) is a rational number, and so it can be viewed as lying in
the field Qp of p-adic numbers.

Theorem 4.1. (Iwasawa). There exists a unique pseudo-measure ζp on G such that

(4.4)

ˆ
G

χkdζp = (1− pk−1)ζ(1− k),

for all even integers k ≥ 2.

Of course, we know from the functional equation of the complex zeta function that ζ(1− k) 6= 0 for all
even integers k ≥ 2. When p is an irregular prime, the p-adic zeta function ζp will, in fact, always have
p-adic zeroes, but, unlike the Riemann Hypothesis for the complex zeta function ζ(s), no reasonable
conjecture has yet been formulated about the possible location of p-adic zeroes of ζp. It is not even
known at present that the integral on the left hand side of (4.4) is non-zero for all even integers k < 0.

To keep notation simple, let us assume from now on that p is an odd prime. As before, let ρ be a
primitive p-th root of unity. While most of the earlier work on cyclotomic fields, starting from Kummer,
had centred around the study of the arithmetic of the field F = Q(ρ) and its maximal real subfield
F = Q(ρ+ρ−1), Iwasawa was the first to realize that one obtained a radically new view if one considered
instead the arithmetic of the infinite towers of fields F∞/Q and F∞/Q. For each integer n ≥ 0, let ρn
denote a primitive pn+1-th root of unity, and define

(4.5) Fn = Q(ρn) , Fn = Q(ρn + ρ−1
n ).

Let e be a primitive root mod p such that ep−1 ≡/ 1 mod p2, so that e is a primitive root mod pn+1 for
all integers n ≥ 0. It is easily seen that

(4.6) cn =
ρ
−e/2
n − ρe/2

n

ρ
−1/2
n − ρ1/2

n

lies in Fn, and is a unit of the ring of algebraic integers lying in this field. We define the group Dn of
cyclotomic units of Fn to be the subgroup of F×n generated by −1, and all conjugates of the elements
(4.6) under the action of the Galois group of Fn/Q. Now the prime p is totally ramified in the field Fn,
and we write pn for the unique prime of Fn lying above it, and Φn for the completion of Fn at pn. Let
Un denote the group of units ≡ 1 mod pn of the ring of integers of the completion of Fn at pn. We then
define Cn to be the subgroup of all elements of Dn which are ≡ 1 mod pn, and let Cn be the closure
of the image of Cn in Un in the pn-adic topology (equivalently, Cn is the Zp-submodule generated by
the image of Cn in Un). Now for all m ≥ n, Fm (resp. Φm) is a Galois extension of Fn (resp. Φn) of
degree pm−n, and we write Nm,n for the corresponding global (resp. local) norm map for this extension.

Now Φm/Φn is a totally ramified cyclic extension, whence Nm,n(Um) = Un. Moreover, Nm,n(Cm) = Cn

because Nm,n(cm) = cn. Taking projective limits with respect to the norm maps, we then define

(4.7) U∞ = lim←−
n

Un , C∞ = lim←−
n

Cn.

Now, as Cn ⊂ Un are both Zp-modules which are stable under the action of Gal(Φn/Qp) = Gal(Fn/Q) for

all n ≥ 0, it follows that C∞ is a Λ(G)-submodule of the Λ(G)-module U∞, and so U∞/C∞ has a natural
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structure as a Λ(G)-module. Now there is a natural augmentation map Λ(G)→ Zp, and we define I(G)
to be the kernel of this augmentation map. Since ζp is a pseudo-measure, we have ζpI(G) ⊂ Λ(G).

Theorem 4.2. (Iwasawa). For all primes p, U∞/C̄∞ is canonically isomorphic as a Λ(G)-module to
Λ(G)/ζpI(G).

Iwasawa’s original proof of this theorem was highly ingenious, and depended on mysterious explicit
choices of elements in the field F∞. Faced with the problem of generalizing this theorem to elliptic
curves with complex multiplication, Wiles and I discovered a much simpler proof which starts from the
simple observation that

ge(T ) =
(1 + T )−e/2 − (1 + T )e/2

(1 + T )−1/2 − (1 + T )1/2

is a formal power series in Zp[[T ]] with the property that ge(ρn − 1) = cn for all integers n ≥ 0. We
realized that, more generally, for any u∞ = (un) in U∞, there exists a power series gu∞(T ) in Zp[[T ]]
such that gu∞(ρn − 1) = un for all n ≥ 0. It was then possible to give a simpler proof of Theorem 4.2
using these power series, which also could be generalized to elliptic curves with complex multiplication,
[4]. Coleman was a Master’s student in Cambridge at the time, and he shortly afterwards found a much
more beautiful proof of the existence of these interpolating power series gu∞(T ) which worked more
generally for the local division towers arising from arbitrary Lubin–Tate formal groups [6]

It is hard to exaggerate the large and varied body of research in arithmetic geometry which has grown,
and is continuing to grow, out of Iwasawa’s discovery of Theorem 4.2. We only have time to mention a
few of the early discoveries here. Firstly, within the theory of cyclotomic fields, what one really needs, to
attack for example the Birch–Tate conjecture, is an analogue of Theorem 4.2 for the Galois group X∞
rather than U∞/C̄∞. For each n ≥ 0, let En be the group of global units of Fn, which are ≡ 1 mod pn,
and let En be the closure in the pn-adic topology of the image of En in Un. We then define E∞ to be the
projective limit of the En with respect to the norm maps. Also, let An denote the p-primary subgroup
of the ideal class group of Fn, and define A∞ = lim←−n

An where the projective limit is again taken with

respect to the norm maps. Recall that X∞ is the Galois group defined by (4.1). Thanks to Artin’s global
reciprocity law, we then have the exact sequence

(4.8) 0→ U∞/E∞ → X∞ → A∞ → 0.

Now G = Gal(F∞/F) has a natural action on each of the groups in the exact sequence (4.8) (the natural
action of G on X∞ comes from the fact that M∞ is obviously Galois over Q, and thus G will act by
lifting inner automorphisms), and (4.8) is then an exact sequence of compact G-modules. It is easily
seen that this G-action on each of the modules in (4.8) extends by linearity and continuity to an action
of the whole Iwasawa algebra Λ(G). Now, when A0 = 0 or equivalently the class number of F is prime
to p (in fact, this happens for all primes p < 12 × 106, and no counter example has yet been found),
Iwasawa showed by a simple argument that we have A∞ = 0. Moreover, it also follows from the analytic
class number forumula for the fields Fn for all n ≥ 0 that E∞ = C∞, and thus X∞ = U∞/C̄∞. It was
therefore natural to ask whether or not there is an analogue of Theorem 4.2 without the hypothesis that
the class number of F is prime to p, and this question became rapidly known as the ”main conjecture”
on cyclotomic fields. More precisely, Iwasawa [14] had already shown that X∞ is a finitely generated
torsion Λ(G)-module, and the general algebraic structure theory for such modules then shows that there
is an exact sequence of Λ(G)-modules.

0→
r∑

i=1

Λ(G)/fiΛ(G)→ X∞ →W → 0,

whereW is a finite Λ(G)-module, and f1, . . . , fr are non-zero divisors in Λ(G). We then define chG(X∞) =
f1 . . . frΛ(G). We owe to Mazur and Wiles [17] the first proof of this ”main conjecture”.

Theorem 4.3. (Mazur–Wiles). For all odd primes p, we have chG(X∞) = ζpI(G).

The simplest consequence of this result is Kummer’s criterion for odd primes p. Indeed, on the one hand
it was shown by Iwasawa that if X∞ finite then necessarily X∞ = 0, while on the other hand p not
dividing the numerator of any of ζ(−1), ζ(−3), . . . , ζ(4−p) is easily seen to be equivalent to the assertion
that ζpI(G) = Λ(G).

To attack the Birch–Tate conjecture for any totally real number field J , we need the analogue of
Theorem 4.3 for J , in which we now take the field J∞, which is defined to be the maximal real subfield
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of the field obtained by adjoining all p-power roots of unity to J . In this general case, the construction of
a p-adic zeta function as a pseudo-measure on GJ , where GJ = Gal(J∞/J), and satisfying an analogue
Theorem 4.1 was proven independently by Cassou-Nogues [2] and Deligne–Ribet [8]. Let M∞,J be the
maximal abelian p-extension of J∞ which is unramified outside the primes lying above p and ∞, and
define

X∞,J = Gal(M∞,J/J∞).

Then X∞,J has its natural structure as a module over the Iwasawa algebra Λ(GJ) of GJ . In deep work,
Wiles [23] then established for X∞,J the precise analogue of Theorem 4.3. A consequence of this analogue
of Theorem 4.3 is the proof of the p-part of the Birch-Tate conjecture for J and all odd primes p. Indeed
it follows easily [5] from work of Iwasawa [14] and Tate [20] that, for all odd primes p, the dual of the
p-primary subgroup of R2J is isomorphic to the group of GJ -coinvariants of the module X∞,J(−2);

here X∞,J(−2) means that the natural action of GJ on X∞,J has been twisted to χ−2
J , where χJ is the

p-cyclotomic character for the field J . Granted this, it is then just an exercise to deduce the p-part of the
Birch-Tate conjecture from the analogue of Theorem 4.3 for J . However, to the best of my knowledge,
technical difficulties still remain in giving a fully detailed proof of the 2-primary part of the Birch–Tate
conjecture for all totally real J . Turning to elliptic curves E/Q, it is now known how to prove a precise
analogue of Theorem 4.3 for all sufficiently large primes p of potentially ordinary reduction. However,
new aspects of the Iwasawa theory, which we do not have time to discuss here, emerge for those primes
p where E has potentially supersingular reduction. A consequence of this large body of work for elliptic
curves is that, when L(E, 1) 6= 0, it is now known how to prove the p-part of Conjecture 3.7 for all
sufficiently large primes p, thanks to work of Rubin [19] when E has complex multiplication, and to work
of Kato [15] and others when E has no complex multiplication. Hopefully, number-theorists will be able
to handle the many interesting issues about the Iwasawa theory of these small primes for E in the not
too distant future, and give at last a full proof of Conjecture 3.7 when L(E, 1) 6= 0.
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