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VII. Arithmetic Actions



Arithmetic Actions
For technical reasons, we will assume throughout that F is a totally
complex number fields.

Let R be a (sheaf of) p-adic Lie group(s) and X = Spec(OF )

Would like to define arithmetic field theories via actions

S : C(X ,R) - K

as well as path integrals:∫
ρ∈C(X ,R)

exp (−S(ρ))dρ

For example,

S :M(X ,R) = H1(π1(X ),R) - K∫
ρ∈M(X ,R)

exp (−S(ρ))dρ



Arithmetic Actions

Let µn be the n-th roots of 1. Then

H3(X , µn) = H3(Spec(OF ), µn) ' 1
n
Z/Z.

Follows from
H3(X ,Gm) ' Q/Z.

Recall
H2(Tv ,Gm) ' Q/Z.

(Local class field theory.)



Arithmetic Actions

Global class field theory:

0 - H2(XB ,Gm) - ⊕v∈B H2(Tv ,Gm) - Q/Z - 0

where the last map is the sum.

This can be identified with

- H2
c (XB ,Gm) - H2(XB ,Gm) - ⊕v∈B H2(Tv ,Gm)

- H3
c (XB ,Gm) - 0

and

H3
c (XB ,Gm) ' H3(X ,Gm).



Arithmetic Actions

Assume µn ⊂ F . Then

H3(X ,Z/n) ' H3(X , µn) ' 1
n
Z/Z,

so we get a map

inv : H3(π1(X ),Z/n) - H3(X , µn) ' 1
n
Z/Z.



Arithmetic Actions
On the moduli space

M(X ,R) = Hom(π1(X ),R)//R,

of continuous representations of π1(X ), a Chern-Simons functional
is defined as follows.

The functional will depend on the choice of a cohomology class (a
level)

c ∈ H3(R,Z/n).

Then
CSc :M(X ,R) - 1

n
Z/Z

is defined by

ρ 7→ ρ∗(c) ∈ H3(π1(X ),Z/n) 7→ inv(ρ∗(c)).



Finite Arithmetic Chern-Simons Functionals
Example:

Let R = Z/n. Then

M(X ,Z/n) = Hom(π1(X ),Z/n) = H1
et(X ,Z/n).

Take c ∈ H3(R,Z/n) to be given as

a ∪ δa,

where a ∈ H1(R,Z/n) = Hom(Z/n,Z/n) is the class coming from
the identity map, while

δ : H1(R,Z/n) - H2(R,Z/n)

is the Bockstein map coming from the extension

0 - Z/n - Z/n2 - Z/n - 0.

Then
CSa∪δa(ρ) = inv(ρ∗(a) ∪ ρ∗(δa)).



Source of Examples

More general simple constructions come from extensions and
characters. For example, a central extension

0 - Z/n - E - R - 0

gives a class e ∈ H2(R,Z/n), which together with a character

χ : R - Z/n

then gives us
c = e ∪ χ ∈ H3(R,Z/n).

If particular, if ρ : π - R admits a lifting to E , then CSc(ρ) = 0.



A Small Application

[with Hee-Joong Chung, Dohyeong Kim, Jeehoon Park, Hwajong
Yoo]

Let d1 =
∏

i p
∗
i , where p∗ = (−1)

p−1
2 p for an odd prime p.

Let

∆(d1, d2) =
∏
i

(
d2

pi

)
.

Proposition
If ∆(d1, d2) = −1, then there is no number field

L ⊃ Q(
√
d1,
√
d2)

such that Gal(L/Q) = Q8.

For example, (d1, d2) = (13, 37), (13, 57), (17, 57).



BF-theory

Have a function

H1(X ,V )× H1(X ,D(V ))
BF- 1

n
Z/Z

defined by
(a, b) 7→ inv(da ∪ b)

For this, V is a finite n-torsion group scheme that admits a suitable
Bockstein map

d : H1(X ,V ) - H2(X ,V )

and D(V ) is the Cartier dual.

Variant:

H1(XB ,V )× H1
c (XB ,D(V ))

BF- 1
n
Z/Z



Remark on arithmetic differentials

The Bockstein map

d : H1(X ,Z/n) - H2(X ,Z/n)

is very much like a differential. In crystalline cohomology of
varieties over perfect fields of positive characteristic, Bockstein
maps on crystalline cohomology sheaves are used to construct the
De Rham-Witt complex.

In general, whenever you have an extension

0 - V - E - V - 0,

there is a differential

H1(X ,V ) - H2(X ,V )

that can be used to construct arithmetic functionals.



Arithmetic Path Integrals

[Joint work with H. Chung, D. Kim, G. Pappas, J. Park, H. Yoo]

Let n = p, a prime and assume the Bockstein map

d : H1(X ,Z/p) - H2(X ,Z/p)

is an isomorphism.

Then ∑
ρ∈H1(X ,Z/p)

exp[2πiCS(ρ)]

=
√
|ClX [p]|

(
det(d)

p

)
i [

(p−1)2dim(ClX [p])
4 ].



Brief Interlude

Arithmetic duality

H2
c (XB , µn) ' H1(XB ,Z/n)∗,

where the dual refers to Hom(·,Q/Z).

This follows from the isomorphism

H3
c (XB , µn) ' 1

n
Z/Z

The duality is essentially abelian class field theory. For example,
when B = φ, this becomes

H2(X , µn) ' H1(X ,Z/n)∗.



Brief Interlude

The RHS is

Hom(π1(X ),Z/n)∗ = Hom(π1(X )ab,Z/n)∗ ' π1(X )ab/n.

The LHS fits into

H1(X ,Gm)
n- H1(X ,Gm) - H2(X , µn) - H2(X ,Gm)

But H2(X ,Gm) = 0 (Mazur). So

H2(X , µn) ' Cl(X )/n.

The resulting isomorphism

Cl(X )/n ' π1(X )ab/n

is just the unramified reciprocity isomorphism mod n.



Brief Interlude

However, class field theory is:

Langlands reciprocity for GL1 ∼ electromagnetic duality.

Thus,
arithmetic Poincare duality ∼ electromagnetic duality.

Does this seem right?



Arithmetic BF -theory: [Joint work with Magnus Carlson]

BF : H1(X , µn)× H1(X ,Z/n) - 1
n
Z/Z,

(a, b) 7→ inv(da ∪ b).

Proposition
For n >> 0, ∑

(a,b)∈H1(X ,µn)×H1(X ,Z/n)

exp(2πiBF (a, b))

= |ClX [n]||O×X /(O×X )n|.

Compare with

L(r)(Triv , 0)

r !
= −|ClX |‖ det(O×F )‖



Arithmetic BF -theory

Similarly, if E is an elliptic curve with Neron model E , then we have

0 - E [n] - E [n2] - E [n] - 0

for n coprime to the conductor and the orders of component groups
of E .

This gives us a map

BF : H1(X , E [n])× H1(X , E [n]) - 1
n
Z/Z,

as
(a, b) - inv(da ∪ b).



Arithmetic BF -theory

Proposition
For n as above, ∑

(a,b)∈H1(X ,E[n])×H1(X ,E[n])

exp(2πiBF (a, b))

= |X(A)[n]||E (F )/n|2·

Compare

L(r)(TpE , 0)

r !
= (
∏
v

cv )|XE ||‖ det(E (F ))‖2



Chern-Simons Theory for Elliptic Curves

For a ∈ H1(X , E [p]), define

CS(a) := BF (a, a).

This is a mod p version of the p-adic height.

Local operators: Let ` ≡ 1 mod p a prime of good reduction and
y ∈ E(F`), define

O`,y : H1(X , E [p]) - µp

as
O`,y (a) := 〈a mod `, y〉

= (a(Fr`), y),

where the last bracket is the Weil pairing.



Chern-Simons Theory for Elliptic Curves

∑
a∈H1(X ,E[p])

O`1,y1(a)O`2,y2(a) · · ·O`k ,yk (a) exp(2πiCS(a)) =?



Partition Function of an Elliptic Curve

Can also consider a sum ∑
x∈E(F )

e−h(x)

where h is the Neron-Tate height.

This is the value at one of the height zeta function of E :∑
x∈E(F )

e−sh(x),

which introduces a parameter analogous to inverse temperature.

Adelic variant ∫
E(AF )

∏
v

e−shv (xv )
∏
v

dxv .

(cf. Candelas and de la Ossa)



VIII. Boundaries



Finite Arithmetic Chern-Simons Functionals with Boundaries

XB = Spec(OF [1/B]) for a finite set B of primes;

∂XB =
∐

v∈B Spec(Fv ).

Dv := Spec(OFv )

DB =
∐

Dv .

π1(XB) := Gal(F un
B /F ), πv := Gal(F̄v/Fv ),

and fix a tuple of homomorphisms

iS = (iv : πv - π1(XB))v∈B

corresponding to embeddings F̄ ⊂ - F̄v .

Assume B contains all places dividing n.



Finite Arithmetic Chern-Simons Functionals with Boundaries

In addition to the global moduli space

M(XB ,R) = Hom(π1(XB),R)//R

we have the local moduli space

M(∂XB ,R) := {φB = (φv )v∈B | φv : πv - R}//R

Thus, we get a localisation map

locB = i∗B :M(XB ,R) - M(∂XB ,R)



Finite Arithmetic Chern-Simons Functionals with Boundaries

Key cohomological facts:

H2(πv ,Z/n) ' 1
n
Z/Z.

H i (πv ,Z/n) = 0 for i > 2.

There is a symplectic non-degenerate pairing

H1(πv ,Z/n)× H1(πv ,Z/n) - H2(πv ,Z/n) ' 1
n
Z/Z.

There is an exact sequence

0 - H2(XB ,Z/n) -
∏
v∈B

H2(πv ,Z/n)
∑
- 1

n
Z/Z - 0.



Finite Arithmetic Chern-Simons Functionals with Boundaries

Now c ∈ Z 3(R,Z/n) will denote a 3-cocycle.

For any φB = (φv ), each φ∗v (c) ∈ Z 3(πv ,Z/n) is trivial. Thus,

Tv := d−1(φ∗v (c)) ∈ C 2(πv ,Z/n)/B2(πv ,Z/n)

is a torsor for H2(πv ,Z/n) ' 1
nZ/Z.

Hence, ∏
v∈B
Tv

is a torsor for ∏
v∈B

H2(πv ,Z/n) '
∏
v∈B

1
n
Z/Z.

.



Finite Arithmetic Chern-Simons Functionals with Boundaries

We push this out using the sum map

Σ :
∏
v∈B

1
n
Z/Z - 1

n
Z/Z

to get a 1
nZ/Z-torsor

T (φB) := Σ∗(
∏
v

d−1(φv )).

As φB varies, we get a 1
nZ/Z-torsor

T - M(∂XB ,R)

over the local moduli space.



Finite Arithmetic Chern-Simons Functionals with Boundaries

Can use the map

exp 2πi :
1
n
Z/Z - S1.

to push T out to a unitary line bundle U overM(∂XB ,R) and
define

HCS(B) := Γ(M(∂XB),R),U)

This is the Hilbert space associated by finite arithmetic CS theory
to B .
Should define

HCS(XB) ∈ HCS(B).



Finite Arithmetic Chern-Simons Functionals with Boundaries

If ρ ∈M(XB ,R), because H3(π1(XB),Z/n) = 0, we can solve

dβ = ρ∗(c) ∈ Z 3(π1(XB),Z/n),

and put
CS(ρ) = Σ∗(locB(β)) ∈ TlocB(ρ).

Lemma
CS(ρ) is independent of the choice of β.

This follows immediately from the reciprocity sequence

0 - H2(π1(XB),Z/n) -
∏
v∈B

H2(πv ,Z/n)
∑
- 1

n
Z/Z - 0,



Finite Arithmetic Chern-Simons Functionals with Boundaries

Exponentiating, we get

exp(2πiCS(ρ)) ∈ UlocB(ρ)

and ∫
{ρ | locB(ρ)=ρB}

exp(2πiCS(ρ)) ∈ UρB .

As ρB varies get an element

ΨCS(XB) ∈ HCS(B).

Many analogues of topological formulas carry over, e.g., glueing
formula.



Computing Chern-Simons: Decomposition Formula

We have the natural map

πB
qB- π.

Thus, we get the map

M(X ,R) - M(XB ,R)

ρ 7→ ρ ◦ qB .

CS(ρ ◦ qB) ∈ T (r(ρ)).

On the other hand, for each v ∈ B , we get a composed
representation

ρunv : πunv - π
ρ- R,

where πunv ' Gal(k̄v/kv ) is the unramified quotient of πv .



Computing Chern-Simons: Decomposition Formula
By solving

dβv = (ρunv )∗(c)

with

βv (ρunv ) ∈ C 2(πunv ,Z/n)/B2(πunv ,Z/n) - Z 3(πv ,Z/n)

for each v , we get another element∑
v

(βv (ρunv )) ∈ T (r(ρ)).

This is independent of the choice of βv because

H2(πunv ,Z/n) = 0.

Thus, we can take the difference

CS(ρ ◦ qB)−
∑
v

(βv ) ∈ 1
n
Z/Z

.



Computing Chern-Simons: Decomposition Formula

Theorem (w/ H. Chung, D. Kim, J. Park, and H. Yoo)

CS(ρ) = CS(ρ ◦ qS)−
∑
v

(βv (ρunv )).

This is an analogue of the decomposition formula in Chern-Simons
theory, and gives us a way to compute the values.

Key Point:

CS(ρ) is the difference between a global ramified
trivialisation and a local unramified trivialisation.



Computing Chern-Simons: Decomposition Formula

Put
ΨCS(DB)((ρv )v ) := exp(2πi(

∑
v

(βv (ρv ))))

if all the ρv are unramified. Otherwise,

ΨCS(DB)((ρv )v ) = 0

Theorem (Hirano, J. Kim, Morishita)

CS(X ) = 〈ΨCS(XB),ΨCS(DB)〉.



Chern-Simons Entanglement of Primes

[With Chung, Kim, Park, Yoo and inspired by Balasubramanian,
Vijay; Fliss, Jackson R.; Leigh, Robert G.; Parrikar, Onkar:
Multi-boundary entanglement in Chern-Simons theory and link
invariants. ]

When B = {p1, p2}, then

ΨCS(XB) ∈ HCS(B) ' HCS(p1)⊗ HCS(p2).

We can define the CS entanglement entropy of primes:

EntCS(p1, p2) := −Tr(TrH(p1)(ΨCS(XB)) logTrH(p1)(ΨCS(XB))).



Chern-Simons Entanglement of Primes

Let R = Z/p. Recall the localisation maps

locpi : H1(XB ,Z/p) - H1(Tpi ,Z/p).

Theorem

EntCS(p1, p2) = (dimH1(XB ,Z/p)−dim(Ker(locp1)+Ker(locp2)) log p.



IX. P-adic L-functions

Should be interesting, but hasn’t led to much yet.



p-adic L-functions

For each j ∈ {1, 2, . . . , p − 1} odd there is a unique power series

Zj(T ) ∈ Zp[[T ]]

such that
Zj((1 + p)n − 1) = (1− p−n)ζ(n)

for all n < 0, n ≡ j mod p − 1.

Allows the interpolation of the negative odd values of ζ(s) to
p-adic analytic functions

Lj(s) := Zj((1 + p)s − 1).



p-adic L-functions and path integrals

[Joint work with Magnus Carlson, Hee-Joong Chung, Dohyeong
Kim, Jeehoon Park, and Hwajong Yoo.]

Let
XB = Spec(Z[µpn ][1/(ζpn − 1)])

and define the space of fields as

Fm := H1 (XB , µpm)× H1
c (XB ,Z/pmZ) .



p-adic L-functions and path integrals

There is a natural action of

G = Gal(Q(µpn)/Q)

on the space of fields Fm, and we let

G ′ ⊂ G

be the unique subgroup of G of order p − 1.

Since p − 1 is not divisible by p, G ′ acts semi-simply on Fm.

Define

Fm
k := H1 (XB , µpm)ωk × H1

c (XB ,Z/pmZ)ω−k .



p-adic L-functions and path integrals

Further,

Fk = H1(XB ,Zp(1))ωk × H1
c (XB ,Qp/Zp)ω−k

= lim←−H1 (XB , µpm)ωk × lim−→H1
c (XB ,Z/pmZ)ω−k

and∫
Fk

exp(2πiBF (a, b))dadb := lim
m→∞

∑
(a,b)∈Fm

k

exp (2πiBF (a, b))



p-adic L-functions and path integrals

Theorem
Let k 6= 1 be odd. We have∫
Fk

exp(2πiBF (a, b))dadb = |
pn−1∏
j=0

Z1−k(exp(2πij/pn)− 1)−1|p

Essentially just a repackaging of the main conjecture of Mazur and
Wiles together with some generalities on arithmetic duality.



p-adic L-functions and path integrals

Remark
1. This is a partial unification of Mazur’s paper ’Notes on the
Alexander polynomial’ and Witten’s Jones polynomial paper.

2. It would be far more interesting to get

pn−1∏
j=0

Z1−k(exp(2πij/pn)− 1)−1


