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⑦3 Automorphic representations occur

naturally in string scattering amplitudes

Fourier coefficients contain physical

information (non-perturbative)

String theory suggests new types of

automorphic representations
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Summary

⑦3 Automorphic representations occur

naturally in string scattering amplitudes

Fourier coefficients contain physical

information (non-perturbative)

String theory suggests new types of

automorphic representations

Many contributors over the last 20+ years:
A. Basu, E. D’Hoker, M. Green, M. Gutperle, S.D. Miller,
N. Obers, J. Russo, S. Sethi, P. Vanhove, . . .
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Scattering amplitudes

determine probabilities for the outcomes of scattering
experiments

determined from fundamental interactions of a theory
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Scattering amplitudes

determine probabilities for the outcomes of scattering
experiments

determined from fundamental interactions of a theory

(Perturbative) textbook procedure with Feynman diagrams
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λ denotes a ‘small’ coupling constant and each diagram
corresponds to a specific (potentially high-dim’l) integral,
typically divergent ⇒ renormalization, regularization
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Scattering amplitude
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Overall picture

A({ki, ǫi}; {λ, ..})
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Overall picture

A({ki, ǫi}; {λ, ..})
︸ ︷︷ ︸

︷ ︸︸ ︷

‘kinematic data’ of scattering particles: momenta, polarizations, ...

✟✟✙
‘theory data’: coupling constants, ....
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Scattering amplitude
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Overall picture

A({ki, ǫi}; {λ, ..}) = Apert.({ki, ǫi}; {λ, ..}) +Anon-pert.({ki, ǫi}; {λ, ..})

Above diagrams correspond to perturbative expansion of
the amplitude, i.e. analytic in coupling λ.
Typically an asymptotic series and also non-perturbative

terms needed, e.g. ∼ e−1/λ
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Scattering amplitude
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+. . .

Overall picture

A({ki, ǫi}; {λ, ..}) = Apert.({ki, ǫi}; {λ, ..}) +Anon-pert.({ki, ǫi}; {λ, ..})

Above diagrams correspond to perturbative expansion of
the amplitude, i.e. analytic in coupling λ.
Typically an asymptotic series and also non-perturbative

terms needed, e.g. ∼ e−1/λ

Exact structure of A of all its arguments typically intractable
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Perturbative string theory

String theory replaces point-like particles by
one-dimensional strings. Rather than ‘world-lines’ get
world-sheets (two-dim’l surfaces) in space-time

World-sheet view of a scattering process: genus expansion

g−2
s g0s g2s

Perturbative amplitude now depends on string coupling gs
and also characteristic string scale α′ = ℓ2s
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Perturbative string theory

String theory replaces point-like particles by
one-dimensional strings. Rather than ‘world-lines’ get
world-sheets (two-dim’l surfaces) in space-time

World-sheet view of a scattering process: genus expansion

g−2
s g0s g2s

Perturbative amplitude now depends on string coupling gs
and also characteristic string scale α′ = ℓ2s

n-point amplitude at h loops: Integral over world-sheets of

genus h with n punctures; weighted by g
2(h−1)
s .

Given by integrals over Mh,n moduli space
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String theory scattering amplitudes

Example: Four-graviton scattering at tree level (flat target)

k1, ǫ1

k2, ǫ2

k3, ǫ3

k4, ǫ4
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String theory scattering amplitudes

Example: Four-graviton scattering at tree level (flat target)

k1, ǫ1

k2, ǫ2

k3, ǫ3

k4, ǫ4

Atree(s, t, u) = g−2
s

(α′)4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4
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String theory scattering amplitudes

Example: Four-graviton scattering at tree level (flat target)

k1, ǫ1

k2, ǫ2

k3, ǫ3

k4, ǫ4

Atree(s, t, u) = g−2
s

(α′)4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

✂
✂
✂✂✍

Mandelstam

variables

❆
❆❆❑

string coupling:

tree level

✂
✂
✂✂✍

absorbs polarisation

tensors ǫi

❄
α′ = ℓ2s

string scale

s = −(k1 + k2)
2, t = −(k1 + k4)

2, u = −(k1 + k3)
2
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Four gravitons at tree-level

Atree(s, t, u) = g−2
s

(α′)4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

Exact function of string scale α′ = ℓ2s
[

Green
Schwarz ’82

]
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Four gravitons at tree-level

Atree(s, t, u) = g−2
s

(α′)4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

Exact function of string scale α′ = ℓ2s
[

Green
Schwarz ’82

]

For loop diagrams L > 0 a closed formula is not known!

Accessible in low-energy approximation

α′s≪ 1, α′t≪ 1, α′u≪ 1
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Four gravitons at tree-level

Atree(s, t, u) = g−2
s

(α′)4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

Exact function of string scale α′ = ℓ2s
[

Green
Schwarz ’82

]

For loop diagrams L > 0 a closed formula is not known!

Accessible in low-energy approximation

α′s≪ 1, α′t≪ 1, α′u≪ 1

For tree-level amplitude by expanding gamma function.

More generally, yields plethora of (novel) invariants on
higher genus moduli spaces: Modular graph forms
[
Basu, Broedel, Dorigoni, Doroudiani, Duke, Gerken, Green, Gürdoğan, D’Hoker, Kaderli, Kaidi,

AK, Mafra, Pioline, Russo2, Schlotterer, Vanhove, Verschinin, Zagier, Zerbini, . . .

]
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Low-energy expansion

For α′s≪ 1, α′t≪ 1, α′u≪ 1 at tree level

Atree(s, t, u)= g−2
s

(α′)4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

= g−2
s R4(α′)4

[
1

stu
+(α′)3·2ζ(3)+(α′)5(s2+t2+u2)·ζ(5)+ . . .

]
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Low-energy expansion

For α′s≪ 1, α′t≪ 1, α′u≪ 1 at tree level

Atree(s, t, u)= g−2
s

(α′)4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

= g−2
s R4(α′)4

[
1

stu
+(α′)3·2ζ(3)+(α′)5(s2+t2+u2)·ζ(5)+ . . .

]

Since α′ = ℓ2s and ℓs is typical string length, this limit
shrinks world-sheet to Feynman diagram

✲α′ ≪ 1 ❅❅
�� ❅❅

��
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Low-energy expansion

For α′s≪ 1, α′t≪ 1, α′u≪ 1 at tree level

Atree(s, t, u)= g−2
s

(α′)4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

= g−2
s R4(α′)4

[
1

stu
+(α′)3·2ζ(3)+(α′)5(s2+t2+u2)·ζ(5)+ . . .

]

Since α′ = ℓ2s and ℓs is typical string length, this limit
shrinks world-sheet to Feynman diagram

✲α′ ≪ 1 ❅❅
�� ❅❅

��❏
❏

❏
❏

❏
❏
❏❪

Einstein’s theory
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Low-energy expansion

For α′s≪ 1, α′t≪ 1, α′u≪ 1 at tree level

Atree(s, t, u)= g−2
s

(α′)4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

= g−2
s R4(α′)4

[
1

stu
+(α′)3·2ζ(3)+(α′)5(s2+t2+u2)·ζ(5)+ . . .

]

Since α′ = ℓ2s and ℓs is typical string length, this limit
shrinks world-sheet to Feynman diagram

✲α′ ≪ 1 ❅❅
�� ❅❅

��❏
❏

❏
❏

❏
❏
❏❪

Einstein’s theory

+ ❅❅
��
⑦��
❅❅

❏
❏

❏
❏

❏
❏❏❪ massive strings

+ . . .
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Low-energy expansion

For α′s≪ 1, α′t≪ 1, α′u≪ 1 at tree level

Atree(s, t, u)= g−2
s

(α′)4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

= g−2
s R4(α′)4

[
1

stu
+(α′)3·2ζ(3)+(α′)5(s2+t2+u2)·ζ(5)+ . . .

]

Since α′ = ℓ2s and ℓs is typical string length, this limit
shrinks world-sheet to Feynman diagram

✲α′ ≪ 1 ❅❅
�� ❅❅

��❏
❏

❏
❏

❏
❏
❏❪

Einstein’s theory

+ ❅❅
��
⑦��
❅❅

❏
❏

❏
❏

❏
❏❏❪ massive strings

+ . . .

Generates an effective quantum field theory with new
types of interactions ②
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String theory scattering amplitudes

Scattering amplitudes of strings have a double expansion
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✲

✻

gs (loops)

α′

(energy)

2ζ(3) ζ(5)

Perturbative loop expansion

Diagram weighted by
powers of string coupling gs

Low-energy expansion

Energies involved in
interaction measured in
powers

of string scale ℓ2s = α′

Automorphic representations in string amplitudes – p.9



String theory scattering amplitudes

Scattering amplitudes of strings have a double expansion
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✻

gs (loops)

α′

(energy)

2ζ(3) ζ(5)

Perturbative loop expansion

Diagram weighted by
powers of string coupling gs

Low-energy expansion

Energies involved in
interaction measured in
powers

of string scale ℓ2s = α′

✗
✖

✔
✕fixed order in gs
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String theory scattering amplitudes

Scattering amplitudes of strings have a double expansion

t
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✲

✻

gs (loops)

α′

(energy)

2ζ(3) ζ(5)

Perturbative loop expansion

Diagram weighted by
powers of string coupling gs

Low-energy expansion

Energies involved in
interaction measured in
powers

of string scale ℓ2s = α′

✛

✚

✘

✙

incl. non-pert.

(up to) fixed energy order

...sometimes fixed by (discrete) symmetries/automorphy!
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Moduli and U-duality (I)

String coupling gs is a modulus of string theory.

Moduli contain information about the background on which
strings propagate (geometric or other).
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Moduli and U-duality (I)

String coupling gs is a modulus of string theory.

Moduli contain information about the background on which
strings propagate (geometric or other).

Other moduli: For toroidal backgrounds including

T d−1 = (S1)d−1 the radii are also moduli

R

momentum n
winding w
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Moduli and U-duality (I)

String coupling gs is a modulus of string theory.

Moduli contain information about the background on which
strings propagate (geometric or other).

Other moduli: For toroidal backgrounds including

T d−1 = (S1)d−1 the radii are also moduli

R

momentum n
winding w

1
R

✲✛
R ↔ 1

R

n↔ w

momentum w
winding n
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Moduli and U-duality (I)

String coupling gs is a modulus of string theory.

Moduli contain information about the background on which
strings propagate (geometric or other).

Other moduli: For toroidal backgrounds including

T d−1 = (S1)d−1 the radii are also moduli

R

momentum n
winding w

1
R

✲✛
R ↔ 1

R

n↔ w

momentum w
winding n

Equivalent string theories! T-duality SO(d− 1, d− 1,Z)
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Moduli and U-duality (II)

On gs and (RR) axion χ action of SL(2,Z) S-duality

Ω = χ+ ig−1
s

(

a b

c d

)

· Ω =
aΩ + b

cΩ + d

giving equivalent string theories. Ω ∈ SL(2,R)/SO(2)
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Moduli and U-duality (II)

On gs and (RR) axion χ action of SL(2,Z) S-duality

Ω = χ+ ig−1
s

(

a b

c d

)

· Ω =
aΩ + b

cΩ + d

giving equivalent string theories. Ω ∈ SL(2,R)/SO(2)

All moduli g together form moduli space M
[

Hull
Townsend

]

g ∈ M = Ed(Z)\Ed(d)(R)/K(Ed)

✑
✑✑✸ ✻ ❆❆❑

U-duality Cremmer–Julia
hidden symmetry
(split real)

compact subgroup

t t t tt t
1

2

3 4 5 d

strings on R1,10−d × T d−1
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Moduli and U-duality (II)

On gs and (RR) axion χ action of SL(2,Z) S-duality

Ω = χ+ ig−1
s

(

a b

c d

)

· Ω =
aΩ + b

cΩ + d

giving equivalent string theories. Ω ∈ SL(2,R)/SO(2)

All moduli g together form moduli space M
[

Hull
Townsend

]

g ∈ M = Ed(Z)\Ed(d)(R)/K(Ed)

✑
✑✑✸ ✻ ❆❆❑

U-duality Cremmer–Julia
hidden symmetry
(split real)

compact subgroup

t t t tt t
1

2

3 4 5 d

strings on R1,10−d × T d−1

✬
✫

✩
✪

T-duality✓✒✏✑S-duality

Automorphic representations in string amplitudes – p.11



Coefficient functions in amplitude (I)

Expand the (analytic part of the) full scattering amplitude in
energy direction

A(s, t, u; g) = R4




1

stu
+
∑

p,q≥0

E(p,q)(g)σ
p
2σ

q
3





with σn =
(α′)n

4n (sn + tn + un) and g ∈ Ed. t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

✲

✻gs (loops)

α′

(energy)

✓

✒

✏

✑

✓

✒

✏

✑
E(0,0) E(1,0)
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Coefficient functions in amplitude (I)

Expand the (analytic part of the) full scattering amplitude in
energy direction

A(s, t, u; g) = R4




1

stu
+
∑

p,q≥0

E(p,q)(g)σ
p
2σ

q
3





with σn =
(α′)n

4n (sn + tn + un) and g ∈ Ed. t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

✲

✻gs (loops)

α′

(energy)

✓

✒

✏

✑

✓

✒

✏

✑
E(0,0) E(1,0)

Coefficient functions E(p,q)

are invariant under U-duality Ed(Z)

are of moderate growth in order to be compatible with
perturbation theory

satisfy differential equations for supersymmetry
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Coefficient functions in amplitude (I)

Expand the (analytic part of the) full scattering amplitude in
energy direction

A(s, t, u; g) = R4




1

stu
+
∑

p,q≥0

E(p,q)(g)σ
p
2σ

q
3





with σn =
(α′)n

4n (sn + tn + un) and g ∈ Ed. t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

✲

✻gs (loops)

α′

(energy)

✓

✒

✏

✑

✓

✒

✏

✑
E(0,0) E(1,0)

Coefficient functions E(p,q)

are invariant under U-duality Ed(Z)

are of moderate growth in order to be compatible with
perturbation theory

satisfy differential equations for supersymmetry

⇒ Looking for (spherical) automorphic forms on Ed
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Coefficient functions in amplitude (II)

A lot known for lowest E(p,q) from supersymmetry and

internal consistency
[

Green, Gutperle, Kiritsis, Miller, Obers,
Pioline, Russo, Sethi, Vanhove, Waldron, . . .

]

R4 E(0,0)(g) = 2ζ(3)Eα1,3/2(g)

D4R4 E(1,0)(g) = ζ(5)Eα1,5/2(g)

D6R4 E(0,1)(g) = later

in terms of (maximal parabolic) Eisenstein series

Eα1,s(g) =
∑

γ∈P1(Z)\Ed(Z)

e〈2sΛ1,H(γg)〉
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Coefficient functions in amplitude (II)

A lot known for lowest E(p,q) from supersymmetry and

internal consistency
[

Green, Gutperle, Kiritsis, Miller, Obers,
Pioline, Russo, Sethi, Vanhove, Waldron, . . .

]

R4 E(0,0)(g) = 2ζ(3)Eα1,3/2(g)

D4R4 E(1,0)(g) = ζ(5)Eα1,5/2(g)

D6R4 E(0,1)(g) = later

in terms of (maximal parabolic) Eisenstein series

Eα1,s(g) =
∑

γ∈P1(Z)\Ed(Z)

e〈2sΛ1,H(γg)〉

✻

fund. weight dual to α∨
1

❍❍❍❍❍❨

logarithm map

G→ h (CSA)
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Coefficient functions in amplitude (II)

A lot known for lowest E(p,q) from supersymmetry and

internal consistency
[

Green, Gutperle, Kiritsis, Miller, Obers,
Pioline, Russo, Sethi, Vanhove, Waldron, . . .

]

R4 E(0,0)(g) = 2ζ(3)Eα1,3/2(g)

D4R4 E(1,0)(g) = ζ(5)Eα1,5/2(g)

D6R4 E(0,1)(g) = later

in terms of (maximal parabolic) Eisenstein series

Eα1,s(g) =
∑

γ∈P1(Z)\Ed(Z)

e〈2sΛ1,H(γg)〉

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

✲

✻gs (loops)

α′

(energy)

✇ ✇

✓

✒

✏

✑

✓

✒

✏

✑
Consistency with tree-level results (γ = 1)

E(0,0)(g) = 2ζ(3)g
−3/2
s + . . . , E(1,0)(g) = ζ(5)g

−5/2
s + . . .
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Automorphic representations

Given an automorphic form η one can generate an
automorphic representation by G right action:

η 7→ π(g)η , (π(g)η) (h) = η(hg)

Best done adelically. More properly form a (g,K) module at
archimedean places. Does not upset discrete invariance
under G(Q) left action: η(g) = η(γg)
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Automorphic representations

Given an automorphic form η one can generate an
automorphic representation by G right action:

η 7→ π(g)η , (π(g)η) (h) = η(hg)

Best done adelically. More properly form a (g,K) module at
archimedean places. Does not upset discrete invariance
under G(Q) left action: η(g) = η(γg)

If members of resulting space of functions under all
g ∈ G(A) still have good properties and the space is
irreducible it is called an automorphic representation (of G).

=⇒ Link to representation theory
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Automorphic representations

Given an automorphic form η one can generate an
automorphic representation by G right action:

η 7→ π(g)η , (π(g)η) (h) = η(hg)

Best done adelically. More properly form a (g,K) module at
archimedean places. Does not upset discrete invariance
under G(Q) left action: η(g) = η(γg)

If members of resulting space of functions under all
g ∈ G(A) still have good properties and the space is
irreducible it is called an automorphic representation (of G).

=⇒ Link to representation theory

Eisenstein series sph. vectors of principal series
[
Langlands

]
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Automorphic representations

Given an automorphic form η one can generate an
automorphic representation by G right action:

η 7→ π(g)η , (π(g)η) (h) = η(hg)

Best done adelically. More properly form a (g,K) module at
archimedean places. Does not upset discrete invariance
under G(Q) left action: η(g) = η(γg)

If members of resulting space of functions under all
g ∈ G(A) still have good properties and the space is
irreducible it is called an automorphic representation (of G).

=⇒ Link to representation theory

Eisenstein series sph. vectors of principal series
[
Langlands

]

=⇒ Anything special about the string theory cases?
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Fourier expansion

Simplest case G(R) = SL(2,R), Ω ∈ SL(2,Z)\SL(2,R)/K

Ω = χ+ ig−1
s

E(0,0) = 2ζ(3)E3/2(Ω) = 2ζ(3)g
−3/2
s + 4ζ(2)g

1/2
s

+ 2π
∑

m6=0

√

|m|σ−2(m)e−2π|m|g−1
s +2πimχ

(
1 +O(g−1

s )
)
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Fourier expansion

Simplest case G(R) = SL(2,R), Ω ∈ SL(2,Z)\SL(2,R)/K

Ω = χ+ ig−1
s

E(0,0) = 2ζ(3)E3/2(Ω) = 2ζ(3)g
−3/2
s + 4ζ(2)g

1/2
s

+ 2π
∑

m6=0

√

|m|σ−2(m)e−2π|m|g−1
s +2πimχ

(
1 +O(g−1

s )
)

❄

tree level

❄

one loop

✻
non-perturbative

D(-1)-instanton/brane

[
Green

Gutperle

]
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Fourier expansion

Simplest case G(R) = SL(2,R), Ω ∈ SL(2,Z)\SL(2,R)/K

Ω = χ+ ig−1
s

E(0,0) = 2ζ(3)E3/2(Ω) = 2ζ(3)g
−3/2
s + 4ζ(2)g

1/2
s

+ 2π
∑

m6=0

√

|m|σ−2(m)e−2π|m|g−1
s +2πimχ

(
1 +O(g−1

s )
)

❄

tree level

❄

one loop

✻
non-perturbative

D(-1)-instanton/brane

[
Green

Gutperle

]

Remarks

Constant terms: perturbative calculation (agree and
predict correctly)

Fourier coefficients: non-perturbative effects

Instanton labelled by charge m 6= 0 ↔ nilpotent ∈ g∗
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Fourier expansion

Simplest case G(R) = SL(2,R), Ω ∈ SL(2,Z)\SL(2,R)/K

Ω = χ+ ig−1
s

E(0,0) = 2ζ(3)E3/2(Ω) = 2ζ(3)g
−3/2
s + 4ζ(2)g

1/2
s

+ 2π
∑

m6=0

√

|m|σ−2(m)e−2π|m|g−1
s +2πimχ

(
1 +O(g−1

s )
)

❄

tree level

❄

one loop

✻
non-perturbative

D(-1)-instanton/brane

[
Green

Gutperle

]

Remarks

Constant terms: perturbative calculation (agree and
predict correctly)

Fourier coefficients: non-perturbative effects

Instanton labelled by charge m 6= 0 ↔ nilpotent ∈ g∗

Story gets more interesting for higher rank groups...
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Fourier coefficients

Consider a unipotent subgroup U(Q) ⊂ G(Q) and define the
Fourier coefficient/unipotent period

FψU (η, g) =

∫

U(Q)\U(A)

η(ug)ψU (u)du

for ψU : U(Q)\U(A) → C× a unitary character. Equivalently:

ψU ↔ nilpotent element in g∗
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Fourier coefficients

Consider a unipotent subgroup U(Q) ⊂ G(Q) and define the
Fourier coefficient/unipotent period

FψU (η, g) =

∫

U(Q)\U(A)

η(ug)ψU (u)du

for ψU : U(Q)\U(A) → C× a unitary character. Equivalently:

ψU ↔ nilpotent element in g∗

Wave-front set (of an automorphic form):
Collection of nilpotent orbits supporting FψU 6= 0.

Discussed for instance in
[

Mœglin
Waldspurger

][
Matumoto

]
(locally) and

[
Jiang, Liu

Savin

]
(globally), using Whittaker pairs in

[
Gomez, Gourevitch

Sahi

]
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String theory expectations

Coefficient functions
[
Green, Russo

Vanhove

][
Green, Miller

Vanhove

][
Pioline

]

E(0,0)(g) = 2ζ(3)Eα1,3/2(g) E(1,0)(g) = ζ(5)Eα1,5/2(g)

have special supersymmetry properties: BPS-protected

Implies that for many ψU Fourier coefficient FψU vanishes
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String theory expectations

Coefficient functions
[
Green, Russo

Vanhove

][
Green, Miller

Vanhove

][
Pioline

]

E(0,0)(g) = 2ζ(3)Eα1,3/2(g) E(1,0)(g) = ζ(5)Eα1,5/2(g)

have special supersymmetry properties: BPS-protected

Implies that for many ψU Fourier coefficient FψU vanishes

E(0,0) only has Fourier coefficients for ψU in the closure

of the minimal nilpotent orbit. Bala–Carter type A1

E(1,0) only has Fourier coefficients for ψU in the closure

of the next-to-min. nilpotent orbit. Bala–Carter type 2A1
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String theory expectations

Coefficient functions
[
Green, Russo

Vanhove

][
Green, Miller

Vanhove

][
Pioline

]

E(0,0)(g) = 2ζ(3)Eα1,3/2(g) E(1,0)(g) = ζ(5)Eα1,5/2(g)

have special supersymmetry properties: BPS-protected

Implies that for many ψU Fourier coefficient FψU vanishes

E(0,0) only has Fourier coefficients for ψU in the closure

of the minimal nilpotent orbit. Bala–Carter type A1

E(1,0) only has Fourier coefficients for ψU in the closure

of the next-to-min. nilpotent orbit. Bala–Carter type 2A1

�
�
❅

❅
ηmin

�
�
❅

❅
ηntm

Small automorphic representations!
[

Ginzburg
Rallis, Soudry

][
Miller
Sahi

][
Ciubotaru

Trapa

]
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Which Fourier coefficients to compute?

In string theory on torus T d−1 typically interested in U
coming from max. parabolic subgroups P = LU . Levi
subalgebras for example of the form

so(d−1, d−1)⊕gl(1): cusp gs → 0 and D-instantons

gl(d): cusp vol(T d−1) → ∞ and M-instantons

ed−1: cusp where one radius R → ∞ and black holes

Also interested in explicit form of Fourier coefficients
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Fourier and Whittaker coefficients

Compared to Fourier coefficients FψU more known for

Whittaker coefficients

WψN (η, g) =

∫

N(Q)\N(A)

η(ng)ψN (n)dn

with N the maximal unipotent (fix a Borel B = NA).
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Fourier and Whittaker coefficients

Compared to Fourier coefficients FψU more known for

Whittaker coefficients

WψN (η, g) =

∫

N(Q)\N(A)

η(ng)ψN (n)dn

with N the maximal unipotent (fix a Borel B = NA).

Generic ψN : integral factorises over places

Non-archimedean places: Casselman–Shalika formula

For Eisenstein series η and any (possibly degenerate)
ψN have reduction formula
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Fourier and Whittaker coefficients

Compared to Fourier coefficients FψU more known for

Whittaker coefficients

WψN (η, g) =

∫

N(Q)\N(A)

η(ng)ψN (n)dn

with N the maximal unipotent (fix a Borel B = NA).

Generic ψN : integral factorises over places

Non-archimedean places: Casselman–Shalika formula

For Eisenstein series η and any (possibly degenerate)
ψN have reduction formula

Have reduction algorithm for relating various coefficients of

arbitrary automorphic forms
[
Gourevitch, Gustafsson

AK, Persson, Sahi

]
→ more forms
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Reduction formula

Eisenstein series defined by choice of weight λ ∈ h∗C

E(λ, g) =
∑

γ∈B(Q)\G(Q)

e〈λ+ρ,H(γg)〉

(ρ: Weyl vector)

Character ψN for Ed defined by (m1, ..,md) ∈ Qd (‘charges’)

Degenerate ψN : some mi vanish. Non-zero ones select

subgroup G′ ⊂ Ed such that ψN
∣
∣
N ′ is non-degenerate
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Reduction formula

Eisenstein series defined by choice of weight λ ∈ h∗C

E(λ, g) =
∑

γ∈B(Q)\G(Q)

e〈λ+ρ,H(γg)〉

(ρ: Weyl vector)

Character ψN for Ed defined by (m1, ..,md) ∈ Qd (‘charges’)

Degenerate ψN : some mi vanish. Non-zero ones select

subgroup G′ ⊂ Ed such that ψN
∣
∣
N ′ is non-degenerate

Proposition
[
Hashizume

][
Fleig, AK
Persson

]

WG
ψN (λ, 1) =

∑

wcw′
long∈W/W

′

M(w−1
c , λ)WG′

ψN′
(w−1

c λ, 1)
❄

Intertwiner=
∏

α>0

w−1

c
α<0

ζ⋆(λ·α)
ζ⋆(λ·α+1)

✻
specific coset representatives
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Reduction formula

Eisenstein series defined by choice of weight λ ∈ h∗C

E(λ, g) =
∑

γ∈B(Q)\G(Q)

e〈λ+ρ,H(γg)〉

(ρ: Weyl vector)

Character ψN for Ed defined by (m1, ..,md) ∈ Qd (‘charges’)

Degenerate ψN : some mi vanish. Non-zero ones select

subgroup G′ ⊂ Ed such that ψN
∣
∣
N ′ is non-degenerate

Proposition
[
Hashizume

][
Fleig, AK
Persson

]

WG
ψN (λ, 1) =

∑

wcw′
long∈W/W

′

M(w−1
c , λ)WG′

ψN′
(w−1

c λ, 1)
❄

Intertwiner=
∏

α>0

w−1

c
α<0

ζ⋆(λ·α)
ζ⋆(λ·α+1)

✻
specific coset representatives

❅❅■ ��✒
can vanish for special λ
small representations!
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Reduction formula (II)

Using reduction formula can show that for Ed
[

Gustafsson
AK, Persson

]

for ηmin: WψN 6= 0 only if a single mi 6= 0 (type A1),

G′ = SL(2) and a single term in sum (Eulerian)

for ηntm: WψN 6= 0 if a single mi 6= 0 (non-Eulerian) or two

disconnected mi 6= 0 (type 2A1, Eulerian)
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Reduction formula (II)

Using reduction formula can show that for Ed
[

Gustafsson
AK, Persson

]

for ηmin: WψN 6= 0 only if a single mi 6= 0 (type A1),

G′ = SL(2) and a single term in sum (Eulerian)

for ηntm: WψN 6= 0 if a single mi 6= 0 (non-Eulerian) or two

disconnected mi 6= 0 (type 2A1, Eulerian)

Also rederive archimedean and p-adic spherical vectors of

min-rep, agrees with
[
Dvorsky

Sahi

][
Savin

Woodbury

]
.
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Reduction formula (II)

Using reduction formula can show that for Ed
[

Gustafsson
AK, Persson

]

for ηmin: WψN 6= 0 only if a single mi 6= 0 (type A1),

G′ = SL(2) and a single term in sum (Eulerian)

for ηntm: WψN 6= 0 if a single mi 6= 0 (non-Eulerian) or two

disconnected mi 6= 0 (type 2A1, Eulerian)

Also rederive archimedean and p-adic spherical vectors of

min-rep, agrees with
[
Dvorsky

Sahi

][
Savin

Woodbury

]
.

What about Fourier coefficients for other unipotents U?

Something like Piatetski-Shapiro–Shalika formula for η or
FψU in terms of WψN?
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Relating coefficients

Algorithm in
[
Gourevitch, Gustafsson

AK, Persson, Sahi

]
, building on

[
Miller
Sahi

][
Gomez, Sahi
Gourevitch

]

Representative (simplified) results

For ηmin, U unipotent radical of maximal parabolic and
ψU 6= 0 only on root space defining maximal parabolic:

FψU (ηmin, g) = WψN (ηmin, g)

❍❍❨
extend ψU trivially from U to N
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Relating coefficients

Algorithm in
[
Gourevitch, Gustafsson

AK, Persson, Sahi

]
, building on

[
Miller
Sahi

][
Gomez, Sahi
Gourevitch

]

Representative (simplified) results

For ηmin, U unipotent radical of maximal parabolic and
ψU 6= 0 only on root space defining maximal parabolic:

FψU (ηmin, g) = WψN (ηmin, g)

❍❍❨
extend ψU trivially from U to N

For ηntm and ψU of rank two, can find γ ∈ G(Q) such that

ψN = Ad∗
γψU on two orthogonal simple root spaces

(2A1)
FψU (ηntm, g) =

∫

Vγ(A)

WψN (ηntm, vγg)dv

✻
LieVγ = g

γSγ−1

>1 ∩ b, where S defines U by e-val ≥ 2
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Relating coefficients (II)

General structure of relations

Fψ or η =
∑

∫

W

�
�✠

replace by
‘Levi distinguished’
in general

‘linearly determined by’ or ‘spanned by’
[
Hundley
Sayag

]
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Relating coefficients (II)

General structure of relations

Fψ or η =
∑

∫

W

�
�✠

replace by
‘Levi distinguished’
in general

‘linearly determined by’ or ‘spanned by’
[
Hundley
Sayag

]

Idea of proof:

1. Initial coefficient Fψ through Whittaker pair (S, ψ).

Defines unipotent integration domain NS,ψ

2. ‘Fill up’ integration domain by deforming Whittaker pair
to another (H,ψ) via H = S + t(H − S) for 0 ≤ t ≤ 1

3. At ‘critical points’ t∗ can obtain (i) root exchanges
[

Ginzburg
Rallis, Soudry

]
, (ii) additional Fourier expansion. Might have

to conjugate ψ for standard Borel. Discard all terms
outside wave-front set of η
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Example: ntm of SL(4)

One-parameter family of next-to-minimal representations for
SL(4) of GK-Dim=4, spherical vector is max. parabolic
Eisenstein series Eα2,s for P2.

Want FψU =
∫

Vγ
WψN (vγ)dv (Eulerian!) with U = U2

unipotent of middle parabolic and ntm character ψU of form

P2 =















∗ ∗ U U

∗ ∗ U U

0 0 ∗ ∗

0 0 ∗ ∗















, ψU =















0 0 m 0

0 0 0 n

0 0 0 0

0 0 0 0















γ=w2−→















0 m 0 0

0 0 0 0

0 0 0 n

0 0 0 0















= ψN
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Example: ntm of SL(4)

One-parameter family of next-to-minimal representations for
SL(4) of GK-Dim=4, spherical vector is max. parabolic
Eisenstein series Eα2,s for P2.

Want FψU =
∫

Vγ
WψN (vγ)dv (Eulerian!) with U = U2

unipotent of middle parabolic and ntm character ψU of form

P2 =















∗ ∗ U U

∗ ∗ U U

0 0 ∗ ∗

0 0 ∗ ∗















, ψU =















0 0 m 0

0 0 0 n

0 0 0 0

0 0 0 0















γ=w2−→















0 m 0 0

0 0 0 0

0 0 0 n

0 0 0 0















= ψN

p<∞ : Fp,ψU
(1) = (1− p2s)(1− p2s−1)

∑

d|Γ

(det Γ)2−2sd2s−1σ2s−2

(det Γ

d2

)

p=∞ : F∞,ψU
(1) =

4π2s−1/2

Γ(s)Γ(s−1/2)
|mn|s−1

∫

R

Ks−1(2π|m|
√

1+u2)Ks−1(2π|n|
√

1+u2)du

✧✦
★✥

Γ

(Agrees with direct calculation.)
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More auto. functions from strings
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More auto. functions from strings

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

✲

✻gs (loops)

α′

(energy)

✓

✒

✏

✑

✓

✒

✏

✑
ηmin ηntm

Hasse diagram for E7(R)

0

A1

2A1

(3A1)
′

(3A1)
′′

A2

4A1

A1A2

❡

❡

ηmin

ηntm
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More auto. functions from strings

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

✲

✻gs (loops)

α′

(energy)

✓

✒

✏

✑

✓

✒

✏

✑
ηmin ηntm

Hasse diagram for E7(R)

0

A1

2A1

(3A1)
′

(3A1)
′′

A2

4A1

A1A2

❡

❡

ηmin

ηntm

Why not continue to higher orders in α′, i.e. ηn2tm?

✎

✍

☞

✌
ηn2tm
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More auto. functions from strings

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

✲

✻gs (loops)

α′

(energy)

✓

✒

✏

✑

✓

✒

✏

✑
ηmin ηntm

Hasse diagram for E7(R)

0

A1

2A1

(3A1)
′

(3A1)
′′

A2

4A1

A1A2

❡

❡

ηmin

ηntm

Why not continue to higher orders in α′, i.e. ηn2tm?

✎

✍

☞

✌
ηn2tm

What identifies ηmin and ηntm in string theory is Fourier
support ↔ differential equations (=annihilator ideal)

Automorphic representations in string amplitudes – p.25



More auto. functions from strings

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

t
t
t
t
t

✲

✻gs (loops)

α′

(energy)

✓

✒

✏

✑

✓

✒

✏

✑
ηmin ηntm

Hasse diagram for E7(R)

0

A1

2A1

(3A1)
′

(3A1)
′′

A2

4A1

A1A2

❡

❡

ηmin

ηntm

Why not continue to higher orders in α′, i.e. ηn2tm?

✎

✍

☞

✌
ηn2tm

What identifies ηmin and ηntm in string theory is Fourier
support ↔ differential equations (=annihilator ideal)

ηn2tm

ηn2tm
two max. orbits!
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More auto. functions from strings (II)

Exemplary inhomogeneous differential equation for SL(2)
[

Green
Vanhove

]

(∆− 12) ηn2tm = −η2min (*)
✻

SL(2) invariant Laplacian on UHP

Can be solved using Poincaré series, Fourier series or

spectral methods
[
Green, Miller

Vanhove

][
Ahlén

AK

][
Dorigoni

AK

][
Klinger-
Logan

]
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More auto. functions from strings (II)

Exemplary inhomogeneous differential equation for SL(2)
[

Green
Vanhove

]

(∆− 12) ηn2tm = −η2min (*)
✻

SL(2) invariant Laplacian on UHP

Can be solved using Poincaré series, Fourier series or

spectral methods
[
Green, Miller

Vanhove

][
Ahlén

AK

][
Dorigoni

AK

][
Klinger-
Logan

]

Gen. of (*) to Ed
[

Bossard
Verschinin

][
Pioline

]
. Solution

[
Bossard, AK

][
Bossard,AK

Pioline

]

ηn2tm(g) =
4π

3

∫

R3
+

d3Ω2

(detΩ2)
7−d
2

ϕ(Ω2)

′
∑

Γ1,Γ2∈Λ
Γi×Γj=0

e−πΩ
ij
2 G(Γi,Γj) + ηhom.(g)
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More auto. functions from strings (II)

Exemplary inhomogeneous differential equation for SL(2)
[

Green
Vanhove

]

(∆− 12) ηn2tm = −η2min (*)
✻

SL(2) invariant Laplacian on UHP

Can be solved using Poincaré series, Fourier series or

spectral methods
[
Green, Miller

Vanhove

][
Ahlén

AK

][
Dorigoni

AK

][
Klinger-
Logan

]

Gen. of (*) to Ed
[

Bossard
Verschinin

][
Pioline

]
. Solution

[
Bossard, AK

][
Bossard,AK

Pioline

]

ηn2tm(g) =
4π

3

∫

R3
+

d3Ω2

(detΩ2)
7−d
2

ϕ(Ω2)

′
∑

Γ1,Γ2∈Λ
Γi×Γj=0

e−πΩ
ij
2 G(Γi,Γj) + ηhom.(g)

✏✏✏✏✶

Ωij
2

=





L1 + L3 L3

L3 L2 + L3





❆
❆❑

ϕ(Ω2) = L1+L2+L3−5L1L2L3

det Ω2

∼ Kawazumi–Zhang inv.

❍❍❨
g-dep. bil. form
on lattice Λ in Ed-rep
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More auto. functions from strings (III)

Fourier expansion only partially analysed
[
Bossard, AK

Pioline

]

Note: ηn2tm not Z-finite due to inhomogeneity in equation.

New types of automorphic functions!
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More auto. functions from strings (III)

Fourier expansion only partially analysed
[
Bossard, AK

Pioline

]

Note: ηn2tm not Z-finite due to inhomogeneity in equation.

New types of automorphic functions!

Theorems in
[
Gourevitch, Gustafsson

AK, Persson, Sahi

]
do not require Z-finiteness...

Should be applicable to such more general automorphic
functions...
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More auto. functions from strings (III)

Fourier expansion only partially analysed
[
Bossard, AK

Pioline

]

Note: ηn2tm not Z-finite due to inhomogeneity in equation.

New types of automorphic functions!

Theorems in
[
Gourevitch, Gustafsson

AK, Persson, Sahi

]
do not require Z-finiteness...

Should be applicable to such more general automorphic
functions...

Remark: Very similar (and more involved ‘higher-depth’)
equations arise naturally for SL(2,Z) modular graph forms.
Connection to iterated Eisenstein integrals and multiple

zeta values there
[

Broedel, Brown, Dupont, Enriquez, Gerken, AK, Matthes,
Mizera, Panzer, Schlotterer, Stieberger, Taylor, Zagier, Zerbini,. . .

]

Also show up for integrated N = 4 super Yang–Mills

correlators
[

Chester, Green
Pufu, Wang, Wen

][
Dorigoni

Green, Wen

][
Fedosova

Klinger-Logan

]
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More auto. functions from strings (IV)

Possible picture (in progress
[

Bossard, Friedberg
Gourevitch, AK, Persson

]
):

More general notion of U(g)-module associated with
inhomogeneous equations of the form

(∆− λ)F = S

giving rise to an exact sequence

0 → U(g)S → U(g)F → U(g)EP → 0

for some parabolic Eisenstein series EP that descends to
interesting consequences for Fourier coefficients (that grow
exponentially per black hole counting).
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More auto. functions from strings (IV)

Possible picture (in progress
[

Bossard, Friedberg
Gourevitch, AK, Persson

]
):

More general notion of U(g)-module associated with
inhomogeneous equations of the form

(∆− λ)F = S

giving rise to an exact sequence

0 → U(g)S → U(g)F → U(g)EP → 0

for some parabolic Eisenstein series EP that descends to
interesting consequences for Fourier coefficients (that grow
exponentially per black hole counting).

Many interesting avenues to explore!
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More auto. functions from strings (IV)

Possible picture (in progress
[

Bossard, Friedberg
Gourevitch, AK, Persson

]
):

More general notion of U(g)-module associated with
inhomogeneous equations of the form

(∆− λ)F = S

giving rise to an exact sequence

0 → U(g)S → U(g)F → U(g)EP → 0

for some parabolic Eisenstein series EP that descends to
interesting consequences for Fourier coefficients (that grow
exponentially per black hole counting).

Many interesting avenues to explore!

Thank you for your attention!
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