
The ADHM construction of Yang-Mills instantons

Simon Donaldson

June 4, 2021

1 The instanton problem

The mathematical formulation of classical electromagnetism involves an elec-
tromagnetic field F on space-time. This is a skew symmetric tensor (Fij), or
2-form. In the classical theory it is useful to write this in terms of an electro-
magnetic potential A:

Fij =
∂Aj

∂xi
−

∂Ai

∂xj
.

In terms of differential forms, A is a 1-form and F = dA. This encodes the
fact that dF = 0, which is a part of the Maxwell equations. The remainder
of Maxwell’s vacuum equations are, in this notation, d∗F = 0, where d∗ is the
formal adjoint of d defined using the Lorentzian metric on space-time. Explicitly,
in terms of a space and time decomposition x0 = t, the tensor F is written in
terms of electric and magnetic vector fields E,B:

F =
3∑

i=1

Ei dtdxi +
∑

Bi dxjdxk,

where in the second term (ijk) run over cyclic permutations of (123). The
equation dF = 0 is

curl E = −
∂B

∂t
, div B = 0 (1)

and the equation d∗F = 0 is

curl B =
∂E

∂t
, div E = 0. (2)

The potential A combines the magnetic vector potential and scalar electric
potential.

The potential is not unique, we can change A to A + dχ for any function χ,
so its classical physical meaning is not so clear. In quantum mechanics it enters
as the coupling with electromagnetism. Quantum mechanical formulae such as
the Schrödinger equation are modified in the presence of an electromagnetic
field by replacing the ordinary derivatives ∂

∂xi
acting on wave functions by

∇i =
∂

∂xi
+

√
−1 Ai.
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This is all clarified by the differential geometric language of vector bundles and
connections. The wave function is a section of a complex Hermitian line bundle
over space-time, the potential is a connection on this line bundle and (3) is the
usual formula for the covariant derivative of a section. The ambiguity in the
connection now appears as the choice of trivialisation of the line bundle. More
generally in Yang-Mills theory, beginning in 1954, this discussion is extended to
consider vector bundles with connections of higher rank, or more generally still
bundles with structure group some Lie group G. Then the “potential” is the
connection 1-form, with values in the Lie algebra of G. We will restrict attention
to matrix groups G so one can think of a connection as a covariant derivative
∇i = ∂i + Ai but now acting on vector-valued functions. The generalisation of
the electro-magnetic field is the curvature

Fij =
∂Aj

∂xi
−

∂Ai

∂xj
+ [Ai, Aj ],

which appears as the commutator [∇i,∇j ].
(See Yau’s lecture [18] in this series for more on the evolution of these ideas.)

The analogues of Maxwell’s equations are the Yang-Mills equations. These are
obtained from a Lagrangian

E(A) =
∫

|F |2.

Here the integrand |F |2 is defined using the metric tensor on space time and an
inner product on the Lie algebra of the structure group G. The Euler-Lagrange
equation δE = 0 is the Yang-Mills equation

d∗AFA = 0,

where d∗A is the coupled formal adjoint. This is a nonlinear second order PDE
for the connection A.

So far we have been working on Lorentzian space time, but now we consider
the case of Euclidean R4, which is relevant in Quantum Field Theory. The
formalism is the same but the Yang-Mills equations become elliptic (when in-
terpreted modulo the gauge freedom) rather than hyperbolic. All of this can
be done in any dimension but there are special features in dimension 4, one
being that the equations are conformally invariant. The solutions of the Yang-
Mills equation on R4 which extend to the conformal compactification S4 are
exactly those with finite energy E . Another special feature in dimension 4 is that
there are first order “instanton” equations which imply the second order Yang-
Mills equations. This is analogous to the relation in two dimensions between
the Cauchy-Riemann and Laplace equations for complex-valued functions. The
curvature F of a connection is a bundle valued 2-form and the instanton equa-
tion is F = − ∗ F where ∗ : Λ2 → Λ2 is the Hodge ∗-operator, which is also
conformally invariant. These instantons, when they exist, are absolute minima
of the energy on a given U(r) bundle E → S4. In fact the energy is the topolog-
ical invariant 8π2c2(E), where c2(E) denotes the second Chern class, evaluated
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on the fundamental class of the sphere. Thus an instanton can only exist if
c2 ≥ 0, for negative c2 we get an equivalent discussion by changing the orienta-
tion. If we go back to R4 and choose a “space-time” decomposition R×R3 (but
now with a positive metric) the curvature can be written as a pair of “electric”
and “magnetic” components (E,B) and the instanton equation is E = B. (In
Lorentzian space the equations (1),(2) are symmetric between E,B up to sign
changes, but in Euclidean signature there is an exact symmetry.)

We have now set the scene for the problem: for each r ≥ 2 and k ≥ 1
describe all the solutions of the instanton equation over S4 on a U(r) bundle
with c2 = k.

2 The ADHM construction

This problem was solved by Atiyah, Drinfeld, Hitchin and Manin (ADHM) in
1977. In his commentary on Volume 5 of his collected works [2], Atiyah wrote:

. . . with the help of Nigel Hitchin, I finally saw how Horrocks’ method gave
a very satisfactory and explicit solution to the problem. I remember our final
discussion one morning when we had just seen how to fit together the last pieces
of the puzzle. We broke off for lunch feeling very pleased with ourselves. On our
return, I found a letter from Manin (whom I had earlier corresponded with on
this subject) outlining essentially the same solution to the problem and saying
“no doubt you have already realised this”! We replied at once and proposed that
we should submit a short note from the four of us.

This short note appeared as [3]. Atiyah gave a detailed exposition of the
proof and the background in his Pisa lectures [1].

The ADHM construction can be explained in relatively elementary terms.
For fixed k and r consider a family of linear maps λx : C2k+r → C2k parametrised
by x ∈ R4 of the form

λx =
4∑

i=0

xiLi + M,

where L0, L2, L3,M are 2k × (2k + r) matrices. Suppose that λx is surjective
for all x ∈ R4. Then E = kerλ is a rank r bundle over R4. Suppose also
that the image of the Li span C2k. Then the bundle has a natural extension
to the 4-sphere with c2 = k. The statement is that if the matrix data Li,M
satisfies a system of quadratic equations (given explicitly in (8),(9) below) then
the induced connection on E is an instanton connection and all arise in this
way. Moreover the matrix data associated to an instanton is unique up to the
obvious action of U(2k) × U(2k + r). In short, the solution of the instanton
equations (which are nonlinear first order PDE) is reduced to solving algebraic
equations for the matrix data.

The induced connection referred to above is the same construction as in
classical differential geometry for the tangent bundle of a submanifold of Eu-
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clidean space. Writing C2k+r for the trivial bundle with fibre C2k+r we have
an inclusion ι : E → C2k+r and an orthogonal projection map π : C2k+r → E,
using the standard Hermitian metric on C2k+r. Then the covariant derivative
of the induced connection on E is defined by

∇s = π ◦ ∇flatι, (3)

where ∇flat is the usual derivative on sections of the trivial bundle C2k+r.
While the construction can be described in elementary terms, as above, the

fact that it gives the general solution is much deeper. The ADHM work is
significant as one of the first applications of sophisticated modern geometry
to physics, playing a large part in opening up a dialogue which has of course
flourished mightily in the near half century since. It is also a beautiful piece of
mathematics which can be approached from many directions.

3 Twistor space and the Ward correspondence

The approach of Atiyah, Drinfeld, Hitchin and Manin to this problem went
through the Penrose twistor theory and the Ward correspondence between in-
stantons and holomorphic vector bundles, which we will now review.

Let Z be a complex manifold and W ⊂ Z a compact complex submanifold
with normal bundle N . The theory of Kodaira describes the small deformations
of W in terms of the cohomology groups H0(N) and H1(N). If H1(N) = 0 then
the moduli space of deformations is a complex manifold M,with tangent space at
W equal to the space of holomorphic sections H0(N). Now suppose that Z has
complex dimension 3 and that the submanifold is a “line” L— an embedding
of the Riemann sphere CP1. Vector bundles over CP1 are all equivalent to
direct sums of line bundles O(p), the tensor powers of the Hopf line bundle
O(1). Suppose that the normal bundle of L is isomorphic to O(1)⊕O(1). Then
H1(N) = 0 and H0(N) is 4-dimensional so we obtain a 4-dimensional complex
manifold M of lines in Z whose points represent deformations of L with normal
bundle O(1) ⊕O(1).

In this situation there is an induced holomorphic conformal structure on M.
For if we write N = S− ⊗O(1) for a two dimensional complex vector space S−

then H0(N) = S− ⊗ S+ where S+ is the 2-dimensional complex vector space
of sections of O(1) over L. The tensor product of the skew-symmetric maps
S± ⊗ S± → Λ2S± is a symmetric map

TM⊗ TM → Λ2S+ ⊗ Λ2S−

which gives the conformal structure (that is, it becomes a nonsingular quadratic
form when one fixes an identification of the line Λ2S+ ⊗ Λ2S− with C).

The geometric meaning of this construction is that the null cone in the
tangent space of M at a line L is the set of infinitesimal deformations of L which
intersect L. For each point p ∈ Z we get a submanifold Σp ⊂ M consisting of
lines through p and this is isotropic, i.e. the conformal structure vanishes on
the tangent spaces of Σp.

4



We can now consider the “instanton equations” in a holomorphic setting,
for holomorphic connections on a bundle over M. Let Q be a nondegenerate
quadratic form on C4. The complex linear ∗-operator on 2-forms is defined
just as in the real case and hence the decomposition of Λ2C4 into self-dual and
anti-self-dual components. A 2-form is ± self-dual if and only if its restriction
to each isotropic subspace in C4 is zero. Applying this to the tangent spaces of
M we see that a connection is an instanton if and only its restriction to each of
the submanifolds Σp is flat.

Suppose that E is a holomorphic vector bundle over Z which is holomorphi-
cally trivial on each line. Then we define a bundle E on M with fibre over a line
L equal to the holomorphic sections of E over L. The basic point is that E has
a natural connection. To see this one can use the theory of formal neighbour-
hoods. The first formal neighbourhood L(1) of a line L is the sheaf OZ/I2 where
I ⊂ OZ is the ideal sheaf of functions on Z vanishing on L. The obstruction
to extending a trivialisation of E over L to L(1) lies in H1(L; N∗ ⊗ E|L) and
if this vanishes any two extensions differ by an element of H0(L; N∗ ⊗ E|L).
Since the cohomology groups Hp(O(−1)) vanish there is a unique extension of
a trivialisation and this defines a connection on E. For each p in Z we get a
canonical trivialisation of E over Σp by identifying sections with their values at
p. These trivialisations are compatible with the connection, so the connection
is flat over the Σp and hence is an instanton. Conversely, starting with an in-
stanton (E,∇) over M we get a holomorphic bundle E over Z with fibre over p
equal to the covariant constant sections of E over Σp. These constructions are
mutually inverse and give the Ward correspondence between instantons on M
and holomorphic bundles over Z which are trivial on all lines.

To get back to real 4-manifolds one considers a complex manifold Z with a
“real” structure: an antiholomorphic involution σ : Z → Z. Then the space of
“real lines”—i.e. the lines preserved by σ is a real form M of M. There are
two cases: either σ acts on the real lines as complex conjugation, with fixed
point set a circle, or as an antipodal map, with no fixed points. The first case
corresponds to a conformal structure on M of signature (2, 2) and the second
case to a Riemannian conformal structure and this latter case is the one relevant
to the problem introduced in the previous section.

With this general background in place we focus on the twistor space Z =
CP3. The space of lines is the complex Grassmannian Gr(2, 4) which can be
viewed as a quadric in CP5. If we identify C4 with the quaternionic vector
space H2 we get a fixed-point-free real structure σ induced by multiplication by
the quaternion J . The real lines are the fibres of the natural map

π : CP3 → HP1 = S4,

and instantons on S4 correspond to holomorphic bundles on CP3 trivial on
all real lines. An instanton on S4 with structure group U(r) corresponds to a
holomorphic bundle E, trivial on all real lines, together with an isomorphism
E

∗ ∼= σ∗(E).
Another approach to the theory in the Riemannian case, following Atiyah,

Hitchin, Singer [4] is to obtain the twistor space of an “anti-self-dual” Rieman-
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nian 4-manifold M as the projectivization of the positive spin bundle. A point in
Z is a pair consisting of a point in M and a compatible complex structure on the
tangent space at that point. In this approach the bundle E is just the pull-back
π∗(E) and the Newlander-Nirenberg theorem is used to produce a holomorphic
structure. In the holomorphic approach discussed above one would first show,
by elliptic PDE theory, that an instanton is real analytic in a suitable gauge
and thus extends to a complexification of the 4-manifold.

4 Construction of bundles over CP3.

For a bundle E over CPn we use the standard notation E⊗O(p) = E(p), where
O(p) is the pth. power of the Hopf line bundle O(1).

Let U, V,W be complex vector spaces and suppose that we have bundle maps

U(−1)
a
→ V

b
→ W (1), (4)

over CP3 with a injective, b surjective and b ◦ a = 0. (Here U denotes the
trivial bundle with fibre U .) Then we get a holomorphic bundle E as the
cohomology Ker b/Im a. The data (4) is called a “monad” and the construction
was introduced by Horrocks in 1964 [13]. Explicitly, with homogeneous co-
ordinates Zi and with chosen bases for the three vector spaces we write a =∑

AiZi , b =
∑

BiZi for matrices Ai, Bi. A monad is given by a solution of
the matrix equations

BjAi + BiAj = 0 (i, j = 1, . . . , 4) (5)

Following Horrocks, the monad construction was studied by Barth and Barth
and Hulek [5] who proved:

Theorem

Let E be a rank r holomorphic bundle over CP3 with c2 = k. Suppose that
E is trivial on some line and satisfies the vanishing conditions

H0(E) = 0 , H0(E∗) = 0, H1(E(−2)) = 0 , H1(E∗(−2)) = 0.

Then E arises from a monad with dim U = dim W = k and dimV = 2k + r.
This monad is unique up to the action of GL(U) × GL(V ) × GL(W ).

(Note: In fact Barth and Hulek considered symplectic or orthogonal bundles
E, with E ∼= E∗.)

Let L be a line in CP3 and p, q be distinct points on L. Given a monad
we have linear maps ap, aq : U → V and bp, bq : V → W . One finds that the
cohomology bundle E is trivial on L if and only if bq ◦ap is an isomorphism from
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U to W , which is equivalent to the same for bp ◦aq by the equations (6). In this
case the fibres of the restriction of E to L can be written both as a subspace

Ker bp ∩ Ker bq

of V and as a quotient
V/(Im ap + Im aq).

Thus the associated bundle E over S4 arises as both a subbundle and a quotient
of the trivial bundle with fibre V . One finds that the instanton connection is
that given by the standard construction (3).

Given the Barth-Hulek theorem above we get a complete description of in-
stantons on S4 if it can be shown that the corresponding bundles over CP3

satisfy the vanishing conditions.
The condition that H0(E) = 0 is relatively easy to understand. From the

construction, a non-trivial holomorphic section of E goes over to a covariant
constant section of the bundle E over S4 which means that the structure group
reduces to U(r − 1). In view of the symmetry between E,E∗ in the hypotheses
of the theorem the essential condition is H1(E(−2)) = 0. The reason that this
holds goes back to the origins of Penrose’s twistor theory.

Let Ω ⊂ R4 be an open set and Ω̃ ⊂ CP3 be the union of the corresponding
lines. Let χ be a sheaf cohomology class in H1(Ω̃,O(−2)). For a line L we have
H1(L;O(−2)) = C so the restriction of χ to lines gives a function Fχ on Ω. More
precisely, there is a natural isomorphism of H1(L,KL) with C where KL is the
canonical line bundle of L. So to define Fχ we need to specify an isomorphism
of KL with O(−2)|L. If L = P(S) this is the same as a trivialisation of Λ2S.
Let L∞ be the line corresponding to the point at infinity in S4 and write L∞ =
P(S∞). Then for a line L = P(S) corresponding to a point of R4 we have
C4 = S ⊕ S∞ which gives the trivialisation of Λ2S.

Penrose showed that the function Fχ satisfies the Laplace equation on U ⊂
R4 and moreover that this gives an equivalence between H1(Ω̃,O(−2)) and the
solutions of the Laplace equation. In terms of a Cĕch representation of χ by a
holomorphic function of three complex variables the function Fχ is given by a
contour integral formula of a classical nature—see Hitchin’s article [12] in this
series. Penrose’s theory interprets other sheaf cohomology groups on twistor
space in terms of other linear field equations. In particular this correspondence
for H1(O(−2) can be related to the instanton construction we discussed above.
Suppose that Ω is simply connected and consider the instanton equation on Ω
for the structure group C∗, i.e. for line bundles. The Ward correspondence
tells us that these are determined by line bundles over Ω̃ which in this case
correspond to classes in H1(Ω̃,O). Take a pair of planes in CP3 containing the
line at infinity and let Σ+, Σ− be their intersections with Ω̃. Then classes in
H1(Ω̃,O(−2)) correspond to holomorphic line bundles on Ω̃ trivialised over Σ+

and Σ−. A complexification of Ω in the space of lines can be identified with
Σ+ × Σ−. We get complex co-ordinates (z1, z2, w1, w2) in which the metric is
dz1dw1 + dz2dw2. The instanton equations for a connection 1-form

α1dz1 + α2dz2 + β1dw1 + β2dw2,
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are
∂α1

∂z2
=

∂α2

∂z1
,

∂β1

∂w2
=

∂β2

∂w1
,

∂α1

∂w1
+

∂α2

∂w2
=

∂β1

∂z1
+

∂β2

∂z2
. (6)

Following though the Ward correspondence, one find that a holomorphic line
bundle on Ω̃ trivialised over Σ± gives a connection 1-form determined by two
functions f, g in the shape

αi =
∂f

∂zi
, βi =

∂g

∂wi
.

The last equation in (6) then shows that the function F = f − g satisfies

∂2F

∂z1∂w1
+

∂2F

∂z2∂w2
= 0

which is the Laplace equation for the metric dz1dw1 + dz2dw2.
The result from the Penrose theory that we require extends that discussed

above in two ways. First, we need to consider the whole of S4 rather than an
open subset in R4 and, second, the cohomology group H1(E(−2)) in question
involves the bundle E. The conclusion is that the group corresponds to sections
s of the instanton bundle E over S4 satisfying the equation

∇∗∇s +
R

8
s = 0,

where R is the scalar curvature of the round metric on S4. This is the coupled,
conformally-invariant, Laplace equation. Since the scalar curvature is positive,
integration by parts shows that the only solution is s = 0, which translates back
to the statement H1(E(−2)) = 0.

5 The Beilinson spectral sequence

The quickest way to establish the Barth-Hulek Theorem uses a construction of
Beilinson [6] which appeared a little after the ADHM work.

Let z1, z2, z3 be standard co-ordinates on C3 and consider the vector field

v =
∑

zi
∂

∂zi
,

which has a single zero at the origin. This has a holomorphic extension to a
vector field on CP3 vanishing on the plane at infinity. Thus it defines a section,
which we also call v, of T (−1), where T is the tangent bundle of CP3. This
section has a single zero at the origin 0 ∈ C3 ⊂ CP3.

Contraction with a non-zero vector e in a vector space K defines an exact
sequence

. . . ΛrK∗ → Λr−1K∗ . . . → K∗ → C.

In this way, the section v gives a Koszul complex

Ω3(3) → Ω2(2) → Ω1(1) → O → O0 (7)
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which is an exact sequence of sheaves. Here the Ωr denote the exterior powers
of the cotangent bundle. The top power Ω3 is the canonical bundle O(−4) so
the first term is O(−1). The final term O0 is the skyscraper sheaf at 0. Let V
be any vector bundle over CP3 and take the tenor product of (8) with V to get
an exact sequence of sheaves, say,

F(3) → F(2) → F(1) → F0 → V0.

In this general situation there is a “hypercohomology spectral sequence” with
E1 page

Ep,q
1 = Hq(F(−p))

abutting to the vector space V0, the fibre over V at 0, in degree 0. (See 3.5 on
[10], for example.)

In our situation, take V = E(−2) where E a bundle satisfying the hypotheses
of the Barth-Hulek theorem. The E1 page has rows

Hq(E(−3)) → Hq(E ⊗ Ω2) → Hq(E ⊗ Ω1(−1)) → Hq(E(−2)),

for 0 ≤ q ≤ 3.
We have the exact Euler sequence

0 → O(−1) → C4 → Ω2(3) → 0

and its dual
0 → Ω1(1) → C4 → O(1) → 0.

(In the first sequence we have used the fact that T ∼= Ω2(4)). Using these, Serre
duality and the cohomology vanishing assumptions, we find that all the H0 and
H3 terms vanish. In the H1 row we know that H1(E(−2)) = 0 and the dual
Euler sequence, tensored with E(−2) shows that H1(E ⊗ Ω1(−1)) = 0. Let P
be a plane in CP3 containing a line on which E is trivial. We have a long exact
cohomology sequence which contains

H0(E(−2))|P → H1(E(−3) → H1(E(−2)).

The condition of being trivial on a line is open, so E is trivial on the generic
line in P and it follows that H0(E(−2)|P ) = 0. Then the exact sequence shows
that H1(E(−3)) = 0. Since the spectral sequence abuts to a non-zero term only
in total degree 0 we must have H1(E ⊗ Ω2) = 0. So, in sum, all the H1 terms
vanish. Finally, H2(E(−2) is the Serre dual of H1(E∗(−2) and so this vanishes.
Thus the E1 page can be written as

H2(E(−3))
a
→ H2(E ⊗ Ω2)

b
→ H2(E ⊗ Ω1(−1)),

and it follows from the general hypercohomology theory that a is injective, b is
surjective and that there is a natural isomorphism of the cohomology Ker b/Im a
with the fibre of E(−2) at 0.
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Of course there is nothing special about the point 0 ∈ CP3 and for any point
x ∈ CP3 we get a similar description of the fibre of E(−2) over x. When we
keep track of the x dependence we find that this is precisely a description of E
as a monad (5), with U = H2(E(−3)), V = H2(E⊗Ω2),W = H2(E⊗Ω1(−1)).
This completes the proof of the Theorem. (Another way of expressing the last
step is to use a resolution of the diagonal in CP3 × CP3.)

There is a subtlety here involving duality. If we have a monad description
(4) of E we get a description of E∗ with the monad

W ∗(−1)
bT

→ V ∗ aT

→ U∗(1).

But it is not immediately obvious that the descriptions above for E,E∗ are re-
lated in this way. To explain this, recall that the hyperplane class in H2(CP3,C)
can be regarded as an element of H1(Ω1). The cup products with this class de-
fine maps

χ1 : H1(E ⊗ Ω1) → H2(E ⊗ Ω2),

χ2 : H1(E(−1)) → H2(E ⊗ Ω1(−1)),

and it is an exercise to show that these are isomorphims. Under these isomor-
phisms the map b corresponds to a map

H1(E ⊗ Ω1) → H1(E(−1)).

These vector spaces are the Serre duals of H2(E∗ ⊗ Ω2), H2(E∗(−3)) and the
map is the transpose of the map a for E∗.

The only twistor spaces which are complex projective manifolds are CP3 and
the three dimensional flag manifold. The latter corresponds to the 4-manifold
CP2 with its Fubini-Study metric and reverse of the standard orientation. A
description of instantons on CP2 following the ADHM pattern was found by
Buchdahl [7].

6 Explicit matrix description and the Euclidean
approach

Putting everything together, we find that the general solution of the instanton
equation can be obtained from the construction described in Section 2 with a
family of linear maps λx =

∑
Lixi + M : C2k+r → C2k. We write C2k+r =

Ck ⊕ Ck ⊕ Cr and use block notation. Then we can normalise so that:

L0 =

(
1 0 0
0 1 0

)

;

L1 =

(
−i 0 0
0 i 0

)

;

L2 =

(
0 1 0
−1 0 0

)

;
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L3 =

(
0 −i 0
−i 0 0

)

;

and

M =

(
α∗

1 α∗
2 P ∗

−α2 α1 Q

)

.

This form incorporates the reality conditions. We have a pair of k × k matrices
α1 and α2, a k×r matrix P and an r×k matrix Q, all with complex co-efficients.
The algebraic equations which have to be solved are

[α1, α2] + PQ = 0 (8)

[α1, α
∗
1] + [α2, α

∗
2] − PP ∗ + Q∗Q = 0. (9)

We also have the nondegeneracy condition, that for each x ∈ R4 the map λx

is surjective. The moduli space Mk,r of instantons is the quotient of the set of
matrices (α1, α2, P,Q) satisfying these conditions by the action of U(k)×U(r).

There are many different notations which can be used to write these equa-
tions. The one above is adapted to a choice of complex structure on R4 i.e. we
write R4 = C2 and z1 = x0 +

√
−1x1, z2 = x2 +

√
−1x3 but one can also use

spinorial or quaternionic notations.

A few years after the ADHM work, Corrigan and Goddard showed how to
derive the construction by direct calculation, without going through twistor
theory [8]. The essential object is the space H of L2 solutions over R4 of the
Dirac equation for negative spinors coupled to the instanton connection. This
has dimension k by the index theorem. For ψ,ψ′ ∈ H and each co-ordinate xi

define

Ti(ψ,ψ′) =
√
−1
∫

R4

xi (ψ,ψ′)

Standard theory shows that ψ1, ψ2 decay as O(r−3), so the integrals converge.
Using the L2 metric on H the Ti can be regarded as skew-adjoint operators on
H. Then the matrix data α1, α2 is given by

α1 = T0 +
√
−1T1 , α2 = T2 +

√
−1T3.

The remaining data P,Q is obtained from the asymptotics of elements of H.
With suitable conformal weights, the Dirac operator is conformally invariant so
H can also be viewed as solutions of the coupled Dirac equation over S4. Thus
we have an evaluation map

ev : H → E∞ ⊗ S−
∞

where E∞ is the fibre at infinity of the bundle E carrying the instanton con-
nection and S− is the negative spin space at ∞. From the Euclidean point of
view, ev(ψ) defines the O(r−3) term of ψ as r → ∞. Then with respect to a
basis of the two dimensional space S−

∞

ev = P ⊕ Q∗ : H → E∞ ⊕ E∞.
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Then our family of linear maps λx is a family of natural maps

λx : H ⊕ H ⊕ E∞ → H ⊕ H,

which can be defined using the geometry and analysis of the Dirac equation
on R4. The connection with the complex geometry “monad” approach and
spectral sequences is discussed in [9]. As one step in that direction, the Serre
dual of the space H2(E(−3)) appearing in the monad is H1(E∗(−1)) and this
corresponds to the coupled harmonic spinors via the Penrose theory.

7 Mukai and Nahm tranforms

Around the same time as the ADHM work, but coming from a completely
different direction, Mukai introduced a construction which, it was later realised,
has many formal similarities. Mukai considered a complex torus T and its dual
T̂ . Thus a point of ξ of T̂ correspond to a flat holomorphic line bundle Lξ over
T . Let E be a holomorphic vector bundle over T . For each p ≤ dimT we have
a family of vector spaces Hp(T ; E ⊗ Lξ) parametrised by T̂ . In general the
dimension of these vector spaces can jump but in a case when for all ξ there is
cohomology in a single dimension p this family defines a vector bundle Ê over
T̂ . (In general, Mukai’s construction operates in derived categories of coherent
sheaves.) The relevant case for us is when dimC T = 2 and we have a bundle
E such that the Hp(E ⊗ Lξ) are zero for p = 0, 2.

The striking fact is that this “Mukai transform” is symmetric between T, T̂ .
By the standard theory of the Poincaré bundle, the dual of T̂ is T . If we start
with a bundle E → T as above and assume that the bundle Ê → T̂ satisfies the
same vanishing conditions then the double transform recovers the bundle E, up
to pulling back by the map x 7→ −x from T to T . There is a close analogy with
the Fourier transform.

One way to relate the Mukai construction to instantons goes via twistor
theory. Let M = R4/Λ be a flat Riemannian 4-torus. The complex structures
on R4 compatible with the given Euclidean structure are parametrised by a
2-sphere S2 and the twistor space Z is just S2 ×M , as a smooth manifold. The
complex structure on Z is such that the projection Π : Z → S2 is holomor-
phic and the fibres are complex tori corresponding to the different compatible
complex structures on M . Let M̂ be the dual Riemannian torus with its own
twistor space Ẑ and fibration Π̂ : Ẑ → S2. The fibres of Π and Π̂ over a point
of S2 are dual complex tori. Then we can make a fibrewise Mukai transform,
which takes suitable holomorphic bundles on Z to holomorphic bundles on Ẑ.
In turn, via the Ward correspondence, this gives a transform from instantons
over M to instantons over M̂ . Expressed directly in Riemannian terms, starting
with an instanton connection ∇ on a rank r complex vector bundle E → M we
define a family of vector spaces parametrised by M̂ as the kernels of the coupled
Dirac operator on sections of S− ⊗ E ⊗ Lξ. If the connection ∇ is irreducible
these form a vector bundle Ê over M̂ which has a connection ∇̂ induced by the
a version of the projection construction (3) and this is an instanton.

12



For another point of view on this we consider what could be called the
“abstract instanton equations” for a quadruple S0, S1, S2, S3 of skew adjoint
operators on some vector space. These are the three equations

[S0, Si] + [Sj , Sk] = 0 (10)

where (ijk) runs over cyclic permutations of (123). If we write

D1 = S0 +
√
−1S1 , D2 = S2 +

√
−1S3,

the equations can be written as

[D1, D2] = 0 , [D1, D
∗
1 ] + [D2, D

∗
2 ] = 0 (11)

If we have a connection on a bundle over R4 or a flat torus R4/Λ and let Si

be the covariant derivatives ∇i in the co-ordinate directions then (10) is just
the instanton equation. The operators D1, D2 are the components of the cou-
pled ∂ operator when we identify R4 with C2 and the commutator equation
[D1, D2] = 0 is the integrability condition for this ∂ operator to induce a holo-
morphic structure on the bundle. But in adopting the form (11) we break the
natural symmetry of the equations (10): there is a 2-sphere family of equivalent
descriptions corresponding to the 2-sphere of compatible complex structures.
The resulting family of holomorphic bundles is essentially the same as the holo-
morphic bundle on twistor space defined by Ward.

The Mukai transform on a 4-torus can be seen as a transform from one
solution of the equations (10) to another. The ADHM construction fits into
almost the same picture in that if we write Si = Ti, so that Di = αi the
ADHM equations (8)(9) are the same as (11) except for the addition of terms
involving P and Q. These can be thought of as correction terms due to the
non-compactness of R4. Starting with Nahm [16], many other examples of such
transforms have been found, involving solutions of the instanton equation on
R4 invariant under groups of isometries (see the survey of Jardim [14]). Nahm
studied “monopoles”, which are solutions invariant under translation in one
variable, and defined a transform which related these to solutions of the ODE
system

dTi

ds
= −[Tj , Tk], (12)

(since called Nahm’s equations). Here Ti for i = 1, 2, 3 are functions of a variable
s with values in skew-adjoint matrices. The equations can be written in the
form (10) by setting Si = Ti for i = 1, 2, 3, acting as multiplication operators
on vector-valued functions, and S0 = d

ds . One can also think of the data Ti as
defining a connection over R4 invariant under translation in three directions and
then (12) are just the instanton equations. Nahm’s construction follow the same
general pattern as those of ADHM and Mukai, using solutions of coupled Dirac
equations. There are links with both twistor theory and integrable systems
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which were developed by Hitchin [12]. The commutator equation [D1, D2] = 0
is

d

ds
(T2 +

√
−1T3) = −

√
−1[T1, T2 +

√
−1T3],

which implies that the spectrum of T2 +
√
−1T3 is independent of s. We have

a 2-sphere family of similar equations and the resulting family of spectra forms
a “spectral curve”: a Riemann surface Σ with a branched covering over S2.
For each s the eigenspaces define a line bundle over Σ and Hitchin showed that
Nahm’s equations correspond to linear motion on the Jacobian of Σ.
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