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VI. L-functions



L-functions

L functions are topological invariants of (X , F), where X is an
arithmetic scheme and F is a locally constant sheaf of A-modules.

Usually A ⊂ C, A ⊂ Q̄p, or A is finite.

The L-function evaluated on (X ,F) is the canonical assignment

(X ,F) 7→ L(X ,F) ∈ detRΓc(X ,F)∗

of an element in the determinant of cohomology of F .

This assignment is subject to a collection of conditions, including
some difficult functoriality that I will not spell out. However, I will
focus on a few interesting conditions.



L-functions

I. (Multiplicativity)

Given an exact sequence

0 - F1 - F2 - F3 - 0

the canonical isomorphism

detRΓc(X ,F2) ' detRΓc(X ,F1)⊗ detRΓc(X ,F3)

takes L(X ,F2) to L(X ,F1)⊗ L(X ,F3).



L-functions

Thus, for a triple
U ⊂ j- X �

i ⊃ Z ,

get
0 - j!j

∗(F) - F - i∗i
∗(F) - 0

and hence
L(X ,F) = L(U, j∗F)L(Z , i∗F).

Doing this for Z an increasing union of points, formally get

L(X ,F) =
∏
x∈X0

L(x ,F).



L-functions

II. (Normalisation for finite fields)

For X = Spec(Fq), a sheaf is equivalent to an A-module F with
Frq-action. In this case, cohomology is computed via the exact
sequence

0 - H0(F) - F I−Frq- F - H1(F) - 0,

from which one gets the isomorphism

det(F)∗ ⊗ det(F) ' detRΓc(F)∗.

Thus, the element Id ∈ det(F)∗ ⊗ det(F), gives rise to a canonical
element

L(Spec(Fq),F) ∈ detRΓc(F)∗,

which normalises the L-function over a finite field.



L-functions

In case F is acyclic, get another trivialisation

detRΓc(F)∗ ' A,

with respect to which the element L(Spec(Fq),F) is identified with

1
det((I − Frq)|F)

.

Thus, for general X , we get the formal expression

L(X ,F) =
∏
x∈X0

1
det((I − Frx)|Fx)

.



L-functions

III. Complex normalisation.

When A ⊂ C, the assignment should be the natural (infinite)
product when it converges, for example, when F has sufficiently
negative weight.

This means the eigenvalues of Frx acting on Fx are of size |N(x)|c
for a finite collection of exponents c sufficiently negative.

IV. p-adic normalisation.

In the p-adic case, one would like an interpolation property giving
compatibility with the complex L-function.



L-functions

The variation of L(X ,F) with the sheaf F is the subject of the
Hasse-Weil conjecture when A ⊂ C and the Main Conjecture of
Iwasawa theory when A ⊂ Q̄p.

IfM is a ‘natural’ moduli space of sheaves on X , thenM carries a
natural determinant line bundle

Det∗ - M.

The conjectures propose that one can canonically construct an
analytic section

L(X , ·) ∈ Γ(M,Det∗),

compatible with the conditions above.



L-functions

In particular, the Hasse-Weil conjecture says that one should start
with any motivic sheaf F on Spec(OF [1/B]), and then naturally
define

L(Spec(OF [1/B]),F ⊗ ‖ · ‖s)

for any complex parameter s.

Meanwhile the main conjecture says something similar, that one
should be able to define the p-adic analytic section

L(Spec(OF [1/B]),F ⊗ χs
p)

for all s ∈ Z×p , where χp is the p-adic cyclotomic character.



VII. A Review of Some Elementary Physics



Classical Systems

Space of all possible states: symplectic manifold (S, ω), where
ω ∈ Ω2(S) is non-degenerate and closed.

Examples:

R3 × R3 = {(p, q)}

states of a single point particle in Euclidean space. Symplectic form

3∑
i=1

dpi ∧ dqi = d(
∑
i

pidqi )

Generalises to
T ∗X ,

where X is a manifold: θ :=
∑

i pidqi is invariantly defined. Put
ω = dθ.



Classical Systems

Examples (continued):

Smooth complex projective varieties. Symplectic form is associated
to Kaehler metric pulled back from projective space:

ω = g(J·, ·)

In the C∞-case, every symplectic structure locally looks like

n∑
i=1

dpi ∧ dqi = d(
∑
i

pidqi )

Important class of examples are space of fields: Solution spaces of
differential equations for sections of fibre bundles over a spacetime
manifold.



Classical Systems
One motivation for symplectic structures: Hamilton’s equations

∂q

∂t
=
∂h

∂p

∂p

∂t
= −∂h

∂q

where h(p, q) is a function representing energy, e.g.,

h(p, q) =
p2

2m
+ kq2.

This can be written as the vector field Xh associated to dh:

ω(Xh, ·) = dh.

The equation
γ′(t) = Xh(γ(t))

locally looks like Hamilton’s equations. (Here as in the following,
may be many sign errors.)



Quantum Systems
Space of states is a Hilbert space H = {ψ}.

Role of functions played by self-adjoint operators

O : H - H.

Evaluating a function f at a point gets replaced by

ψ 7→ 〈ψ,Oψ〉
〈ψ,ψ〉

,

the expectation value of O in the state ψ.

Time evolution given by Schroedinger’s equation:

dψ

dt
=

1
i~
Hψ

for an operator H representing energy.



Quantum Systems
Quantisation refers to a process

(M, ω, h) - (H,H).

It should come with a process for converting functions to operators:

a 7→ â

so that physical quantities like energy, momentum, position have
quantum mechanical expectation values. Energy is especially
important in practice.

Example: (R× R, ω), h = p2

2m + kq2 is quantised via

H = L2(R,C),

q - multiplication operator;
p - −id

dq ;

h - H =
1
2m
∇2 + kq2.



Quantum Systems

The prototype is (Rn × Rn = {(q, p)}, ω), which quantises to
L2(Rn), with qi going to the multiplication operator and pi to i ∂

∂qi
.

Quantise many h of the form

h =
p2

2m
+ V (q),

where V (q) is interpreted as a potential energy.

However, this does not extend to

f 7→ f̂ .

Works for linear and quadratic functions.



Quantum Systems
Two other constructions:

1. Can replace L2(Rn) by L2(L), where L ⊂ Rn × Rn is any
Lagrangian subspace.
Given such an L, almost canonical isomorphism

FL : L2(L) ' L2(Rn)

2. Instead can use L2
hol(Cn, µ), where µ is a Gaussian measure.

This is naturally thought of as a completion of

Sym(Cn)

with respect to ∫
|f (z)|2 exp(−|z |2)dzdz̄ .

Then zi acts by multiplication while z̄i acts by d/dzi with

zi = pi + iqi , z̄i = pi − iqi .



Quantum Systems
Several advantages, including the fact that quantum states can be
evaluated at a point on the classical state space.

This extends to the idea of Kaehler geometric quantisation: Given
the symplectic (S, ω), put on it a Kaehler structure. Construct a
holomorphic line bundle L - S with connection such that
c1(L,∇) = ω.

Note that 1 ∈ L2
hol(Cn, µ) spans the unique line killed by the z̄i .

Sometimes has the interpretation of a vacuum state. Thus, there is
such a line spanned by v0 ∈ L2(Rn).

In fact, for any Lagrangian subspace L, there is a line spanned by
vL ∈ L2(Rn): Write L locally as q1 = q2 = · · · = qn = 0 for a
system (qj , pj) of symplectic coordinates.

Then vL is the vector annihilated by

∂

∂qj
− i

∂

∂pj



Quantum Systems

This is believed to work quite generally: When (S, ω) is quantised
to H, there should be something like a cycle map

L 7→ vL ∈ H

from Lagrangian submanifolds to lines in H.

General idea: Write L locally as q1 = q2 = · · · = qn = 0 for a
system (qj , pj) of symplectic coordinates.
Then vL is the vector annihilated by

∂

∂qj
− i

∂

∂pj

Clearly difficult to make sense of this.



Quantum Systems

When the system consists of fields, e.g., functions φ on spacetime,
try to quantise coordinates like φ(x), φ̇(x).

So papers on quantum field theory are full of expressions like

〈φ(x1)φ(x2) · · ·φ(xn)〉

the expectation value of this composite of operators in the vacuum
state.

But very difficult to define the Hamiltonian - perturbation
theory, renormalisation, etc. This allows people to compute
scattering amplitudes.



Classical and Quantum Systems: Correction
All of this is old fashioned!

It is restricted to a situation where

M = N × R.

Conventionally, the space S of classical states is often described
alternatively as ‘space of solutions to the equations of motion’ or
‘space of initial conditions’. The former is more intrinsic in that it
doesn’t rely on a splitting of spacetime. It is the latter that gives
rise to the symplectic structure.

The convenient mental model for the space of quantum states,
L2
hol(S,L), applies to the case of a product manifold. That is, the

symplectic manifold and Hilbert space are intrinsic to N, not M.

In recent years, becoming important to study arbitrary spacetimes,
as well as ‘initial conditions,’ i.e., ‘boundary conditions’ in all
dimensions, giving rise to shifted symplectic manifolds and higher
algebraic structures.



Higher Quantum Systems

When S is a [1]-shifted symplectic manifold (or a graded
[-1]-shifted s.m.), then

H(S)

should be constructed as a suitable category of sheaves.

If f : Lag - S is Lagrangian, then get an object like

f∗(D) ∈ H(S),

which gives a construction of an L-sheaf. This is what happens in
[BZSV], where S is the space of fields in codim 2 for something like
4D BF theory. This appears to be a more natural process than the
construction of L-functions.

Raises the question of setting up this formalism for over rings of
algebraic integers, where spaces of arithmetic sheaves ∼ spaces of
fields



.



VII. Arithmetic Actions



Arithmetic Actions
For technical reasons, we will assume throughout that F is a totally
complex number fields.

Let R be a (sheaf of) p-adic Lie group(s) and X = Spec(OF )

Would like to define arithmetic field theories via actions

S : C(X ,R) - K

as well as path integrals:∫
ρ∈C(X ,R)

exp (−S(ρ))dρ

For example,

S :M(X ,R) = H1(π1(X ),R) - K∫
ρ∈M(X ,R)

exp (−S(ρ))dρ



Arithmetic Actions

Let µn be the n-th roots of 1. Then

H3(X , µn) = H3(Spec(OF ), µn) ' 1
n
Z/Z.

Follows from
H3(X ,Gm) ' Q/Z.

Recall
H2(Tv ,Gm) ' Q/Z.

(Local class field theory.)



Arithmetic Actions

Global class field theory:

0 - H2(XB ,Gm) - ⊕v∈B H2(Tv ,Gm) - Q/Z - 0

where the last map is the sum.

This can be identified with

- H2
c (XB ,Gm) - H2(XB ,Gm) - ⊕v∈B H2(Tv ,Gm)

- H3
c (XB ,Gm) - 0

and

H3
c (XB ,Gm) ' H3(X ,Gm).



Arithmetic Actions

Assume µn ⊂ F . Then

H3(X ,Z/n) ' H3(X , µn) ' 1
n
Z/Z,

so we get a map

inv : H3(π1(X ),Z/n) - H3(X , µn) ' 1
n
Z/Z.



Arithmetic Actions
On the moduli space

M(X ,R) = Hom(π1(X ),R)//R,

of continuous representations of π1(X ), a Chern-Simons functional
is defined as follows.

The functional will depend on the choice of a cohomology class (a
level)

c ∈ H3(R,Z/n).

Then
CSc :M(X ,R) - 1

n
Z/Z

is defined by

ρ 7→ ρ∗(c) ∈ H3(π1(X ),Z/n) 7→ inv(ρ∗(c)).



Finite Arithmetic Chern-Simons Functionals
Example:

Let R = Z/n. Then

M(X ,Z/n) = Hom(π1(X ),Z/n) = H1
et(X ,Z/n).

Take c ∈ H3(R,Z/n) to be given as

a ∪ δa,

where a ∈ H1(R,Z/n) = Hom(Z/n,Z/n) is the class coming from
the identity map, while

δ : H1(R,Z/n) - H2(R,Z/n)

is the Bockstein map coming from the extension

0 - Z/n - Z/n2 - Z/n - 0.

Then
CSa∪δa(ρ) = inv(ρ∗(a) ∪ ρ∗(δa)).



Source of Examples

More general simple constructions come from extensions and
characters. For example, a central extension

0 - Z/n - E - R - 0

gives a class e ∈ H2(R,Z/n), which together with a character

χ : R - Z/n

then gives us
c = e ∪ χ ∈ H3(R,Z/n).

If particular, if ρ : π - R admits a lifting to E , then CSc(ρ) = 0.



A Small Application

[with Hee-Joong Chung, Dohyeong Kim, Jeehoon Park, Hwajong
Yoo]

Let d1 =
∏

i p
∗
i , where p∗ = (−1)

p−1
2 p for an odd prime p.

Let

∆(d1, d2) =
∏
i

(
d2

pi

)
.

Proposition
If ∆(d1, d2) = −1, then there is no number field

L ⊃ Q(
√
d1,
√
d2)

such that Gal(L/Q) = Q8.

For example, (d1, d2) = (13, 37), (13, 57), (17, 57).



BF-theory

Have a function

H1(X ,V )× H1(X ,D(V ))
BF- 1

n
Z/Z

defined by
(a, b) 7→ inv(da ∪ b)

For this, V is a finite n-torsion group scheme that admits a suitable
Bockstein map

d : H1(X ,V ) - H2(X ,V )

and D(V ) is the Cartier dual.

Variant:

H1(XB ,V )× H1
c (XB ,D(V ))

BF- 1
n
Z/Z



Remark on arithmetic differentials

The Bockstein map

d : H1(X ,Z/n) - H2(X ,Z/n)

is very much like a differential. In crystalline cohomology of
varieties over perfect fields of positive characteristic, Bockstein
maps on crystalline cohomology sheaves are used to construct the
De Rham-Witt complex.

In general, whenever you have an extension

0 - V - E - V - 0,

there is a differential

H1(X ,V ) - H2(X ,V )

that can be used to construct arithmetic functionals.



Arithmetic Path Integrals

[Joint work with H. Chung, D. Kim, G. Pappas, J. Park, H. Yoo]

Let n = p, a prime and assume the Bockstein map

d : H1(X ,Z/p) - H2(X ,Z/p)

is an isomorphism.

Then ∑
ρ∈H1(X ,Z/p)

exp[2πiCS(ρ)]

=
√
|ClX [p]|

(
det(d)

p

)
i [

(p−1)2dim(ClX [p])
4 ].


