Questions from first lecture

• uniqueness of Nash equilibrium

-can be multiple equilibria as in

—in general need strong conditions to obtain uniqueness—but have "essential" uniqueness in two-player zero-sum games

• in proof of theorem that continuous game with compact strategy spaces has a Nash equilibrium looked at limit of NE in finite approximation

$$\lim_{t\to\infty} \left(p_1^t, \cdots, p_n^t \right) = \left(p_1^*, \cdots, p_n^* \right)$$

-does sequence converge?

-actually, sequence may not converge

-however, if it doesn't, can take convergent subsequence (which will exist)

- does there exist a NE in chess?
 - yes

– but can say something stronger based on von Neumann's minimax theorem

Theorem (von Neumann): In finite, two-player zerosum game,

- there exists (p_1^*, p_2^*) (minimax equilibrium) such that
 - $g_i(p_i, p_j^*) \le g_i(p_i^*, p_j^*) \le g_i(p_i^*, p_j)$ for all p_i, p_j
 - saddle point property • $g_i(p_i^*, p_j^*) = \max_{\substack{p_i \ p_j}} \min_{p_j} g_i(p_i, p_j) = \min_{\substack{p_j \ p_i}} \max_{p_i} g_i(p_i, p_j)$
- if (p₁^{**}, p₂^{**}) also minimax equilibrium, so are (p₁^{*}, p₂^{**}) and (p₁^{**}, p₂^{*}) exchangeability

implication of Minimax theorem:

- in chess,
 - either both sides can guarantee (at least) draw
 - one side can guarantee win
 - strategies involve no randomization

Lecture 2: Mechanism Design

- imagine town that wants to adopt green energy (no carbon emissions)
- must decide among
 - solar
 - wind
 - nuclear
 - hydro
- suppose mayor wishes to adopt energy type that citizens want

• 3 citizens: Alice, Bob, Cal

either preferences are

	<u>Alice</u>	<u>Bob</u>	<u>Cal</u>
$ heta_1$	solar	nuclear	wind-solar
	wind	wind	nuclear
	hydro	hydro	hydro
or	nuclear	solar	
	Alice	Bob	Cal
$ heta_2$	nuclear	wind	wind-solar
-	solar	solar	nuclear
	hydro	hydro	hydro
	wind	nuclear	

	$ heta_1$			$ heta_2$	
<u>Alice</u>	Bob	<u>Cal</u>	Alice	Bob	Cal
solar	nuclear	wind-solar	nuclear	wind	wind-solar
wind	wind	nuclear	solar	solar	nuclear
hydro	hydro	hydro	hydro	hydro	hydro
nuclear	solar		wind	nuclear	
	wind optimal			solar optimal	

- if θ_1 holds, mayor would want to pick *wind*
- if θ_2 holds, mayor would want to pick *solar*
- but suppose mayor doesn't *know* which of θ_1 or θ_2 actually holds

$heta_1$

Alice	<u>Bob</u>
solar	nuclear
wind	wind
hydro	hydro
nuclear	solar

<u>Cal</u> wind-solar nuclear hydro

wind optimal

- mayor could *simply ask* Alice and Bob which state holds
- but not likely to get a straight answer
 - Alice prefers solar to wind in *both* states
 - so has incentive to say " θ_2 " regardless of truth
 - Bob prefers wind to solar in both states
 - so has incentive to say " θ_1 " regardless of truth
- so straightforward mechanism of asking citizens won't work

<u>Alice</u> nuclear solar hydro wind θ_2 **Bob** wind solar hydro nuclear

Cal

wind-solar

nuclear

hydro

solar optimal

	$ heta_{ m l}$			$ heta_2$	
Alice	Bob	<u>Cal</u>	Alice	<u>Bob</u>	Cal
solar	nuclear	wind-solar	nuclear	wind	wind-solar
wind	wind	nuclear	solar	solar	nuclear
hydro	hydro	hydro	hydro	hydro	hydro
nuclear	solar		wind	nuclear	
	wind optimal			solar optin	nal

• Suppose instead mayor has Alice and Bob play following mechanism:

	Bee		
Alice	wind	hydro	
	nuclear	solar	

Roh

- Alice: can choose top row or bottom row
- Bob: can choose left column or right column
- if θ_1 holds,
 - Alice will prefer top row if Bob plays left column
 - Bob will always prefer left column
 - so (Alice plays top, Bob plays left) is (unique) Nash equilibrium
- mechanism induces optimal choice (wind) in state θ_1

	$ heta_{_1}$			$ heta_2$	
<u>Alice</u>	Bob	Cal	Alice	Bob	Cal
solar	nuclear	wind-solar	nuclear	wind	wind-solar
wind	wind	nuclear	solar	solar	nuclear
hydro	hydro	hydro	hydro	hydro	hydro
nuclear	solar		wind	nuclear	
	wind optimal			solar optimal	

- symmetrically, there is unique Nash Equilibrium (bottom right) in state θ_2 leading to optimal choice solar
- we have shown that mechanism *implements* optimal choice (always leads to optimal choice)

- let's look at mechanism design problem in general
- society = $\{1, ..., n\}$
 - individual $i = 1, \ldots, n$
- *A* = set of possible outcomes
 - possible public projects
 - possible allocations of goods to individuals
 - possible political candidates
- Θ = possible states of the world state θ = complete description of all relevant data

e.g.

- individuals' payoffs from outcomes in A
- available resources
- production technology

thus, A should depend on θ A(θ)

- ignore this dependence
- payoff function $u_i: A \times \Theta \to \mathbb{R}$

 $u_i(a,\theta)$ = individual *i*'s payoff from outcome *a* in state θ

social choice rule

 $f: \Theta \longrightarrow A$ (set-valued function; correspondence) $f(\theta) \subseteq A$

> $f(\theta)$ consists of "optimal" ("best") outcomes in state θ

• in energy example,

 $f(\theta_1) =$ wind and $f(\theta_2) =$ solar

if mechanism designer *knows* θ, then achieving optimal outcome easy
– just choose a ∈ f(θ)

• if *doesn't* know θ , must proceed more indirectly

• mechanism

 $g: S_1 \times \cdots \times S_n \to A$

 S_i = individual *i*'s *strategy set*, with typical element $s_i \in S_i$

• Nash equilibrium for g in state θ

$$(s_1,\ldots,s_n) = (s_i,s_{-i})$$

such that

$$u_i(g(s_i, s_{-i}), \theta) \ge u_i(g(s'_i, s_{-i}), \theta)$$
 for all $s'_i \in S_i$

• *n* - tuple of strategies such that no individual gains from deviating unilaterally

 $NE_{g}(\theta) = \{a \in A \mid \text{there exists Nash equilibrium}(s_{i}, s_{-i}) \text{ for } g \text{ in state } \theta \text{ such that}$ $a = g(s_{i}, s_{-i}) \}$

= Nash equilibrium outcomes of mechanism g in state θ

mechanism g implements SCR f if

 $NE_g(\theta) = f(\theta)$ for all θ

• i.e., whatever the state

predicted outcome = *desired* outcome

When is SCR *f* implementable?

- *monotonicity* is key
- *f* is monotonic provided that

for all $\theta, \theta' \in \Theta$ and $a \in f(\theta)$,

if, for all i and b,

(*)
$$u_i(a,\theta) \ge u_i(b,\theta) \Rightarrow u_i(a,\theta') \ge u_i(b,\theta')$$

then $a \in f(\theta')$

- suppose a is optimal in state θ
- now change payoff functions so that for any b, if individual i prefers a to b in state θ, still prefers a to b in state θ'

• *a* doesn't "fall" vis à vis any *b* in going from θ to θ' (condition (*)) then *a* optimal in state θ'

θ_1

<u>Bob</u>

wind

hydro

solar

<u>Alice</u>	
solar	
wind	
hydro	
nuclear	
	W

<u>Cal</u> wind-solar nuclear nuclear hydro wind optimal

<u>Alice</u> nuclear solar hydro wind

 θ_2 <u>Bob</u> wind solar hydro nuclear solar optimal

<u>Cal</u> wind-solar nuclear hydro

 $f(\theta_1) = \text{wind}$ \bullet

- wind falls in Alice's ranking going from θ_1 to θ_2

- solar falls in Bob's ranking going from θ_2 to θ_1

- so f is monotonic

 $f(\theta_2) = \text{solar}$

Suppose

	<u>Alice</u>	<u>Bob</u>	<u>Cal</u>
	solar	wind	hydro-nuclear
Ĥ.	hydro	nuclear	wind
03	nuclear	hydro	solar
	wind	solar	
	A 1•	D 1	
	Ance	<u>B0D</u>	Cal
Suppose	solar	nuclear	hydro-nuclear
Suppose	solar hydro	nuclear wind	hydro-nuclear wind
Suppose $ heta_4$	solar hydro nuclear	nuclear wind hydro	hydro-nuclear wind solar
Suppose $ heta_4$	solar hydro nuclear wind	nuclear wind hydro solar	hydro-nuclear wind solar

$$\hat{f}(\theta_3) =$$
 hydro $\hat{f}(\theta_4) =$ nuclear

- hydro does not fall in preferences in going from θ_3 to θ_4
- So \hat{f} not monotonic

Theorem 1: If *f* implementable, then monotonic

Proof:

- suppose f implemented by g
- consider θ and $a \in f(\theta)$
 - then there exists $(s_1, ..., s_n)$ such that $g(s_1, ..., s_n) = g(s_i, s_{-i}) = a$
- (**) $u_i(g(s_i, s_{-i}), \theta) \ge u_i(g(s'_i, s_{-i}), \theta)$ for all i, s'_i
- consider θ' such that
- (*) $u_i(a,\theta) \ge u_i(b,\theta) \Longrightarrow u_i(a,\theta') \ge u_i(b,\theta')$ for all *i* and *b*
- To show: $a \in f(\theta')$
- from (*) and (**), $u_i(g(s_i, s_{-i}), \theta') \ge u_i(g(s_i', s_{-i}), \theta') \text{ for all } i, s_i'$
- so $(s_1, ..., s_n)$ is a Nash equilibrium in state θ'
- so $g(s_1,...,s_n) = a \in f(\theta')$ (by definition of an implementing mechanism)

- converse *not* true
 - there exist monotonic SCRs that can't be implemented
- but *almost* true

No Veto Power: f satisfies no veto power provided that, for all *i*, if

$$u_j(a,\theta) \ge u_j(b,\theta)$$
 for all b and $j \ne i$

then

$$a \in f(\theta)$$

- i.e., if all people except possibly *i* agree that *a* is their favorite outcome, then *i* cannot veto it
- f and \hat{f} in energy example both satisfy no veto power

Theorem 2: If $n \ge 3$ and *f* is monotonic and satisfies no veto power, then *f* is implementable

Proof:

- Let $S_i = \Theta \times A \times N$ $s_i = (\theta_i, a_i, m_i)$
- individual *i* announces
 - state θ_i
 - outcome a_i
 - positive integer m_i

(A) If
$$(\theta_{1}, a_{1}) = \dots = (\theta_{n}, a_{n}) = (\theta, a)$$

and
 $a \in f(\theta)$
• then $g(s_{1}, \dots, s_{n}) = a$
(B) If $(\theta_{j}, a_{j}) = (\theta, a)$ for all $j \neq i$
and
 $a \in f(\theta)$
• then
 $g(s_{1}, \dots, s_{n}) = \begin{cases} a_{i}, \text{ if } u_{i}(a, \theta) \geq u_{i}(a_{i}, \theta) \\ a, \text{ if } u_{i}(a_{i}, \theta) > u_{i}(a, \theta) \end{cases}$ (requires $n \geq 3$)

(C) In all other cases

$$g(s_1,...,s_n) = a_i,$$

where $m_i = \arg \max_j m_j$

Claim 1: If $a \in f(\theta)$ and

(i)
$$s_1 = \dots = s_n = (\theta, a, 1),$$

then $(s_1,...,s_n)$ is a Nash equilibrium in state θ and

(ii)
$$g(s_1,\ldots,s_n) = a$$

Proof:

- From (A), (i) implies (ii)
- From (B), if *i* deviates from (s_i, s_{-i}) , can't get anything better than *a*, so (s_1, \dots, s_n) is a Nash equilibrium in state θ
- Thus if $a \in f(\theta)$, there exists Nash equilibrium producing a
- Remains to show that if a is Nash equilibrium outcome in state θ ,

then $a \in f(\theta)$

Claim 2: If

(iii)
$$a \in f(\theta)$$
,
(iv) $(\theta_i, a_i) = (\theta, a)$ for all *i*,
and
(v) (s_1, \dots, s_n) is a Nash equilibrium in state θ' ,
then $a \in f(\theta')$
Proof: From (iii), (iv), and (A)

$$g(s_1,\ldots,s_n)=a$$

• suppose for some *i* and *b*

(vi)
$$u_i(a,\theta) \ge u_i(b,\theta)$$

• From (B), (vi) implies that if $s'_i = (\theta, b, 1)$

(vii)
$$g(s'_i, s_{-i}) = b$$

 $\bullet \quad \text{Now if} \quad u_i \bigl(b, \theta' \bigr) \! > \! u_i \bigl(a, \theta' \bigr),$

then from (vii) $(s_1, ..., s_n)$ is not a Nash equilibrium in state θ' , contradicitng (v). Hence (vi) implies

- (viii) $u_i(a,\theta') \ge u_i(b,\theta')$
- From monotonicity, (iii), (vi), and (viii) imply $a \in f(\theta')$, as claimed

Claim 3: If

(ix)
$$(\theta_j, a_j) = (\theta, a)$$
 for all $j \neq i$
 $(\theta_i, a_i) \neq (\theta, a),$
and
(x) (s_1, \dots, s_n) is a Nash equilibrium in state $\theta',$
then
 $g(s_1, \dots, s_n) \in f(\theta')$

Proof:

From (ix) and (C), each individual $j \neq i$ can get favorite

• outcome by choosing
$$s'_j = (\theta'_j, a'_j, m'_j)$$
 where
 $\theta'_j \neq \theta$
 a'_j is j's favorite outcome in state θ'
 $m'_j > \max_{k \neq j} m_k$

because $(s_1,...,s_n)$ is Nash equilibrium in state θ' ,

- Hence, $u_j(g(s_1,...,s_n),\theta') \ge u_j(b,\theta')$ for all bThus, from no veto power, ٠
- •

$$g(s_1,\ldots,s_n) \in f(\theta')$$

Claim 4: If $(s_1, ..., s_n)$ is a Nash equilibrium in state θ' for which (C) applies, then $g(s_1, ..., s_n) \in f(\theta')$

Proof: Since (C) applies,

- *all j* can deviate and get favorite alternative
- so from no veto power, $g(s_1, ..., s_n) \in f(\theta')$

So $NE_g(\theta) = f(\theta)$ for all θ , i.e., g implements f