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1980’s

Counting the number of solutions of non-linear PDE 

gives an interesting invariant.

Donaldson:  Number of solution of ASD equation on 4 manifolds.

FA + *FA = 0

Gromov:  Number of solution of non-linear Cauchy-Riemann equation

                from a Riemann surface to a symplectic manifold

∂u = 0 u : Σ → X

A : a connection on  X4
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Note

One needs auxiliary choices to define equation.

FA + *FA = 0

∂u = 0

A metric (or conformal structure) to define  *  Hodge star. 

An almost complex structure to define   ∂
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Fact

The solution set depends auxiliary choices 

However the number counted with sign is independent of such a choice.

Similar to the intersection number.

+

+

+
-

This is what topological field theory means.
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The solution set depends on auxiliary choices.

However the number counted with sign is independent of such a choice.

Not all the solution space of non-linear PDE has this property.

ASD equation on 4 manifolds

non-linear Cauchy-Riemann 
equation

Yang-Mills equation on 4 manifolds

Harmonic map equation
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The solution set depends on auxiliary choices.

However the number counted with sign is independent of such a choice.

Physicist’s interpretation:

Those numbers are integration of certain ‘closed differential forms’ 

on infinite dimensional space: 


Z

a2X
exp(F (a))�(a)Da

by `super symmetry’ it cancel out in most of the places and reduces 

to a integration of a finite dimensional space the critical point set of  

that is the set of solution of the non-linear PDE.

F(a)
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1980’s
Floer :  Counting the number Defining the groups

Donaldson:  Number of solution of ASD equation on 4 manifolds  .X4

Floer :  Defining the group, Floer homology (or instanton homology)

of 3 manifolds   M3

Gromov:  Number of solution of non-linear Cauchy-Riemann equation

                from a Riemann surface to a symplectic manifold

Floer :  Defining the group, Floer homology using holomorphic map

from disks (2 manifolds with boundary) or ℝ × S1
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Floer :  Defining the group, Floer homology (or instanton homology)

of 3 manifolds   M3
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Chain complex

Generator:   A flat connection on  M3

Boundary operator:  Count the number of the solution of ASD

     equation on  . M3 × ℝ



Floer :  Defining the group, Floer homology using holomorphic map

from disks (2 manifolds with boundary) 
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(X2n, ω) a symplectic manifold. 

Ln
i ⊂ X2n

(   is a closed two form, 
volume form )

ω
ωn =

Lagrangian submanifold ω |Li
= 0

HF(L1, L2) Lagrangian Floer homology
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HF(L1, L2) Lagrangian Floer homology

CF(L1, L2)Chain complex

Generator:   An intersection point p ∈ L1 ∩ L2

Boundary operator:  Count the number of holomorphic map

u : ℝ × [0,1] → X

L1

L2

p q

u
∂u = 0

R × [0, 1]

∂[p] = ∑ np,q[q]
np,q



Donaldson or Gromov-Witten invariant

The solution set depends on auxiliary choices 

However the number counted with sign is independent of such a choice.
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Floer homology

CF(L1, L2)The chain complex CF(M3)
depends on auxiliary choices. 


However its homology (or chain homotopy type) is independe 

of the choices.
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Floer homology

homology (or chain homotopy type) is independe 

of the choices.

As we go on, the ‘structure’ we obtain is more and more sophisticated

and what we mean by ‘well-defined’ becomes more involved.

This is the typical place where ‘homological algebra’ appears 

in topological field theory.
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Donaldson invariant and Floer homology
(Topological Field theory picture:  late 1980’s)

∂X4 = M3

 : (Donaldson) invariant is not a number 

but is an element of    : Floer (instanton) homology.
ZX

HF(M3)

∂X1 = M3 = − ∂X2 X = X1 ∪M3 X2

ZX = ⟨ZX1
, ZX2

⟩ inner product in Floer homology
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Warning:   This is an oversimplified picture.

Donaldson invariant is not actually a number but is a 

polynomial defined on homology group.

Donaldson invariant is not always well-defined.  It is ill defined 

if intersection form on second cohomology is negative definite

and has a ‘chamber structure and wall crossing’ if the intersection 

form has exactly one positive eigenvalue.



15

Somewhat similar to stable and unstable homotopy theory.

πn+m(SmX) is independent of  m  is  m  is sufficiently large,

but for small  m  the behavior is harder (more interesting).

X4 # m(S2 × S2) differential topology is simple if  m  is large

gauge theory invariant is mostly trivial.
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Warning:   This is an oversimplified picture.

There is a axiomatic study of topological field theory, which are 

interesting.

 

However for the theory defined by non-linear PDE those axiom 

is satisfied only roughly.

Most of the interesting geometric application or non-trivially

of such ‘topological field theory’ comes from the phenomenon 

in unstable range, where axiom is not literally satisfied.
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Donaldson invariant and Floer (Instanton) homology

Topological Field theory picture:  late 1980’s.

Gromov-Witten invariant and Lagrangian Floer homology

The relation is not so simple as the gauge theory case,

but we now have an answer which I will explain later.
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Categorification of invariants:

Started again in late 1980’s

G. Segal: Categorification of conformal field theory.
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Witten’s 3 manifold (and knot) invariant.

3 manifold      + possibly a link    in it.X3 l = S1 ∪ … ∪ S2

Z(X, l) =

Z

a2B
exp(cs(a))�l(a)Da

path integral on the set            of all connections 
B

Witten invariant

Donaldson invariant Floer (Instanton) homology

?
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Witten invariant

Donaldson invariant Floer (Instanton) homology

Conformal block associated to 2 manifold

Including knot this picture gives a topological field theory 

description of Jones polynomial (Witten).

G. Segal: Categorification of conformal field theory.
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Witten invariant

Conformal field theory

G. Segal: Categorification of conformal field theory.

M3

Σ2

S1 Category
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Number

Vector space or group

Axiomatic study of topological Field theory.

Xn

Xn−1

Xn−2 Category

Xn−3 2-Category…
This is a general idea and studied much. Started early 1990’s.
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How this works in the case of gauge theory ?

X4

∂X4 = M3
Donaldson invariant  

Number

ZX

M3 Floer homology  

Group

HF(M)
ZX ∈ HF(M)

Σ2 A category ℱ(Σ2)

∂M3 = Σ2

HFM an object

of ℱ(Σ2)
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Donaldson (1992)

Σ2 A category ℱ(Σ2)

∂M3 = Σ2 HFM an object

of ℱ(Σ2)

ℱ(Σ2) is a category whose object is a Lagrangian 

submanifold of   R(Σ)

R(Σ) the moduli space of 

flat connections on Σ2

symplectic manifold

(Goldman)

HFM = R(M) R(M) → R(Σ) restriction, gives Lagrangian

immersion (generically).
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Donaldson (1992)

ℱ(Σ2) is a category whose object is a Lagrangian 

submanifold of   R(Σ)

Li ⊂ R(Σ) Lagrangian subspace = object of ℱ(Σ2)

Space of morphisms from L1 to L2 = HF(L1, L2)
(Lagrangian Floer homology)

composition of morphisms: count triangle

L1

L2

L3

HF(L1, L2) ⊗ HF(L2, L3) → HF(L1, L3)
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Donaldson (1992)

ℱ(Σ2) is a category whose object is a Lagrangian 

submanifold of   R(Σ)

This proposal is closely related to a conjecture by Atiyah-Floer.

M3 = Hg ∪Σg
H′ g Hg, H′ g handle bodies

HF(M3) = HF(R(Hg), R(H′ g))

Instanton Floer homology Lagrangian Floer homology
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HF(M3) = HF(R(Hg), R(H′ g))

Instanton Floer homology Lagrangian Floer homology

Many attempts to solve Atiyah-Floer conjecture in early 1990’s.

Salamon, Yoshida, Lee-Li …..

One variant was proved by Dostoglou-Salamon

M3 = (Σg × [0,1]) ∪Σg⊔Σg
(Σg × [0,1])
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Donaldson (1992)

ℱ(Σ2) is a category whose object is a Lagrangian 

submanifold of   R(Σ)

This is mostly or in principle correct formulation, but

Σ = S2 R(Σ) = pt

R(M) → R(Σ)∂M3 = S2 finite to one map.

R(M) = R(M+) M+ = M ∪ D3

R(M) immersed Lagrangian submanifold (of a 0 dim. symplectic manifold)

remember the set of Flat connections (generator) 

but not boundary operator. 
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R(M) → R(Σ)∂M3 = S2 finite to one map.

R(M) = R(M+) M+ = M ∪ D3

R(M) immersed Lagrangian submanifold (of a 0 dim. symplectic manifold)

remember the set of Flat connections (generator) 

but not boundary operator. 

So to obtain a correct relative invariant HFM

it is slightly different from an object of ℱ(Σ2)
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Category theory

Yoneda’s Lemma

Embedding of categories C ! FUNK(Cop, Sets)

category of functors

c 7! (c0 7! C(c0, c))

A functor Cop ! Sets

maybe regarded as an enhancement of an object of  C

The Yoneda embedding maybe regarded as a ‘categorificaiton’ 

of the embedding:  distribution on  .C∞(M) → M
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Conjecture (F 1993)

∂M3 = Σ2 HFM is a functor from   ℱ(Σ2)

Note morphisms of ℱ(Σ2) is a group or a chain complex.

So analogue of Yoneda embedding is not  
F(⌃2) ! FUNK(F(⌃2), Sets)

but is
F(⌃2) ! FUNK(F(⌃2), ch)

ch is the category of chain complexes.
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For Yoneda embedding 

F(⌃2) ! FUNK(F(⌃2), ch)

to work, we need more homological algebra.

ℱ(Σ2) the space of morphisms is not Floer homology

group  

but a chain complex    which defines

Floer homology.

Composition of morphism is associative only 

up to homotopy …..

HF(L1, L2)
CF(L1, L2)

A∞ category
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A∞ category  to a symplectic manifold  Y.ℱ(Y)we associate a

Conjecture (F 1993)

∂M3 = Σ2 HFM is an A infinity functor from   

ℱ(R(Σ2)) to ch.

Such a functor nowadays is called A infinity module.
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ℱ(R(Σ2)) → chMore explicitly A infinity functor

associate a chain complex  to a Lagrangian 

submanifold    

CF(M; L)
L ⊂ R(Σ)

∂M3 = Σ2

An idea to obtain CF(M; L) is studying ASD equation on 

which is functorial with respect to  L.

M × ℝ with boundary condition given via   on L ∂M × ℝ = Σ × ℝ
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Studying ASD equation on 

M × ℝ with boundary condition given via   on L ∂M × ℝ = Σ × ℝ

This is a difficult boundary valued problem to study.


I was working on it in the second half of 1990’s but that 

research was not completed that time.


In the first half of 2000’s  Salamon-Wehrheim gave a 

rigorous construction of HF(M; L)

However in their construction   is not yet functorial.L ↦ HF(M; L)
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∂M3 = Σ2

In Heegard Floer theory (something which is isomorphic 

to Seiberg-Witten Floer theory but studying them with 

minimal use of non-linear PDE)

For

an A infinity module is associated 

to certain DGA associated to   Σ2

by  R. Lipshitz, P. Ozsváth, D. Thurston.

 in second half of 2000’s.
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With A. Daemi and partially with M. Lipyanski 

I am on the way writing the ‘functorial’ 

construction of L ↦ HF(M; L)

 in the situation when   space of flat connection

has no singularity.

R(Σ)

(2017 - ???)
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A∞ category  associated to 

a symplectic manifold  Y.

ℱ(Y)Let me go back

Lagrangian Floer homology is cumbersome object 

to define and study.

Naive expectation to Lagrangian Floer homology.

1)   L1, L2 ⊂ Y HF(L1, L2) defined

2)  rank HF(L1, L2) ≤ #L1 ∩ L2
3)  It is invariant via Hamiltonian deformation

HF(L1, L2) ≅ HF(φ(L1), φ′ (L2))
4)  L1 = L2 = L HF(L, L) = H(L)
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1)   L1, L2 ⊂ Y HF(L1, L2) defined

2)  rank HF(L1, L2) ≤ #L1 ∩ L2
3)  It is invariant via Hamiltonian deformation

HF(L1, L2) ≅ HF(φ(L1), φ′ (L2))

Actually this is oversimplification and in general not true.

   L1, L2 ⊂ ℝn 1)2)3) is true

HF(L1, L2) = 0

4)  L1 = L2 = L HF(L, L) = H(L)

4) does not hold.
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   L1, L2 ⊂ ℝ2n 1)2)3) is true

HF(L1, L2) = 0

So is Lagrangian Floer theory trivial on   ℝ2n ?

No there are applications in such a case.
Situation is somewhat similar to:

Donaldson invariant is not well defined if 

intersection form is negative definite but

ASD equation has important application 

in that case.

(eg. Classification of irreducible 3 

manifolds which is a Lagrangian

submanifold of  . (Irie)) ℝ6
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1)   L1, L2 ⊂ Y HF(L1, L2) defined

L ⊂ Y ℳ(L) ⊂ Hodd(L)
bi ∈ ℳ(Li) HF((L1, b1), (L2, b2)) defined

FOOO (F-Oh-Ohta-Ono)

4)  L1 = L2 = L

H(L) → HF(L, L)

Spetre sequence

HF(L, L) = H(L)

Note ℳ(L) can be empty.
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1)   L1, L2 ⊂ Y HF(L1, L2) defined

L ⊂ Y ℳ(L) ⊂ Hodd(L)
bi ∈ ℳ(Li) HF((L1, b1), (L2, b2)) defined

FOOO (F-Oh-Ohta-Ono)

4)  L1 = L2 = L

H(L) → HF(L, L)

Spetre sequence

HF(L, L) = H(L)

Note ℳ(L) can be empty.
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bi ∈ ℳ(Li)

HF((L1, b1), (L2, b2)) has extra parameter

FOOO (F-Oh-Ohta-Ono)

bounding cochain.

This is related to homological algebra

= deformation theory of associative

    or  A infinity algebra.
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This story is generalized by Akaho-Joyce so that it 

include immersed Lagrangians.

ℳ(L) ⊂ Hodd(L) for embedded Lagrangians

If   L   is immersed, then

ℳ(L) ⊂ Hodd(L) ⊕  two extra generators for each self intersection points.
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Actually existence of this extra parameter

makes Floer theory more applicable.

Example: ℂP2 T2 acts on it.
HF(L, L)   is a  orbitL T2

is mostly 0 but is nonzero for unique  L

ℂP2# − ℂP2 blow up. T2 acts on it.
HF(L, L)   is a  orbit is always 0L T2

But there exist two    such that L
HF((L, b), (L, b)) ≠ 0 for some b ∈ ℳ(L)



46

At this stage (2017) Lagrangian Floer theory gives a 2-functor

{Category of all compact symplectic manifolds}

{2-category of all A infinity categories}

(FOOO,Akaho-Joyce,Wehrheim-Woodwards-Mau,F)
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{Category of all compact symplectic manifolds}

{2-category of all A infinity categories}

Morphism from   to M1 M2
is :  

                 

(L, b) L ⊂ − M1 × M2
b ∈ ℳ(L)

We need homological 

algebra much to define

and study such 2-category.



48

Going  back to gauge theory.

∂M3 = Σ2

So to obtain a correct relative invariant HFM

we need more information than the Lagrangian submanifold

R(M) the space of Flat connections on     . M

Actually the extra information we need is bounding cochain
R(M)of
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Ex.

∂M3 = T2 ⊔ T2 consider SO(3) bundle on    which is 

nontrivial on  

M
T2

R(T2 ⊔ T2) is one point.

R(M) → R(T2 ⊔ T2) finite to one map.

immersed Lagrangian submanifold (in a trivial way). R(M)

b ∈ ℳ(R(M)) is exactly the boundary operator of instanton

Floer homology homology of    M ∪∂M (T2 × [0,1])
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Relation to the formulation 

HFM : ℱ(R(Σ)) → ch

HFM(L) = HF(M; L)
∂M = Σ L ⊂ R(Σ)

If we enhance ℱ(R(Σ)) so that immersed Lagrangian is its object

then HFM : ℱ(R(Σ)) → ch is representable by  . (R(M), bM)
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Donaldson invariant and Floer (Instanton) homology

Topological Field theory picture:  late 1980’s.

Gromov-Witten invariant and Lagrangian Floer homology ?

Let me go back to the question.
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Functoriality of Gromov-Witten theory

Quantum cohomology

Deformation of cohomology ring of a symplectic 

manifolds using the count of holomorphic sphere.

HQ(X)

(It is the same as group with usual cohomology 

but ring structure is different.)

Note X ↦ HQ(X) is not functorial.
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Note X ↦ HQ(X) is not functorial.

X → Y map H*(Y) → H*(X)
ring homomorphism.

however HQ*(Y) → HQ*(X)
is not a ring homomorphism.
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Lagrangian Floer theory gives a 2-functor

{Category of all compact symplectic manifolds}

{2-category of all A infinity categories}

On the other hand, Lagrangian Floer theory is functorial:
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Gromov-Witten invariant and Lagrangian Floer homology ?

There exists an closed-open map

q : HQ(X) ! HH
⇤(F(X))

(Kontsevich, Seidel, Albers, FOOO, Biran-Cornea …)

this is a ring homomorphism and is expected to be an 

isomorphism for, say, smooth projective algebraic variety.

Hochschild cohomology
quantum cohomology
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There exists an open-closed map

C ! HH
⇤(C) A infinity category                       Hochschild cohomology

is neither contravariant nor covariant.

However:

C ! HH⇤(C) A infinity category                       Hochschild homology

is covariant.

p : HH⇤(F(X)) ! H⇤(X)

that is Poincare dual to closed-open map.
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Conjecture

then the next diagram commutes.

Morphism from   to M1 M2 :  

               
(L, b) L ⊂ − M1 × M2

 b ∈ ℳ(L)

HH⇤(F(M1)) HH⇤(F(M2))

H⇤(M1) H⇤(M2)

If yes does it mean something to the functoriality of GW invariant ?

p p
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Foundation:

Proof of all these results are based on the study of 

various moduli spaces of PDE’s.



Physicist’s interpretation:

Those numbers are integration of certain ‘closed differential forms’ 

on infinite dimensional space: 


Z

a2X
exp(F (a))�(a)Da

In good case it reduces 

to an integration on a finite dimensional space the set of solutions 

of a non-linear PDE.
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=

Z

M
�(a)da

M



Z

a2X
exp(F (a))�(a)Da

is a finite dimensional space but can be much singular. 
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=

Z

M
�(a)da

M

In our story, those number itself is not well defined but 

only complicated system of such numbers are 

well-defined in certain complicated sense. (homological algebra).



Z

a2X
exp(F (a))�(a)Da

In our story where problem becomes more and more cumber

some it is becoming harder and harder to work out.
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=

Z

M
�(a)da

M
Classical approach (< 1996),  

perturb the space 

by certain explicit geometric parameter

 (eg. metric, almost complex structure ….)

so that          becomes smooth.M



Z

a2X
exp(F (a))�(a)Da
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=

Z

M
�(a)da

Virtual technique ( 1996)≥

1) Define some notion of ‘singular’ spaces in  category.C∞

2) Prove that M is an example of such space.

3) Develop certain ‘cohomology theory’ or ‘integration’

    on such ‘singular’ spaces and justify the right hand side.

(F-Ono, Tian-Li-Lu, Ruan, Siebert, ….)
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Virtual technique ( 1996)≥
There are 4 kinds of variants of Virtual technique being studied now.

F-Oh-Ohta-Ono

Kuranishi structure d-manifold

Joyce

Polyfold

Hofer ….

implicite atlas

Pardon

manifold theory scheme

stack

functional

analysis

algebraic 

topology
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Virtual technique ( 1996)≥
There are 4 kinds of variant of Virtual technique being studied now.

F-Oh-Ohta-Ono

Kuranishi structure d -manifold

Joyce

Polyfold

Hofer ….

implicite atlas

Pardon

It is becoming clearer that all 4 versions work for the purpose 

of studying moduli  space of (pseudo) holomorphic curves

(Gromov-Witten-Floer theory).



65

Virtual technique ( 1996)≥

How about gauge theory ?

Singularity of the moduli space of gauge theory is more 

singular than that of pseudo-holomorphic curve.

Ex:
Md(X) compactified moduli space of ASD connection with 


instanton number  d   on   X.
It contains a point where there is a  d  bubles and what is left 

is a trivial connection.

This singularity is not contained in spaces studied by virtual technique.
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F - A.Daemi (in progress)
Z

a2X
exp(F (a))�(a)Da =

Z

M
�(a)da

in case  �(a) ⌘ 1 and dimM = 0

we can justify RHS by virtual technique 

in the gauge theory case.


