Arithmetic Topology and Field Theory

Minhyong Kim
ICMS/Maxwell Institute Edinburgh

Cambridge MA, February, 2024
VII. Arithmetic Actions

Arithmetic Actions

For technical reasons, we will assume throughout that F is a totally complex number fields.

Let R be a (sheaf of) p-adic Lie group(s) and $X=\operatorname{Spec}\left(\mathcal{O}_{F}\right)$
Would like to define arithmetic field theories via actions

$$
S: \mathcal{C}(X, R) \longrightarrow K
$$

as well as path integrals:

$$
\int_{\rho \in \mathcal{C}(X, R)} \exp (-S(\rho)) d \rho
$$

For example,

$$
\begin{gathered}
S: \mathcal{M}(X, R)=H^{1}\left(\pi_{1}(X), R\right) \longrightarrow K \\
\int_{\rho \in \mathcal{M}(X, R)} \exp (-S(\rho)) d \rho
\end{gathered}
$$

Arithmetic Actions

Let μ_{n} be the n-th roots of 1 . Then

$$
H^{3}\left(X, \mu_{n}\right)=H^{3}\left(\operatorname{Spec}\left(\mathcal{O}_{F}\right), \mu_{n}\right) \simeq \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

Follows from

$$
H^{3}\left(X, \mathbb{G}_{m}\right) \simeq \mathbb{Q} / \mathbb{Z}
$$

Recall

$$
H^{2}\left(T_{v}, \mathbb{G}_{m}\right) \simeq \mathbb{Q} / \mathbb{Z}
$$

(Local class field theory.)

Arithmetic Actions

Global class field theory:

$$
0 \longrightarrow H^{2}\left(X^{B}, \mathbb{G}_{m}\right) \longrightarrow \oplus_{v \in B} H^{2}\left(T_{v}, \mathbb{G}_{m}\right) \longrightarrow \mathbb{Q} / \mathbb{Z} \longrightarrow 0
$$

where the last map is the sum.
This can be identified with

$$
\begin{aligned}
& \longrightarrow H_{c}^{2}\left(X^{B}, \mathbb{G}_{m}\right) \longrightarrow H^{2}\left(X^{B}, \mathbb{G}_{m}\right) \longrightarrow \oplus_{v \in B} H^{2}\left(T_{v}, \mathbb{G}_{m}\right) \\
& \longrightarrow H_{c}^{3}\left(X^{B}, \mathbb{G}_{m}\right) \longrightarrow 0
\end{aligned}
$$

and

$$
H_{c}^{3}\left(X^{B}, \mathbb{G}_{m}\right) \simeq H^{3}\left(X, \mathbb{G}_{m}\right) .
$$

Arithmetic Actions

Assume $\mu_{n} \subset F$. Then

$$
H^{3}(X, \mathbb{Z} / n) \simeq H^{3}\left(X, \mu_{n}\right) \simeq \frac{1}{n} \mathbb{Z} / \mathbb{Z},
$$

so we get a map

$$
\text { inv : } H^{3}\left(\pi_{1}(X), \mathbb{Z} / n\right) \longrightarrow H^{3}\left(X, \mu_{n}\right) \simeq \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

Arithmetic Actions

On the moduli space

$$
\mathcal{M}(X, R)=\operatorname{Hom}\left(\pi_{1}(X), R\right) / / R
$$

of continuous representations of $\pi_{1}(X)$, a Chern-Simons functional is defined as follows.

The functional will depend on the choice of a cohomology class (a level)

$$
c \in H^{3}(R, \mathbb{Z} / n)
$$

Then

$$
C S_{c}: \mathcal{M}(X, R) \longrightarrow \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

is defined by

$$
\rho \mapsto \rho^{*}(c) \in H^{3}\left(\pi_{1}(X), \mathbb{Z} / n\right) \mapsto \operatorname{inv}\left(\rho^{*}(c)\right)
$$

Finite Arithmetic Chern-Simons Functionals

Example:
Let $R=\mathbb{Z} / n$. Then

$$
\mathcal{M}(X, \mathbb{Z} / n)=\operatorname{Hom}\left(\pi_{1}(X), \mathbb{Z} / n\right)=H_{e t}^{1}(X, \mathbb{Z} / n)
$$

Take $c \in H^{3}(R, \mathbb{Z} / n)$ to be given as

$$
a \cup \delta a,
$$

where $a \in H^{1}(R, \mathbb{Z} / n)=\operatorname{Hom}(\mathbb{Z} / n, \mathbb{Z} / n)$ is the class coming from the identity map, while

$$
\delta: H^{1}(R, \mathbb{Z} / n) \longrightarrow H^{2}(R, \mathbb{Z} / n)
$$

is the Bockstein map coming from the extension

$$
0 \longrightarrow \mathbb{Z} / n \longrightarrow \mathbb{Z} / n^{2} \longrightarrow \mathbb{Z} / n \longrightarrow 0
$$

Then

$$
C S_{a \cup \delta a}(\rho)=\operatorname{inv}\left(\rho^{*}(a) \cup \rho^{*}(\delta a)\right) .
$$

Source of Examples

More general simple constructions come from extensions and characters. For example, a central extension

$$
0 \longrightarrow \mathbb{Z} / n \longrightarrow E \longrightarrow R \longrightarrow 0
$$

gives a class $e \in H^{2}(R, \mathbb{Z} / n)$, which together with a character

$$
\chi: R \longrightarrow \mathbb{Z} / n
$$

then gives us

$$
c=e \cup \chi \in H^{3}(R, \mathbb{Z} / n) .
$$

If particular, if $\rho: \pi \longrightarrow R$ admits a lifting to E, then $C S_{c}(\rho)=0$.

A Small Application

[with Hee-Joong Chung, Dohyeong Kim, Jeehoon Park, Hwajong Yoo]
Let $d_{1}=\prod_{i} p_{i}^{*}$, where $p^{*}=(-1)^{\frac{p-1}{2}} p$ for an odd prime p.
Let

$$
\Delta\left(d_{1}, d_{2}\right)=\prod_{i}\left(\frac{d_{2}}{p_{i}}\right)
$$

Proposition

If $\Delta\left(d_{1}, d_{2}\right)=-1$, then there is no number field

$$
L \supset \mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)
$$

such that $G a l(L / \mathbb{Q})=Q_{8}$.
For example, $\left(d_{1}, d_{2}\right)=(13,37),(13,57),(17,57)$.

BF-theory

Have a function

$$
H^{1}(X, V) \times H^{1}(X, D(V)) \xrightarrow{B F} \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

defined by

$$
(a, b) \mapsto \operatorname{inv}(d a \cup b)
$$

For this, V is a finite n-torsion group scheme that admits a suitable Bockstein map

$$
d: H^{1}(X, V) \longrightarrow H^{2}(X, V)
$$

and $D(V)$ is the Cartier dual.
Variant:

$$
H^{1}\left(X^{B}, V\right) \times H_{c}^{1}\left(X^{B}, D(V)\right) \xrightarrow{B F} \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

Remark on arithmetic differentials

The Bockstein map

$$
d: H^{1}(X, \mathbb{Z} / n) \longrightarrow H^{2}(X, \mathbb{Z} / n)
$$

is very much like a differential. In crystalline cohomology of varieties over perfect fields of positive characteristic, Bockstein maps on crystalline cohomology sheaves are used to construct the De Rham-Witt complex.
In general, whenever you have an extension

$$
0 \longrightarrow V \longrightarrow E \longrightarrow V \longrightarrow 0
$$

there is a differential

$$
H^{1}(X, V) \longrightarrow H^{2}(X, V)
$$

that can be used to construct arithmetic functionals.

Arithmetic Path Integrals

[Joint work with H. Chung, D. Kim, G. Pappas, J. Park, H. Yoo] Let $n=p$, a prime and assume the Bockstein map

$$
d: H^{1}(X, \mathbb{Z} / p) \longrightarrow H^{2}(X, \mathbb{Z} / p)
$$

is an isomorphism.
Then

$$
\begin{gathered}
\sum_{\rho \in H^{1}(X, \mathbb{Z} / p)} \exp [2 \pi i C S(\rho)] \\
=\sqrt{\left|C I_{X}[p]\right|}\left(\frac{\operatorname{det}(d)}{p}\right) i\left[\frac{(p-1)^{2} \operatorname{dim}\left(C I_{X}[p]\right)}{4}\right]
\end{gathered}
$$

Brief Interlude

Arithmetic duality

$$
H_{c}^{2}\left(X^{B}, \mu_{n}\right) \simeq H^{1}\left(X^{B}, \mathbb{Z} / n\right)^{*},
$$

where the dual refers to $\operatorname{Hom}(\cdot, \mathbb{Q} / \mathbb{Z})$.
This follows from the isomorphism

$$
H_{c}^{3}\left(X^{B}, \mu_{n}\right) \simeq \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

The duality is essentially abelian class field theory. For example, when $B=\phi$, this becomes

$$
H^{2}\left(X, \mu_{n}\right) \simeq H^{1}(X, \mathbb{Z} / n)^{*}
$$

Brief Interlude

The RHS is

$$
\operatorname{Hom}\left(\pi_{1}(X), \mathbb{Z} / n\right)^{*}=\operatorname{Hom}\left(\pi_{1}(X)^{a b}, \mathbb{Z} / n\right)^{*} \simeq \pi_{1}(X)^{a b} / n
$$

The LHS fits into

$$
H^{1}\left(X, \mathbb{G}_{m}\right) \xrightarrow{n} H^{1}\left(X, \mathbb{G}_{m}\right) \longrightarrow H^{2}\left(X, \mu_{n}\right) \longrightarrow H^{2}\left(X, \mathbb{G}_{m}\right)
$$

But $H^{2}\left(X, \mathbb{G}_{m}\right)=0$ (Mazur). So

$$
H^{2}\left(X, \mu_{n}\right) \simeq C l(X) / n
$$

The resulting isomorphism

$$
C l(X) / n \simeq \pi_{1}(X)^{a b} / n
$$

is just the unramified reciprocity isomorphism $\bmod n$.

Brief Interlude

However, class field theory is:
Langlands reciprocity for $G L_{1} \sim$ electromagnetic duality.

Thus,
arithmetic Poincare duality \sim electromagnetic duality.
Does this seem right?

Arithmetic BF-theory: [Joint work with Magnus Carlson]

$$
\begin{gathered}
B F: H^{1}\left(X, \mu_{n}\right) \times H^{1}(X, \mathbb{Z} / n) \longrightarrow \frac{1}{n} \mathbb{Z} / \mathbb{Z}, \\
(a, b) \mapsto \operatorname{inv}(d a \cup b) .
\end{gathered}
$$

Proposition
For $n \gg 0$,

$$
\begin{gathered}
\sum_{(a, b) \in H^{1}\left(X, \mu_{n}\right) \times H^{1}(X, \mathbb{Z} / n)} \exp (2 \pi i B F(a, b)) \\
=\left|C I_{X}[n]\right|\left|\mathcal{O}_{X}^{\times} /\left(\mathcal{O}_{X}^{\times}\right)^{n}\right|
\end{gathered}
$$

Compare with

$$
\left.\frac{L^{(r)}(\operatorname{Triv}, 0)}{r!}=-\left|C I_{X}\right| \right\rvert\, \operatorname{det}\left(\mathcal{O}_{F}^{\times}\right) \|
$$

Arithmetic BF-theory

Similarly, if E is an elliptic curve with Neron model \mathcal{E}, then we have

$$
0 \longrightarrow \mathcal{E}[n] \longrightarrow \mathcal{E}\left[n^{2}\right] \longrightarrow \mathcal{E}[n] \longrightarrow 0
$$

for n coprime to the conductor and the orders of component groups of \mathcal{E}.

This gives us a map

$$
B F: H^{1}(X, \mathcal{E}[n]) \times H^{1}(X, \mathcal{E}[n]) \longrightarrow \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

as

$$
(a, b) \longrightarrow \operatorname{inv}(d a \cup b)
$$

Arithmetic BF-theory

Proposition

For n as above,

$$
\begin{gathered}
\sum_{(a, b) \in H^{1}(X, \mathcal{E}[n]) \times H^{1}(X, \mathcal{E}[n])} \exp (2 \pi i B F(a, b)) \\
=|Ш(A)[n]||E(F) / n|^{2} .
\end{gathered}
$$

Compare

$$
\left.\frac{L^{(r)}\left(T_{p} E, 0\right)}{r!}=\left(\prod_{v} c_{v}\right)\left|\amalg_{E}\right| \right\rvert\,\|\operatorname{det}(E(F))\|^{2}
$$

Chern-Simons Theory for Elliptic Curves

For $a \in H^{1}(X, \mathcal{E}[p])$, define

$$
C S(a):=B F(a, a)
$$

This is a mod p version of the p-adic height.
Local operators: Let $\ell \equiv 1 \bmod p$ a prime of good reduction and $y \in \mathcal{E}\left(\mathbb{F}_{\ell}\right)$, define

$$
O_{\ell, y}: H^{1}(X, \mathcal{E}[p]) \longrightarrow \mu_{p}
$$

as

$$
\begin{aligned}
O_{\ell, y}(a) & :=\langle a \bmod \ell, y\rangle \\
& =\left(a\left(F r_{\ell}\right), y\right),
\end{aligned}
$$

where the last bracket is the Weil pairing.

Chern-Simons Theory for Elliptic Curves

$$
\sum_{a \in H^{1}(X, \mathcal{E}[p])} O_{\ell_{1}, y_{1}}(a) O_{\ell_{2}, y_{2}}(a) \cdots O_{\ell_{k}, y_{k}}(a) \exp (2 \pi i C S(a))=?
$$

Partition Function of an Elliptic Curve

Can also consider a sum

$$
\sum_{x \in E(F)} e^{-h(x)}
$$

where h is the Neron-Tate height.
This is the value at one of the height zeta function of E :

$$
\sum_{x \in E(F)} e^{-\operatorname{sh}(x)}
$$

which introduces a parameter analogous to inverse temperature.
Adelic variant

$$
\int_{E\left(\mathbb{A}_{F}\right)} \prod_{v} e^{-s h_{v}\left(x_{v}\right)} \prod_{v} d x_{v}
$$

(cf. Candelas and de la Ossa)

VIII. Boundaries

Finite Arithmetic Chern-Simons Functionals with Boundaries

$X^{B}=\operatorname{Spec}\left(\mathcal{O}_{F}[1 / B]\right)$ for a finite set B of primes;
$\partial X^{B}=\coprod_{v \in B} \operatorname{Spec}\left(F_{v}\right)$.
$D_{v}:=\operatorname{Spec}\left(\mathcal{O}_{F_{v}}\right)$
$D_{B}=\amalg D_{v}$.

$$
\pi_{1}\left(X^{B}\right):=\operatorname{Gal}\left(F_{B}^{u n} / F\right), \quad \pi_{v}:=\operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right),
$$

and fix a tuple of homomorphisms

$$
i_{S}=\left(i_{v}: \pi_{v} \longrightarrow \pi_{1}\left(X^{B}\right)\right)_{v \in B}
$$

corresponding to embeddings $\bar{F} \hookrightarrow \bar{F}_{v}$.
Assume B contains all places dividing n.

Finite Arithmetic Chern-Simons Functionals with Boundaries

In addition to the global moduli space

$$
\mathcal{M}\left(X^{B}, R\right)=\operatorname{Hom}\left(\pi_{1}\left(X^{B}\right), R\right) / / R
$$

we have the local moduli space

$$
\mathcal{M}\left(\partial X^{B}, R\right):=\left\{\phi_{B}=\left(\phi_{v}\right)_{v \in B} \mid \phi_{v}: \pi_{v} \longrightarrow R\right\} / / R
$$

Thus, we get a localisation map

$$
\operatorname{loc}_{B}=i_{B}^{*}: \mathcal{M}\left(X^{B}, R\right) \longrightarrow \mathcal{M}\left(\partial X^{B}, R\right)
$$

Finite Arithmetic Chern-Simons Functionals with Boundaries

Key cohomological facts:

$$
H^{2}\left(\pi_{v}, \mathbb{Z} / n\right) \simeq \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

$H^{i}\left(\pi_{v}, \mathbb{Z} / n\right)=0$ for $i>2$.
There is a symplectic non-degenerate pairing

$$
H^{1}\left(\pi_{v}, \mathbb{Z} / n\right) \times H^{1}\left(\pi_{v}, \mathbb{Z} / n\right) \longrightarrow H^{2}\left(\pi_{v}, \mathbb{Z} / n\right) \simeq \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

There is an exact sequence

$$
0 \longrightarrow H^{2}\left(X^{B}, \mathbb{Z} / n\right) \longrightarrow \prod_{v \in B} H^{2}\left(\pi_{v}, \mathbb{Z} / n\right) \xrightarrow{\sum} \frac{1}{n} \mathbb{Z} / \mathbb{Z} \longrightarrow 0
$$

Finite Arithmetic Chern-Simons Functionals with Boundaries

Now $c \in Z^{3}(R, \mathbb{Z} / n)$ will denote a 3-cocycle.
For any $\phi_{B}=\left(\phi_{v}\right)$, each $\phi_{v}^{*}(c) \in Z^{3}\left(\pi_{v}, \mathbb{Z} / n\right)$ is trivial. Thus,

$$
\mathcal{T}_{v}:=d^{-1}\left(\phi_{v}^{*}(c)\right) \in C^{2}\left(\pi_{v}, \mathbb{Z} / n\right) / B^{2}\left(\pi_{v}, \mathbb{Z} / n\right)
$$

is a torsor for $H^{2}\left(\pi_{v}, \mathbb{Z} / n\right) \simeq \frac{1}{n} \mathbb{Z} / \mathbb{Z}$.
Hence,

$$
\prod_{v \in B} \mathcal{T}_{v}
$$

is a torsor for

$$
\prod_{v \in B} H^{2}\left(\pi_{v}, \mathbb{Z} / n\right) \simeq \prod_{v \in B} \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

Finite Arithmetic Chern-Simons Functionals with Boundaries

We push this out using the sum map

$$
\Sigma: \prod_{v \in B} \frac{1}{n} \mathbb{Z} / \mathbb{Z} \longrightarrow \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

to get a $\frac{1}{n} \mathbb{Z} / \mathbb{Z}$-torsor

$$
\mathcal{T}\left(\phi_{B}\right):=\Sigma_{*}\left(\prod_{V} d^{-1}\left(\phi_{V}\right)\right) .
$$

As ϕ_{B} varies, we get a $\frac{1}{n} \mathbb{Z} / \mathbb{Z}$-torsor

$$
\mathcal{T} \longrightarrow \mathcal{M}\left(\partial X^{B}, R\right)
$$

over the local moduli space.

Finite Arithmetic Chern-Simons Functionals with Boundaries

Can use the map

$$
\exp 2 \pi i: \frac{1}{n} \mathbb{Z} / \mathbb{Z} \longrightarrow S^{1}
$$

to push \mathcal{T} out to a unitary line bundle \mathcal{U} over $\mathcal{M}\left(\partial X^{B}, R\right)$ and define

$$
\left.H_{C S}(B):=\Gamma\left(\mathcal{M}\left(\partial X^{B}\right), R\right), \mathcal{U}\right)
$$

This is the Hilbert space associated by finite arithmetic CS theory to B.
Should define

$$
H_{C S}\left(X^{B}\right) \in H_{C S}(B)
$$

Finite Arithmetic Chern-Simons Functionals with Boundaries

If $\rho \in \mathcal{M}\left(X^{B}, R\right)$, because $H^{3}\left(\pi_{1}\left(X^{B}\right), \mathbb{Z} / n\right)=0$, we can solve

$$
d \beta=\rho^{*}(c) \in Z^{3}\left(\pi_{1}\left(X^{B}\right), \mathbb{Z} / n\right)
$$

and put

$$
\mathbb{C S}(\rho)=\Sigma_{*}\left(\operatorname{loc}_{B}(\beta)\right) \in \mathcal{T}_{\operatorname{loc}_{B}(\rho)}
$$

Lemma
$\mathbb{C S}(\rho)$ is independent of the choice of β.
This follows immediately from the reciprocity sequence
$0 \longrightarrow H^{2}\left(\pi_{1}\left(X^{B}\right), \mathbb{Z} / n\right) \longrightarrow \prod_{v \in B} H^{2}\left(\pi_{v}, \mathbb{Z} / n\right) \xrightarrow{\sum} \frac{1}{n} \mathbb{Z} / \mathbb{Z} \longrightarrow 0$,

Finite Arithmetic Chern-Simons Functionals with Boundaries

Exponentiating, we get

$$
\exp (2 \pi i \mathbb{C S}(\rho)) \in \mathcal{U}_{\operatorname{loc}_{B}(\rho)}
$$

and

$$
\int_{\left\{\rho \mid \operatorname{loc}_{B}(\rho)=\rho_{B}\right\}} \exp (2 \pi i \mathbb{C}(\rho)) \in \mathcal{U}_{\rho_{B}}
$$

As ρ_{B} varies get an element

$$
\Psi_{C S}\left(X^{B}\right) \in H_{C S}(B) .
$$

Many analogues of topological formulas carry over, e.g., glueing formula.

Computing Chern-Simons: Decomposition Formula

We have the natural map

$$
\pi^{B} \xrightarrow{q_{B}} \pi
$$

Thus, we get the map

$$
\begin{gathered}
\mathcal{M}(X, R) \longrightarrow \mathcal{M}\left(X^{B}, R\right) \\
\rho \mapsto \rho \circ q_{B} \\
\mathbb{C S}\left(\rho \circ q_{B}\right) \in \mathcal{T}(r(\rho))
\end{gathered}
$$

On the other hand, for each $v \in B$, we get a composed representation

$$
\rho_{v}^{u n}: \pi_{v}^{u n} \longrightarrow \pi \xrightarrow{\rho} R,
$$

where $\pi_{v}^{u n} \simeq \operatorname{Gal}\left(\overline{k_{v}} / k_{v}\right)$ is the unramified quotient of π_{v}.

Computing Chern-Simons: Decomposition Formula

By solving

$$
d \beta_{v}=\left(\rho_{v}^{u n}\right)^{*}(c)
$$

with

$$
\beta_{v}\left(\rho_{v}^{u n}\right) \in C^{2}\left(\pi_{v}^{u n}, \mathbb{Z} / n\right) / B^{2}\left(\pi_{v}^{u n}, \mathbb{Z} / n\right) \longrightarrow Z^{3}\left(\pi_{v}, \mathbb{Z} / n\right)
$$

for each v, we get another element

$$
\sum_{v}\left(\beta_{v}\left(\rho_{v}^{u n}\right)\right) \in \mathcal{T}(r(\rho))
$$

This is independent of the choice of β_{v} because

$$
H^{2}\left(\pi_{v}^{u n}, \mathbb{Z} / n\right)=0
$$

Thus, we can take the difference

$$
\mathbb{C}\left(\rho \circ q_{B}\right)-\sum_{v}\left(\beta_{v}\right) \in \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

Computing Chern-Simons: Decomposition Formula

Theorem (w/ H. Chung, D. Kim, J. Park, and H. Yoo)

$$
\mathbb{C S}(\rho)=\mathbb{C S}\left(\rho \circ q_{S}\right)-\sum_{v}\left(\beta_{v}\left(\rho_{v}^{u n}\right)\right) .
$$

This is an analogue of the decomposition formula in Chern-Simons theory, and gives us a way to compute the values.

Key Point:
$\mathbb{C}(\rho)$ is the difference between a global ramified trivialisation and a local unramified trivialisation.

Computing Chern-Simons: Decomposition Formula

Put

$$
\Psi_{C S}\left(D_{B}\right)\left(\left(\rho_{v}\right)_{v}\right):=\exp \left(2 \pi i\left(\sum_{v}\left(\beta_{v}\left(\rho_{v}\right)\right)\right)\right)
$$

if all the ρ_{v} are unramified. Otherwise,

$$
\Psi_{C S}\left(D_{B}\right)\left(\left(\rho_{v}\right)_{v}\right)=0
$$

Theorem (Hirano, J. Kim, Morishita)

$$
C S(X)=\left\langle\Psi_{C S}\left(X^{B}\right), \Psi_{C S}\left(D_{B}\right)\right\rangle
$$

Chern-Simons Entanglement of Primes

[With Chung, Kim, Park, Yoo and inspired by Balasubramanian, Vijay; Fliss, Jackson R.; Leigh, Robert G.; Parrikar, Onkar:
Multi-boundary entanglement in Chern-Simons theory and link invariants.]

When $B=\left\{p_{1}, p_{2}\right\}$, then

$$
\Psi_{C S}\left(X_{B}\right) \in H_{C S}(B) \simeq H_{C S}\left(p_{1}\right) \otimes H_{C S}\left(p_{2}\right)
$$

We can define the CS entanglement entropy of primes:

$$
\left.\operatorname{Ent}_{C S}\left(p_{1}, p_{2}\right):=-\operatorname{Tr}^{\left(\operatorname{Tr}_{H\left(p_{1}\right)}\right.}\left(\Psi_{C S}\left(X_{B}\right)\right) \log \operatorname{Tr}_{H\left(p_{1}\right)}\left(\Psi_{C S}\left(X_{B}\right)\right)\right)
$$

Chern-Simons Entanglement of Primes

Let $R=\mathbb{Z} / p$. Recall the localisation maps

$$
\operatorname{loc}_{p_{i}}: H^{1}\left(X^{B}, \mathbb{Z} / p\right) \longrightarrow H^{1}\left(T_{p_{i}}, \mathbb{Z} / p\right)
$$

Theorem
$\operatorname{Ent}_{C S}\left(p_{1}, p_{2}\right)=\left(\operatorname{dimH}^{1}\left(X^{B}, \mathbb{Z} / p\right)-\operatorname{dim}\left(\operatorname{Ker}\left(\operatorname{loc}{p_{1}}_{1}\right)+\operatorname{Ker}\left(\operatorname{loc}{p_{2}}\right)\right) \log p\right.$.
IX. P-adic L-functions

Should be interesting, but hasn't led to much yet.

p-adic L-functions

For each $j \in\{1,2, \ldots, p-1\}$ odd there is a unique power series

$$
Z_{j}(T) \in \mathbb{Z}_{p}[[T]]
$$

such that

$$
Z_{j}\left((1+p)^{n}-1\right)=\left(1-p^{-n}\right) \zeta(n)
$$

for all $n<0, n \equiv j \bmod p-1$.
Allows the interpolation of the negative odd values of $\zeta(s)$ to p-adic analytic functions

$$
L_{j}(s):=Z_{j}\left((1+p)^{s}-1\right)
$$

p-adic L-functions and path integrals

[Joint work with Magnus Carlson, Hee-Joong Chung, Dohyeong Kim, Jeehoon Park, and Hwajong Yoo.]

Let

$$
X_{B}=\operatorname{Spec}\left(\mathbb{Z}\left[\mu_{p^{n}}\right]\left[1 /\left(\zeta_{p^{n}}-1\right)\right]\right)
$$

and define the space of fields as

$$
\mathcal{F}^{m}:=H^{1}\left(X_{B}, \mu_{\rho^{m}}\right) \times H_{c}^{1}\left(X_{B}, \mathbb{Z} / p^{m} \mathbb{Z}\right) .
$$

p-adic L-functions and path integrals

There is a natural action of

$$
G=\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{p^{n}}\right) / \mathbb{Q}\right)
$$

on the space of fields \mathcal{F}^{m}, and we let

$$
G^{\prime} \subset G
$$

be the unique subgroup of G of order $p-1$.
Since $p-1$ is not divisible by p, G^{\prime} acts semi-simply on \mathcal{F}^{m}.
Define

$$
\mathcal{F}_{k}^{m}:=H^{1}\left(X_{B}, \mu_{\rho^{m}}\right)_{\omega^{k}} \times H_{c}^{1}\left(X_{B}, \mathbb{Z} / p^{m} \mathbb{Z}\right)_{\omega^{-k}}
$$

p-adic L-functions and path integrals

Further,

$$
\begin{aligned}
& \mathcal{F}_{k}=H^{1}\left(X_{B}, \mathbb{Z}_{p}(1)\right)_{\omega^{k}} \times H_{c}^{1}\left(X_{B}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)_{\omega^{-k}} \\
= & \lim _{\leftarrow} H^{1}\left(X_{B}, \mu_{p^{m}}\right)_{\omega^{k}} \times \lim _{\longrightarrow} H_{c}^{1}\left(X_{B}, \mathbb{Z} / p^{m} \mathbb{Z}\right)_{\omega^{-k}}
\end{aligned}
$$

and

$$
\int_{\mathcal{F}_{k}} \exp (2 \pi i B F(a, b)) d a d b:=\lim _{m \rightarrow \infty} \sum_{(a, b) \in \mathcal{F}_{k}^{m}} \exp (2 \pi i B F(a, b))
$$

p-adic L-functions and path integrals

Theorem
Let $k \neq 1$ be odd. We have

$$
\int_{\mathcal{F}_{k}} \exp (2 \pi i B F(a, b)) d a d b=\left|\prod_{j=0}^{p^{n}-1} z_{1-k}\left(\exp \left(2 \pi i j / p^{n}\right)-1\right)^{-1}\right|_{p}
$$

Essentially just a repackaging of the main conjecture of Mazur and Wiles together with some generalities on arithmetic duality.

p-adic L-functions and path integrals

Remark

1. This is a partial unification of Mazur's paper 'Notes on the Alexander polynomial' and Witten's Jones polynomial paper.
2. It would be far more interesting to get

$$
\prod_{j=0}^{p^{n}-1} Z_{1-k}\left(\exp \left(2 \pi i j / p^{n}\right)-1\right)^{-1}
$$

