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VII. Arithmetic Actions



Arithmetic Actions

For technical reasons, we will assume throughout that F is a totally
complex number fields.

Let R be a (sheaf of) p-adic Lie group(s) and X = Spec(OF)

Would like to define arithmetic field theories via actions
S:C(X,R) — K

as well as path integrals:

| ew(=S(o)ds
peC(X,R)

For example,

S: M(X,R) = HY(m(X),R) — K

/ exp (—5(p))dp
pPEM(X,R)



Arithmetic Actions

Let u, be the n-th roots of 1. Then

1
H3(X, pun) = H3(Spec(OF), un) =~ ~Z/Z.

Follows from
H3(X,G,,) ~ Q/Z.

Recall
H*(T,,Gn) ~ Q/Z.

(Local class field theory.)



Arithmetic Actions

Global class field theory:
0 —_— H2(XB7Gm) _— @vGB H2(TV)GIT1) - Q/Z - 0

where the last map is the sum.

This can be identified with
—— H?(XB,G,) — H*(XB.G,) — @®ves H*(T,,Gnm)
—— H3(XB,G,) — 0

and

H3(XB,Gm) ~ H3(X,G ).



Arithmetic Actions

Assume p, C F. Then

1
H3(X,Z/n) ~ H3(X, ) ~ ~Z/Z,

so we get a map

inv: H3(m1(X), Z/n) — H3(X, j1n) =~

1
~Z/Z.
L/



Arithmetic Actions

On the moduli space
M(X, R) = Hom(71(X),R)//R,

of continuous representations of 71(X), a Chern-Simons functional
is defined as follows.

The functional will depend on the choice of a cohomology class (a

level)

c € H¥(R,Z/n).
Then )
is defined by

p i p°(c) € H(m(X), Z/n) = inv(p*(c)).



Finite Arithmetic Chern-Simons Functionals
Example:

Let R=7Z/n. Then
M(X,Z/n) = Hom(n1(X),Z/n) = H%(X,Z/n).

Take ¢ € H3(R,Z/n) to be given as
aUda,

where a € HY(R,Z/n) = Hom(Z/n,Z/n) is the class coming from
the identity map, while

6 : HY(R,Z/n) — H?*(R,Z/n)
is the Bockstein map coming from the extension
0—Z/n—— Z/n* — Z/n — 0.

Then
CSasalp) = inv(p*(2) U p*(62)).



Source of Examples

More general simple constructions come from extensions and
characters. For example, a central extension

0O—2%2/n—E —R—0
gives a class e € H?(R,Z/n), which together with a character
X:R——7Z/n
then gives us

c=eUx € HR,Z/n).

If particular, if p: # —— R admits a lifting to E, then CS.(p) = 0.



A Small Application

[with Hee-Joong Chung, Dohyeong Kim, Jeehoon Park, Hwajong
Yoo]

Let di =[], p;, where p* = (—1)%p for an odd prime p.

Let J
Adi, o) =[] <2> .
S \Pi
Proposition
If A(dy, do) = —1, then there is no number field

LD Q(vdi, /o)

such that Gal(L/Q) = Qs.

For example, (d1, d») = (13,37),(13,57),(17,57).



BF-theory

Have a function

HY(X, V) x HY(X, D(V)) -2 %Z/Z

defined by
(a, b) — inv(da U b)

For this, V is a finite n-torsion group scheme that admits a suitable
Bockstein map

d: HY(X,V) — H?*(X,V)
and D(V) is the Cartier dual.
Variant:

1
HY (X, V) x HY(XB, D(V)) =~ 22/



Remark on arithmetic differentials
The Bockstein map
d: HYX,Z/n) — H*(X,Z/n)

is very much like a differential. In crystalline cohomology of
varieties over perfect fields of positive characteristic, Bockstein
maps on crystalline cohomology sheaves are used to construct the
De Rham-Witt complex.

In general, whenever you have an extension
0O—V —E—V —0,
there is a differential
HY(X,V) — H?*(X, V)

that can be used to construct arithmetic functionals.



Arithmetic Path Integrals

[Joint work with H. Chung, D. Kim, G. Pappas, J. Park, H. Yoo]

Let n = p, a prime and assume the Bockstein map
d: H{(X,Z/p) — H*(X,Z/p)

is an isomorphism.

Then
Z exp[2miCS(p)]

pEHY(X,Z/p)

det(d)\ [e=n2dim(Cix[p])
— /[Cix[p]] (eﬁ)) il M(Cixlel)y



Brief Interlude

Arithmetic duality
HE(X®, un) = HY(X®, Z/n)",
where the dual refers to Hom(-, Q/Z).

This follows from the isomorphism

1
H3(XB, jup) ~ ~Z/1

The duality is essentially abelian class field theory. For example,
when B = ¢, this becomes

H?(X, pun) ~ HY(X,Z/n)*.



Brief Interlude

The RHS is
Hom(71(X), Z/n)* = Hom(71(X)®,Z/n)* ~ m1(X)®/n.
The LHS fits into
HY (X, Gp) — HYX,Gp) — H2(X, ptn) — H*(X,Gp)
But H?(X,G,) = 0 (Mazur). So
H3(X, 1a) = CI(X)/n.
The resulting isomorphism
CI(X)/n ~m1(X)®/n

is just the unramified reciprocity isomorphism mod n.



Brief Interlude

However, class field theory is:

Langlands reciprocity for GL; ~ electromagnetic duality.

Thus,
arithmetic Poincare duality ~ electromagnetic duality.

Does this seem right?



Arithmetic BF-theory: [Joint work with Magnus Carlson]

1
BF : HY(X, i) x HY(X,Z/n) — ~Z/1,
(a, b) — inv(da U b).

Proposition
For n>> 0,

Z exp(27miBF(a, b))

(a,b)eHY(X,pn) x HY(X,Z/n)

= |Clx[n]]|0% /(Ox)"|.
Compare with

L) (Triv, 0)

T = | cixl| det(07)|



Arithmetic BF-theory

Similarly, if E is an elliptic curve with Neron model £, then we have
0 — &[n] — &[n°] — E[n] — 0

for n coprime to the conductor and the orders of component groups
of €.

This gives us a map
BF : HY(X,E&[n]) x HY(X,&[n]) — %Z/Z,

as
(a, b) — inv(da U b).



Arithmetic BF-theory

Proposition
For n as above,

> exp(2miBF (a, b))

(a,b)EHL(X,E[n]) x HL(X.E[n])
= [II(A)[n]||E(F)/n[*
Compare

(r)
EUTRE0) _ (1T c) 1e ] det(E(F))|12

r!



Chern-Simons Theory for Elliptic Curves

For a € HY(X, &[p]), define
CS(a) := BF(a, a).

This is a mod p version of the p-adic height.

Local operators: Let £ =1 mod p a prime of good reduction and
y € E(Fy), define

O@,y : Hl(X’g[p]) — Hp

as
Ory(a):=(a mod 4, y)

= (a(Fre), y),
where the last bracket is the Weil pairing.



Chern-Simons Theory for Elliptic Curves

Z 01,.51(3)0r, 4, (a) - - - Oy, , (a) exp(2miCS(a)) =7
acHY (X £[p])



Partition Function of an Elliptic Curve

Can also consider a sum

Z e—h(x)

x€E(F)

where h is the Neron-Tate height.

This is the value at one of the height zeta function of E:

Z e—sh(x)7

x€E(F)

which introduces a parameter analogous to inverse temperature.

—shy(xv) d ,.
/E(AF) 1:1 ° 1:[ g

(cf. Candelas and de la Ossa)

Adelic variant



VIIIl. Boundaries



Finite Arithmetic Chern-Simons Functionals with Boundaries

XB = Spec(OF[1/B]) for a finite set B of primes;
OXB =T11,cp Spec(Fy).

D, := Spec(OF,)

Dg =[] D..

m(XB) = Gal(F§"/F), w, :=Gal(F,/F,),
and fix a tuple of homomorphisms
is = (iy 1 my — Wl(XB))veB
corresponding to embeddings F —— F,.

Assume B contains all places dividing n.



Finite Arithmetic Chern-Simons Functionals with Boundaries

In addition to the global moduli space
M(XB,R) = Hom(m1(X®),R)//R
we have the local moduli space
M(OXE,R) == {65 = (dv)ves | dv: 1y — R}//R
Thus, we get a localisation map

locg = i}y : M(XB,R) — M(9XE, R)



Finite Arithmetic Chern-Simons Functionals with Boundaries
Key cohomological facts:

1
H?(m,,Z/n) ~ ~Z/1.

Hi(my,Z/n) =0 for i > 2.

There is a symplectic non-degenerate pairing
1
HY(m,,Z/n) x HY(7,,Z/n) — H*(m,,Z/n) ~ ;Z/Z.

There is an exact sequence

2(yB 2 > 1 .
0 H*(XB,7/n) 1 H(=v.Z/n) ~2/7, 0.

veB



Finite Arithmetic Chern-Simons Functionals with Boundaries

Now ¢ € Z3(R,Z/n) will denote a 3-cocycle.
For any ¢g = (¢v), each ¢%(c) € Z3(my,Z/n) is trivial. Thus,

T, = d~(¢y(c)) € C(my, Z/n)/B2(ry, Z/n)
is a torsor for H*(m,,Z/n) ~ 17/7.

117

veB

Hence,

is a torsor for

I H(v.z2/n) ~ T %Z/Z.

veB veB



Finite Arithmetic Chern-Simons Functionals with Boundaries

We push this out using the sum map

1 1

y: |[=z/z — =
11 7/ 7/
veB

to get a 17 /Z-torsor
T(¢8) =T [ d 7 (4v))-
As ¢g varies, we get a %Z/Z—torsor

T —» M(0XE,R)

over the local moduli space.



Finite Arithmetic Chern-Simons Functionals with Boundaries

Can use the map
.1 1
exp2mi: =27 — S".
n

to push 7 out to a unitary line bundle & over M(9X2, R) and
define

Hes(B) == T(M(0XB), R),U)

This is the Hilbert space associated by finite arithmetic CS theory
to B.
Should define

Hcs(XB) S Hcs(B).



Finite Arithmetic Chern-Simons Functionals with Boundaries

If p € M(XB,R), because H3(71(XB),Z/n) = 0, we can solve
dp = p*(c) € Z%(mi(X"), Z/n),

and put
CS(p) = Li(locg(B)) € Tocs(p)°

Lemma
CS(p) is independent of the choice of 3.

This follows immediately from the reciprocity sequence

0 — H(m(X8),2/n) — [] Hm.2/n) =+ “2/7 — 0,
veB



Finite Arithmetic Chern-Simons Functionals with Boundaries

Exponentiating, we get

exp(2miCS(p)) € Ujpe, ()

and
exp(2miCS(p)) € Upg.

/{p | locs(p)=ps}
As pp varies get an element

Wes(XP) € Hes(B).

Many analogues of topological formulas carry over, e.g., glueing
formula.



Computing Chern-Simons: Decomposition Formula

We have the natural map
7TB ﬂ s
Thus, we get the map
M(X,R) — M(XB R)

p>podgp.

CS(poqg) € T(r(p))

On the other hand, for each v € B, we get a composed

representation
P
pym) —= 71— R,

where 74" ~ Gal(k, /k,) is the unramified quotient of ..



Computing Chern-Simons: Decomposition Formula
By solving
dBy = (p,")"(c)
with
Bu(py") € C¥(my", Z/n) /B (m)", Z/n) — Z3(my, Z/n)

for each v, we get another element

> (Bu(pi") € T(r(p))-

v

This is independent of the choice of 3, because

H?(m",Z/n) = 0.

Thus, we can take the difference

CS(p0 5) ~ () € 27

v



Computing Chern-Simons: Decomposition Formula

Theorem (w/ H. Chung, D. Kim, J. Park, and H. Yoo)

CS(p) = CS(pogs) — 3 _(Bu(p")).

v

This is an analogue of the decomposition formula in Chern-Simons
theory, and gives us a way to compute the values.
Key Point:

CS(p) is the difference between a global ramified
trivialisation and a local unramified trivialisation.



Computing Chern-Simons: Decomposition Formula

Put

Ves(Dg)((pu)v) = exp(2mi(Y_(By(pv))))

v

if all the p, are unramified. Otherwise,

Ves(De)((pv)v) =0

Theorem (Hirano, J. Kim, Morishita)

CS(X) = (Wes(XB), Wes(Dg)).



Chern-Simons Entanglement of Primes

[With Chung, Kim, Park, Yoo and inspired by Balasubramanian,
Vijay; Fliss, Jackson R.; Leigh, Robert G.; Parrikar, Onkar:
Multi-boundary entanglement in Chern-Simons theory and link
invariants. |

When B = {p1, p2}, then

Vcs(Xg) € Hes(B) ~ Hes(p1) ® Hes(p2)-

We can define the CS entanglement entropy of primes:

Entcs(pl7 pz) = —Tr( TrH(pl)(\UCS(XB)) |Og TrH(pl)(\UCS(XB)))-



Chern-Simons Entanglement of Primes

Let R = Z/p. Recall the localisation maps

loc,, : HY(XB,Z/p) — HY(T,,,Z/p).

Theorem

Entcs(pr, pa) = (dimHY(X®, Z/ p)—dim(Ker(loc,, )+Ker(locp,)) log p.



IX. P-adic L-functions

Should be interesting, but hasn't led to much yet.



p-adic L-functions

For each j € {1,2,...,p — 1} odd there is a unique power series
Z(T) € Zp[[T]]

such that
Zi((L+p)"—1)=(1—p ")¢(n)
foralln<0,n=j mod p— 1.

Allows the interpolation of the negative odd values of ((s) to
p-adic analytic functions

Li(s) := Z((1+ p)* — 1).



p-adic L-functions and path integrals

[Joint work with Magnus Carlson, Hee-Joong Chung, Dohyeong
Kim, Jeehoon Park, and Hwajong Yoo.]

Let
Xg = Spec(Z[ppr][1/(Cor — 1)])

and define the space of fields as

F™ = H" (Xg, ppm) x H: (Xg,Z/p"Z) .



p-adic L-functions and path integrals

There is a natural action of
G = Gal(Q(jip)/Q)
on the space of fields 7™, and we let
G'céG
be the unique subgroup of G of order p — 1.

Since p — 1 is not divisible by p, G’ acts semi-simply on F™.
Define

Fi& = H" (Xg, ppm) % HE (X8, Z/P"ZL) - -



p-adic L-functions and path integrals

Further,
Fi = HI(XBazp(l))wk X Hcl'(XB7QP/ZP)w*k

= lim H' (Xg, ppm), . x lim He (Xg, Z/p"Z) -«

and

m—-00

/ exp(27iBF(a, b))dadb := lim > exp(2riBF(a, b))
Tk (a,b)EFD



p-adic L-functions and path integrals

Theorem
Let k # 1 be odd. We have

p"—1
/ exp(2niBF (a, b))dadb = | [] Zs(exp(2mii/p") — 1)
]:k _]:O

Essentially just a repackaging of the main conjecture of Mazur and
Wiles together with some generalities on arithmetic duality.



p-adic L-functions and path integrals

Remark
1. This is a partial unification of Mazur’s paper 'Notes on the

Alexander polynomial’ and Witten's Jones polynomial paper.
2. It would be far more interesting to get

p"—1

11 Zo-«(exp(2mij/p™) —1)7*
Jj=0



