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It is my great pleasure to talk about the mathematics of the great mas-
ter Professor Kunihiko Kodaira. He is one of the founders of the theory of
complex manifolds. Many mathematicians in Japan regard him as an ideal
mathematician and would like to imitate at least some part of his math-
ematics. I am not his direct student, but a student in broader sense and
received a lot of influence. I also received a few but important advice from
him. I apologize that I can touch only very tiny part of his mathematics
due to the lack of knowledge.

1. chronology

I would like to start with a short chronology of Professor Kodaira. He
was born in Tokyo on March 16 in 1915. He graduated from Mathematics
Department of the University of Tokyo in 1938. Then he graduated from
Physics Department of the University of Tokyo in 1941. I do not know the
reason why he graduated from two departments.

He became an assistant professor at Tokyo University of Education in1942,
where a great physicist Shinichiro Tomonaga was a professor. He became
an assistant professor at Physics Department of the University of Tokyo
in 1944. The Mathematics and Physics Departments of the University of
Tokyo had to evacuate from Tokyo to Nagano prefecture in 1945 in order to
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escape from the bombing toward the end of the war. Nagano prefecture is
the home country of Kodaira, and he helped to save precious books of the
departments.

He received a PhD degree from the University of Tokyo by his thesis “Har-
monic fields in Riemannian manifolds” under the supervision of Professor
Shokichi Iyanaga in 1949. Then he was invited to Institute for Advanced
Study in Princeton in the same year. He became an associate professor at
Princeton University in 1952, received a Fields Medal in 1954, and became
a full professor at Princeton University in 1955. He moved to Johns Hopkins
University in 1962, and then to Stanford University in 1965. I do not know
why he moved so many times.

In 1968 he returned to Japan and became a professor at the University
of Tokyo. The timing was not ideal due to the student movement. There
was no entrance examination at the University of Tokyo in 1969 though the
entrance examination is a national event in Japan. He was elected to the
dean of the Faculty of Science (served from 1971 to 1973) and was involved
in university politics. He had to face student meetings. But he managed
to raise brilliant students who were later called Kodaira school. He also
delivered beautiful graduate lectures (I will talk about the lecture notes
later).

He retired at the age of 60 according to the rule at that time, and become
a professor at Gakushuin University in 1975. He retired from Gakushuin
University at the age of 70 according to the rule of the university in 1985.
He served as a chairman of ICM Kyoto in 1990. He was very successful in
fund raising thanks to his long time friendship with business leaders. He
passed away on June 26, 1997.

2. Kodaira’s lecture notes

The following are notes of Professor Kodaira’s graduate course lectures
delivered when he was a professor at the University of Tokyo. These are pub-
lished in a series “Seminar Notes of Mathematics Department of University
of Tokyo” (東大数学教室セミナリー・ノート）. The handwritten lecture
notes in Japanese with drawings are taken by his students and reproduced
by mimeograph. I studied essentials of algebraic and complex geometry from
these notes when I was a student.

vol 19. 複素多様体と複素構造の変形 I. 諏訪立雄記. 1968, 99pp. Complex
Manifolds and Deformations of Complex Structures I. notes taken by Tatsuo
Suwa.

vol 20. 代数曲面論. 山島成穂記. 1968, 89pp. Algebraic Surfaces. notes
taken by Naruho Yamashima.
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vol 31. 複素多様体と複素構造の変形 II.堀川穎二記. 1974, 303pp. Complex
Manifolds and Deformations of Complex Structures II. notes taken by Eiji
Horikawa.

vol 32. 複素解析曲面論. 赤尾和男記. 1974, 173pp. Complex Analytic
Surfaces. notes taken by Kazuo Akao.

vol 34. Nevanlinna理論. 酒井文雄記. 1974, 115pp. Nevanlinna Theorey.
notes taken by Fumio Sakai. translated into English by Takeo Ohsawa.

3. miscellanea

I would like to translate some of Kodaira’s words which were impressive.
“There maybe is a sense of mathematics beside five basic senses. In

order to develop this sense, one has to work hard, read repeatedly proofs of
known theorems, take notes, think about them long hours, and try to apply
them in examples, digest, decompose into pieces and reconstruct, like taking
nutrition.”

“A correct proof is natural and appears straight forward, but is not boring
because there are ideas.”

“I happened to find many theorems, but they seem to be already there.
If I did not find them, then someone else would have found them.”

There are two books of articles dedicated to Kodaira by his friends [12],
[13]. These were sources of study at the time when there were not so many
papers.

4. complex manifolds

The subject of his research was the complex manifolds. Kodaira said that
he wanted to generalize results in Herman Weyl’s book “The Concept of a
Riemann Surface” to higher dimensions. He considered complex manifolds
which are not necessarily complex algebraic manifolds. Since there are no
ample divisors on them, an induction argument on the dimension by using
hyperplane sections or restrictions to divisors is not always possible. He even
considered non-Kähler manifolds. In this way, he established the classifica-
tion of compact complex manifolds of dimension 2 which are not necessarily
Kähler. He used the minimal model program which was known in dimension
2. Nowadays some results are extended to dimension 3 or higher in the case
that the manifolds are algebraic or Kähler.

Kodaira used two different approaches to complex manifolds. The first
method is the complex analysis. He solved elliptic PDE using norm esti-
mates. The second method is the algebraic geometry. He started to use
the sheaf cohomology theory, when it was new, to solve geometric problems
such as counting invariants of manifolds. He also used algebraic method of
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taking quotients and coverings as well as topological cutting and pasting.
He applied both analytic and algebraic methods to study geometry.

Kodaira wrote numerous articles which are published in “Kunihiko Ko-
daira Collected Works” in 3 volumes ([11]). Roughly speaking, there are
three major topics; harmonic analysis, deformation theory, and compact
complex surfaces.

5. harmonic analysis

Let (X,ω) be a compact Kähler manifold. Let Ωp
X be the sheaf of holo-

morphic p-forms for 0 ≤ p ≤ dimX, and let Hp,q(X) = Hq(X,Ωp
X). Then

the Hodge decomposition theorem says that there is a direct sum decompo-
sition

Hk(X,C) ∼=
⊕

p+q=k

Hp,q(X)

and each cohomology class in Hp,q is represented uniquely by a harmonic
(p, q)-form.

There is an exact sequence

0→ ZX → OX → O∗
X → 0

given by the exponential function z 7→ e2πiz. For a holomorphic line bundle
L on X which is given by a set of transition functions hαβ ∈ Γ(Uα∩Uβ,O∗

X),
where {Uα} is an open covering, we define its first Chern class c1(L) ∈
H2(X,Z) to be the image of the class [L] ∈ H1(X,O∗

X) by the connecting
homomorphism

H1(X,O∗
X)→ H2(X,Z)→ H2(X,OX).

We have c1(L) ∈ H1,1(X) because it goes to zero in the third term. Thus it
is represented by a harmonic real (1, 1)-form ϕ = i

∑
ϕijdzi ∧ dz̄j . L is said

to be positive if (ϕij) is a positive definite hermitian matrix at each point of
X

Theorem 5.1 (Kodaira vanishing theorem 1953 [3]). Let X be a compact
Kähler manifold of dimension n and let L be a positive holomorphic line
bundle on X. Then Hp(X,L−1) = 0 for p < n.

This important theorem is proved in a 5 page paper published in Proc.
Nat. Acad. Sci. This is a full paper with the size of an announcement.

We note that L is assumed to be positive, and not ample. The ampleness
is a posteriori proved by the next embedding theorem. The positivity is
a differential geometric property while the ampleness an algebro-geometric
one.

By the Serre duality theorem, the statement of the theorem is converted
to Hp(X,L⊗KX) = 0 for p > 0, where KX = Ωn

X is the canoical line bundle
([32]). Raynaud proved that the Kodaira vanishing theorem does not hold
over a field of positive characteristic when L is assumed to be ample ([30]).
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The Kodaira vanishing theorem gives precise and sometimes optimal con-
dition for the vanishing of cohomology compared to the following Serre van-
ishing theorem:

Theorem 5.2 (Serre vanishing theorem [33]). Let X be a projective scheme
and let L be an ample line bundle on X. Then for any coherent sheaf F on
X, there exists an integer m0 such that Hp(X,F ⊗L⊗m) = 0 for p > 0 and
m ≥ m0.

This theorem holds in a much more general situation, where X may have
singularities and the base field is arbitrary, but not as precise as the Kodaira
vanishing theorem.

The proof of the Kodaira vanishing theorem is an application of the har-
monic analysis. The method is an explicit tensor calculus called Bochner’s
method. The holomorphic line bundle F = L−1 has a resolution by C∞

vector bundles defined by the operator ∂̄ (Dolbeault sequence)

0→ F → C∞(Ω̄0 ⊗ F )→ · · · → C∞(Ω̄n ⊗ F )→ 0.

Any cohomology class inHp(X,F ) has a unique representative of a harmonic
(0, p)-form ϕ with coefficients in F :

ϕ ∈ C∞(Ω̄p
X ⊗ F ), ∂̄ϕ = ∂̄∗ϕ = 0.

Then a tensor calculus shows that ϕ = 0 using an argument such as, if a
real function f ≥ 0 satisfies I =

∫
X fdµ ≤ 0, then f = 0.

Theorem 5.3 (Kodaira embedding theorem 1954 [4]). Let (X,ω) be a com-
pact Kähler manifold. Assume that the cohomology class of the Kähler
form [ω] ∈ H2(X,C) belongs to the image of the natural map H2(X,Z) →
H2(X,C). Then X is a projective manifold, i.e. there is an embedding
X ⊂ PN to a projective space.

The proof of the embedding theorem is a typical application of the van-
ishing theorem. We explain the outline.

First of all, we find a line bundle L on X with the given 1st Chern class
c1(L) = [ω] thanks to the exponential sequence (Lefschetz (1, 1)-theorem):

H1(X,O∗
X)→ H2(X,Z)→ H2(X,OX).

We take a basis s0, . . . , sN ∈ H0(X,L⊗m) for a large integer m. Then we
define a map to a projective space f : X → PN by

f(x) = [s0(x) : · · · : sN (x)].

We can prove that f is an embedding in the following way:

(0) We prove that there is no base point: for each x ∈ X, there exists
i such that si(x) ̸= 0, so that f is defined everywhere. The statement is
equivalent to the surjectivity of the following natural homomorphism

H0(X,L⊗m) ↠ H0(L⊗m ⊗Ox)
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for all x ∈ X.
(1) We prove that f separates points:

H0(X,L⊗m) ↠ H0(L⊗m ⊗Ox)⊕H0(L⊗m ⊗Oy)

for all x, y ∈ X with x ̸= y.
(2) We prove that f separates infinitely near points:

H0(X,L⊗m) ↠ H0(L⊗m ⊗OX/m
2
x)

for all x ∈ X.

We can prove the above surjectivities by using the vanishing theorem as
follows. Let g : Y → X be the blowing up at x (resp. x, y) in the cases
(0) and (2) (resp. (1)), and let g−1(x), g−1(y) = Ex, Ey

∼= Pn−1 be the
exceptional divisors. Then we have exact sequences of sheaves

0→ OY (mg
∗L− Ex)→ OY (mg

∗L)→ OEx → 0,

0→ OY (mg
∗L− Ex − Ey)→ OY (mg

∗L)→ OEx ⊕OEy → 0,

0→ OY (mg
∗L− 2Ex)→ OY (mg

∗L)→ O2Ex → 0,

where we use the additive notation of divisors instead of the multiplicative
notation of sheaves, e.g., we have OY (D +D′) ∼= OY (D) ⊗ OY (D

′). Then
we have exact sequences

H0(X,mg∗L)→ H0(OEx)→ H1(Y,mg∗L− Ex),

H0(X,mg∗L)→ H0(OEx)⊕H0(OEy)→ H1(Y,mg∗L− Ex − Ey),

H0(X,mg∗L)→ H0(O2Ex)→ H1(Y,mg∗L− 2Ex).

Therefore it is sufficient to prove that the vanishings

H1(Y,mg∗L− Ex) = 0,

H1(Y,mg∗L− Ex − Ey) = 0,

H1(Y,mg∗L− 2Ex) = 0,

hold, which follow from the positivity of divisors g∗(mL − KX) − nEx,
g∗(mL −KX) − nEx − nEy and g∗(mL −KX) − (n + 1)Ex for sufficiently
large m, where n = dimX.

The above argument is a prototype of applications of the vanishing the-
orem to the study of linear systems. Kodaira’s argument is greatly gener-
alized later to the study the minimal model program of higher dimensional
algebraic varieties in characteristic zero ([20], [22]).

6. deformation of complex structures

Let X be a compact complex manifold. A deformation of X is a proper
smooth morphism f : X → S of complex manifolds with a base point
s ∈ S and an isomorphism f−1(s) ∼= X. Each point x̃ ∈ X has an open
neighborhood with coordinates with respect to which f becomes a projection
to a subspace. Then there is an open neighborhood s ∈ S′ ⊂ S such
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that the restriction f |f−1(S′) is differentially trivial; f−1(S′) ∼ S′ × X as
differentiable manifolds. We consider only small deformations, i.e., the base
space is considered as a germ of S at s, and X → S can always be replaced
by a restricted family f−1(S′)→ S′.

Kodaira and Spencer considered all possible small deformations of a given
complex manifolds. They constructed deformations over a formal power se-
ries ring by method of infinitesimal calculus, and then proved the conver-
gence of the formal deformations by global analysis of norm estimates.

Let M be the differentiable manifold which underlies X. Then X is re-
garded as a pair ofM and a complex structure onM . The small deformations
of X are realized by changing complex structures on M .

A complex structure is an integrable almost complex structure J , an action
on the real tangent bundle TM such that J2 = −1. J induces a decomposi-
tion into eigenspaces of the complexfied tangent bundle

TM ⊗C = TX ⊕ T̄X
with the eigenvalues i,−i.

An almost complex structures J corresponds bijectively to the subspace
T̄X ⊂ TM ⊗C, and in turn to the decomposition

d = ∂ + ∂̄

of the exterior derivation d of differential forms on M . TX is determined as
the complex conjugate of T̄X .

A differentiable function h ∈ C∞(M) is holomorphic with respect to J if
and only if it satisfies the Cauchy-Riemann equation

∂̄h = 0.

The almost complex structure J is said to be integrable, and thereby defines
a complex structure, if there are sufficiently many holomorphic functions
such that M becomes locally isomorphic to a polydisk.

A small deformation of the given almost complex structure J is deter-
mined by a differentiable form

ϕ ∈ C∞(TX ⊗ T̄ ∗
X) = C∞(Hom(T̄X , TX)),

for which the complexified tangent bundle decomposes into

T̄ϕ = {v + ϕ(v) | v ∈ T̄X},

and its complex conjugate Tϕ, so that we have a decomposition d = ∂ϕ+ ∂̄ϕ.
The almost complex structure Jϕ thus defined is integrable if and only if

the Maurer-Cartan equation

∂̄ϕ+
1

2
[ϕ, ϕ] = 0

is satisfied, where we note that

[ϕ, ϕ] ∈ Im([TX , TX ]⊗
2∧
T̄ ∗
X → TX ⊗

2∧
T̄ ∗
X)
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with T̄ ∗
X = Ω̄1 and

∧2 T̄ ∗
X = Ω̄2.

In this way we define an infinite dimensional variety MC = {ϕ | ∂̄ϕ +
1
2 [ϕ, ϕ] = 0} inside an infinite dimensional vector space C∞(Hom(T̄X , TX)).
In order to obtain the local moduli space, or the Kuranishi space, M of
small deformations of X, we need to divide MC by the group action of
the connected component of the diffeomorphism group Diffeo(M)0 in order
to discard the redundancy: M =MC/Diffeo(M)0. Let u ∈ C∞(TX) be a
vector field onM , an element of the Lie algebra corresponding to Diffeo(M)0.
Then the action is given by a formula

exp(u)(ϕ) = ϕ+
∑
n≥0

ad(u)n

(n+ 1)!
([u, ϕ]− ∂̄u).

In particular, the tangent space ofM is given as a quotient space

TM,0 = {ϕ | ∂̄ϕ = 0}/{ϕ | ϕ = ∂̄u} = H1(X,TX)

where 0 ∈ M corresponds to the original complex structure X. In more
modern language, small deformations of X are controlled by an infinite
dimensional differential graded Lie algebra⊕

p≥0

C∞(TX ⊗
p∧
T̄ ∗
X).

We analyse the infinitesimal structure of the local moduli space M, the
base space of the semi-universal deformation, by using the Dolbeault coho-
mology groupsHp(X,TX). Namely the tangent space is given byH1(X,TX),
and the singularities are determined by the obstruction spaceH2(X,TX). We
note that the vector spaces Hp(X,TX) are finite dimensional.

In the algebraic language, the tangent space TM,0 is equal to the set of
maps Spec(C[t]/(t2)) → M which induce Spec(C) → 0 ∈ M. This is the
set of all deformations of X over Spec(C[t]/(t2)) up to isomorphism. More
generally, let (R,m) be an Artin local algebra over C with residue field
R/m ∼= C. R is finite dimensional as a C-vector space. An infinitesimal
deformation over R is a deformation of X over Spec(R), that is a smooth
morphism f : X → Spec(R) such that C⊗R X ∼= X.

Let p : (R′,m′) → (R,m) be a surjective homomorphism of Artin lo-
cal algebras such that the ideal I = Ker(p) satisfies m′I = 0. Given
a deformation f : X → Spec(R), there exists an extended deformation
f ′ : X ′ → Spec(R′) such that R ⊗R′ X ′ ∼= X if and only if an obstruction
class ξ(f) ∈ H2(X,TX)⊗ I vanishes.

We will see how these cohomology groups appear using an open covering
of the complex manifold X. Let X =

∪
Ui be an open covering by small

polydisks Ui. Then the deformations of X are obtained by changing the
gluing Ui|Uij

∼= Uj |Uij on Uij = Ui ∩ Uj . The change over Spec(C[t]/(t2)) is

realized by a 1-cochain {vij} with vij ∈ H0(Uij , TX) consisting of infinites-
imal automorphisms of the Uij . One needs a compatibility condition, i.e.,
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a cocycle condition vjk − vik + vij = 0 on the overlap Uijk = Ui ∩ Uj ∩ Uk.
As the coboundary of a 0-cochain {wi} consisting of infinitesimal automor-
phisms wi ∈ H0(Ui, TX) of the Ui, vij = wj |Uij − wi|Uij represents a trivial
deformation. Therefore the tangent space of the local moduli space is given
by the cohomology group H1(X,TX).

We check that the obstruction space is H2(X,TX). We consider a prob-
lem of extending a deformation f : X → Spec(R) to f ′ : X ′ → Spec(R′).
We have an open covering X =

∪
Ui such that Ui ∼= Ui × Spec(R). Let

gij : Uj |Uij
∼= Ui|Uij be the gluing of the Ui. They satisfy the cocycle con-

dition gijgjkgki|Uijk
= Id on Uijk. Let g′ij : U ′

j |Uij
∼= U ′

i |Uij be any gluing

of the U ′
i = Ui × Spec(R′) extending gij . We ask whether they satisfy the

cocycle condition. Since gij satisfies the cocycle condition, we can write
g′ijg

′
jkg

′
ki|Uijk

= vijk ∈ H0(Uijk, I ⊗ TX). The 2-cochain {vijk} is closed by
construction. If it is a coboundary vijk = wjk − wik + wij , then we can
modify g′ij by wij so that

∪
U ′
i glue to yield X ′.

Let us take a basis {ϕ1,1, . . . ϕ1,m} ∈ H1(X,TX), and let {t1, . . . , tm} ∈
H1(X,TX)∗ be the dual basis which are regarded as formal variables. Then
we have a universal first order deformation given by ϕ1 =

∑
ϕ1,iti over

C[t1, . . . , tn]/(t1, . . . , tn)
2. Let us assume that the obstruction space van-

ishes: H2(X,TX) = 0. Then we can develop a formal deformation: ϕ =
ϕ1 + ϕ2 + ϕ3 + . . . with degt(ϕi) = i by solving Maurer-Cartan equation
inductively:

∂̄ϕi +
1

2

i−1∑
j=1

[ϕj , ϕi−j ] = 0.

By a priori estimates of norms ∥ϕ∥ ≤ C∥ψ∥ for an equation ∂̄ϕ = ψ, the
convergence of the formal series is proved:

Theorem 6.1 (Kodaira-Nirenberg-Spencer 1958 [5]). Let X be a compact
complex manifold. Assume that H2(X,TX) = 0. Then there exists a de-
formation of X over an open polydisc in the affine space H1(X,TX) which
contain all small deformations.

This deformation is called a semi-universal deformation or a Kuranishi
family because Kuranishi extended the theorem to the case whereH2(X,TX)
does not vanish [23]. The Kuranishi space, the local moduli space, becomes
a germ of a possibly singular analytic subvariety of H1(X,TX).

Next we consider deformations of a submanifold X ⊂ V of codimension 1
in a fixed ambient manifold V . Let NX/V be the normal bundle. Then the

tangent space of the local moduli space is equal to H0(X,NX/V ) and the

obstruction space is H1(X,NX/V ).
We have an exact sequence

0→ OV → OV (X)→ NX/V → 0.
9



X ⊂ V is said to be semi-regular if the homomorphism H1(V,OV (X)) →
H1(X,NX/V ) is a zero map. The following theorem shows that a weaker

condition than the vanishing of the whole obstruction space H1(X,NX/V )
is sufficient for the unobstructedness of deformations:

Theorem 6.2 (completeness of characteristic system, Kodaira-Spencer 1959
[7]). Let X ⊂ V be a codimension 1 submanifold. Assume that X is semi-
regular. Then there exists a semi-universal family of submanifolds f : X ⊂
V × S → S such that S ⊂ H0(X,NX/V ) is an open neighborhood of the
origin.

This is a generalization of a result of Severi in the case dimX = 1. This
is the reason of a strange name of the theorem. Kodaira asked the following
question:

Question 6.3. In many interesting examples like complex tori, there are no
obstructions for deformations even if the obstruction spaces do not vanish
H2(X,TX) ̸= 0. Why?

There is now a theory of unobstructed deformations. For example, Bogomolov-
Tian-Todorov theorem states that there are no obstructions for deformations
of Calabi-Yau manifolds in a broader sense, i.e, KX ∼ 0 ([16], [35], [36], see
also [29], [21]).

Kodaira also asked the following question:

Question 6.4. Does any compact Kähler manifold have a small deformation
which is a projective manifold?

He obtained a positive answer in the case of dimension 2 as a consequence
of his classification ([8], [9]). On the other hand, Voisin gave a negative
answer in higher dimension dimX ≥ 4 ([37]). It is proved to be negative
even in a birational sense ([38]); there exists compact Kähler manifold in each
even dimension ≥ 8 without a bimeromorphic model which is deformation
equivalent to a projective manifold. But Lin proved that the answer is
positive in dimension 3 ([26]); any compact Kähler manifold of dimension 3
has a small deformation which is a projective manifold.

7. compact complex surfaces

Kodaira applied the general theory of compact complex manifolds to the
investigation of compact complex surfaces, 2-dimensional complex mani-
folds. He said that “a beautiful general theory is not interesting if there are
no concrete applications”.

A map between compact complex manifolds f : X 99K Y is said to be
a bimeromorphic map (or sometimes called a birational map) if there exists
Zariski open dense subsets U ⊂ X and V ⊂ Y such that f induces an
isomorphism fo : U ∼= V , and that the graph of fo in U × V extends to a
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subvariety of X×Y . We note that f is not necessarily defined on the whole
manifold X. If it is defined everywhere and the pull-backs of holomorphic
functions are holomorphic, then it is called a morphism.

An important example of a birational map is a blow-up of Y along a
smooth subvariety. The inverse of a blow-up is a blow-down. A curve C on
a surface X is said to be a (−1)-curve if it is isomorphic to projective line
C ∼= P1 and the normal bundle has degree −1, i.e., NC/X

∼= OP1(−1). The
Castelnuovo contraction theorem states that, for a (−1)-curve C, there exists
a birational morphism f : X → Y such that f(C) point andX\C ∼= Y \f(C),
so that f is a blow-up of f(C). Any birational morphism f : X → Y in
dimension 2 is decomposed into a succession of blow-downs [40]:

X = X0 → X1 → · · · → Xm = Y.

For any birational map f : X 99K Y , there is decomposition into two bira-
tional morphisms X ← Z → Y for some intermediate surface Z. Therefore
f is decomposed into blow-ups and then blow-downs:

X = X0 ← X1 ← · · · ← Xm → Xm+1 → . . . Xm+n = Y.

A surface is said to be minimal if it does not contain a (−1)-curve.
For arbitrary dimensional compact complex manifolds, any birational map

is decomposed into a combination of blow-ups and blow-downs under the
additional assumption that they are projective:

Theorem 7.1 (weak factorization theorem [14] [39]). Let f : X 99K Y be a
birational map between complex projective manifolds. Then f is decomposed
into blow-ups and blow-downs:

X = X0 99K X1 99K · · · 99K Xm = Y

where each map is either a blow-up or a blow-down with smooth centers.

A birational invariant is a invariant I(X) of a compact complex manifold
such that I(X) = I(Y ) if X and Y are birational. It is considered to
be more fundamental than a general invariant. For example, some Hodge
numbers Hp,0(X) = dimH0(X,Ωp

X) and H0,p(X) = dimHp(X,OX) are

birational invariants, while Betti numbers Bi(X) = dimH i(X,Q) are not in
general. The fundamental group π1(X) is also a birational invariant. The
m-genus Pm(X) := dimH0(X,mKX) for a positive integer m is a birational
invariant, where KX = ΩdimX

X is the canonical line bundle with an additive
notation. The growth rate κ(X) of the pluri-genera is called the Kodaira
dimension. It can take values among −∞, 0, 1, 2, . . . , dimX, and we have
estimates Pm(X) ∼ mκ(X) for sufficiently large and divisible integer m.

Kodaira considered the following problem:

Problem 7.2. Classify all compact complex surfaces up to birational equiv-
alence using birational invariants.
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For complex algebraic surfaces, there were already a theory by Italian
algebraic geometers such as Enriques, Castelnuovo and so on.

One of the main methods is to consider linear systems of divisors and
to calculate their intersection numbers. A divisor D =

∑
diDi on X is

a finite formal combination of codimension 1 subvarieties Di with integer
coefficients di. It is said to be effective D ≥ 0 if all coefficients di are non-
negative, when we assume that Di ̸= Dj for i ̸= j. Two divisors are said to
be linearly equivalent D ∼ D′ if the associated line bundles are isomorphic
OX(D) ∼= OX(D′). A holomorphic non-zero section s ∈ H0(X,OX(D))
gives an effective divisor D′ = div(s) such that D′ ∼ D. A linear system is a
set of effective divisors |Λ| = (Λ\{0})/C∗ corresponding to a linear subspace
Λ ⊂ H0(X,OX(D)). A complete linear system |D| = (H0(X,OX(D)) \
{0})/C∗ corresponds to the whole space. For example, if we have a non-
vanishing H0(X,OX(D) ̸= 0, then we obtain a linear system of curves on
X which gives a clue to the structure of X.

For a basis {s0, . . . , sN} ∈ Λ, we can construct a rational map ΦΛ : X 99K
PN defined by ΦΛ(x) = [s0(x) : · · · : sN (x)]. ΦΛ is a morphism if Λ is base
point free, i.e., for each x ∈ X, there exists s ∈ Λ such that s(x) ̸= 0.

In order to calculate the space of holomorphic sections H0(X,OX(D)),
Kodaira proved a Riemann-Roch theorem, which is used together with two
other theorems:

Theorem 7.3. (1) Riemann-Roch theorem 1951 [1]:

χ(X,OX(D)) :=
2∑

i=0

(−1)i dimH i(X,OX(D)) =
1

2
D(D −KX) + χ(X,OX).

(2) Noether’s formula

χ(X,OX) =
1

12
(c1(X)2 + c2(X)).

(3) Serre duality

H i(X,OX(D)) ∼= H2−i(X,OX(KX −D))∗.

We note that c1(X)2 = (K2
X) and c2 =

∑4
i=0(−1)iBi. The calculation of

intersection numbers gives χ(X,OX(D)). We can see the geometric meaning
of dimH0(X,OX(D)) and dimH2(X,OX(D)) = dimH0(X,OX(KX −D)),
but dimH1(X,OX(D)) is harder to understand. It is easier if the vanishing
theorem holds.

7.1. rationality criterion. A compact complex surface X is said to be
rational if there is a birational map f : X 99K P2. A numerical criterion
for the rationality was a great achievement of the Italian school of algebraic
geometers. Kodaira gave a simpler proof using sheaf cohomology.

Theorem 7.4 (Castelnuovo criterion [9]). Let X be an algebraic surface.
Assume that

P2(X) := dimH0(X, 2KX) = 0, q(X) := dimH0(X,OX) = 0.
12



Then X is a rational surface.

The proof uses the theory of the adjoint system |D + KX | for a divisor
D. The point is to prove that the adjunction terminates: |D +mKX | = ∅
for any D if m is sufficiently large.

In the later development to higher dimensional varieties, we considered
|m(H + rKX)| for an ample divisor H and for all r > 0. The numerical
thresholds such as t = sup{r ∈ R | H + rKX ample} ∈ Q played important
roles. There is now a theory of rationally connected manifolds, but the
rationality criterion is still an open problem in dimension ≥ 3.

7.2. K3 surfaces. A compact complex surface X is called a K3 surface if
the canonical bundle is trivial KX ∼ 0 (i.e., OX(KX) ∼= OX) and the irreg-
ularity vanishes q := dimH1(X,OX) = 0. The name K3 came from three
great mathematicians Kummer, Kähler and Kodaira according to Andre
Weil.

For an algebraic K3 surface, there is an ample divisor L. The pair (X,L)
is said to be a polarized K3 surface. The self intersection number d = (L2)
is called the degree. It is an even positive integer. For each even positive
integer d, there exists a 19-dimensional deformation family of polarized K3
surfaces of degree d. Therefore there are infinitely many families of algebraic
K3 surfaces whose constructions are different for each degree. For example,
K3 surfaces of degree 2 are double covers of P2 ramified along a curve of
degree 6, those of degree 4 are hypersurfaces in P3 of degree 4, those of
degree 6 are complete intersections of degrees 2 and 3 in P4, and those of
degree 8 are complete intersections of degrees 2, 2, 2 in P5.

But Kodaira realized that there is only one 20-dimensional family of K3
surfaces, all connected by deformations (Kodaira 1966 [9]). For example,
the 19-dimensional family of quartic surfaces deforms out from P3. These
general K3 surfaces have no equations because they are not algebraic, but
their existence is guaranteed by the deformation theory. Indeed we have

dimH1(X,TX) ∼= dimH1(X,Ω1
X) = 20, H2(X,TX) = 0.

For a polarized K3 surface (X,L), the deformations preserving the polar-
ization is 19-dimensional, because they are parametrized by a subspace
[L]⊥ ⊂ H1(X,Ω1

X) of dimension 19.
An important example of a K3 surface is a Kummer surface, which is a

desingularization of a quotient variety A/⟨i⟩ of an abelian surface A by an
involution i : x 7→ −x. Kodaira showed that Kummer surfaces are dense
in the moduli space of K3 surfaces. The advantage of Kummer surfaces is
that they are easier to handle. The study of K3 surfaces became later one
of the main topics in algebraic geometry around 1980. The whole moduli
space is given by the period domain. The global Torelli theorem states that
the period mapping is bijective.

Kodaira asked the following question:
13



Question 7.5. A compact complex surface admits a Kähler metric if and
only if its first Betti number is even.

In 1974 his student Miyaoka gave an affirmative answer in the case of
elliptic surfaces in his master’s thesis of only 4 pages ([27]). Finally Siu gave
a positive answer to the above question in 1983 ([34]).

The higher dimensional analogue of K3 surfaces are Calabi-Yau manifolds.
In dimension 3, there are more than thousands known families of Calabi-Yau
3-folds which have different topological types. There are too many Calabi-
Yau 3-folds, but Reid’s fantasy [31] claims that their might be only one
family of 3-folds whose generic members are non-Kähler such that all the
Calabi-Yau 3-folds appear after degenerations and desingularizations at the
boundaries of the moduli space.

7.3. elliptic surfaces. A compact complex surface X is said to be an el-
liptic surface if there exists a morphism f : X → C to a curve whose general
fibers E are elliptic curves.

Kodaira classified all possible fibers f−1(t) assuming that f is relatively
minimal, i.e., there are no (−1)-curves in fibers.

I0: a regular fiber.
Ib = Ãb−1 for b ≥ 1: a rational curve with one node if b = 1, cycle of

b smooth rational curves C1 + C2 + · · · + Cb for b ≥ 2, i.e., Ci
∼= P1 and

(C2
i ) = −2, (Ci, Cj) = 1 if i = j ± 1 mod b, and (Ci, Cj) = 0 if i ̸= j, j ± 1

mod b.
mIb for b ≥ 0 and m ≥ 2: multiple fiber of type Ib with multiplicity m,

i.e, m(C1 + · · ·+ Cb) as a divisor.
II: a rational curve with one cusp.
III: two smooth rational curves tangent at one point.
IV: three smooth rational curves meeting at one point.
I∗b = D̃b+4 for b ≥ 0: tree of b + 5 smooth rational curves with the dual

graph below.
II∗ = Ẽ8: tree of 9 smooth rational curves with the dual graph below.
III∗ = Ẽ7: tree of 8 smooth rational curves with the dual graph below.
IV∗ = Ẽ6: tree of 7 smooth rational curves with the dual graph below.

D̃n :
◦ ◦
| |

◦ − ◦ − . . . − ◦ − ◦

Ẽ6 :

◦
|
◦
|

◦ − ◦ − ◦ − ◦ − ◦
14



Ẽ7 :
◦
|

◦ − ◦ − ◦ − ◦ −◦ −◦ −◦

Ẽ8 :
◦
|

◦ − ◦ − ◦ −◦ −◦ −◦ −◦ −◦

In the above diagram, the vertexes correspond to smooth rational curves
P1, and the edges to transversal intersections. The extended Dynkin dia-
grams of types Ã, D̃, Ẽ appear in the classification of singular fibers. They
have one more vertexes than A,D,E type diagrams. The Roman numerals
II, III, IV correspond to topological Euler numbers. They are also related to
eigenvalues of the local monodromies around the singular fibers which are
reflected in the canonical bundle formula below. The eigenvalues for types
II∗, III∗, IV∗ are the complex conjugates.

Kodaira proved the important canonical bundle formula:

KX = f∗(KC +D) +
∑

Fi=miIb

mi − 1

mi
Fi

where D is a divisor on C such that

deg(D) =
1

12
(
∑

ni +
∑

bi)

where the number ni for a singular Fi is determined as

ni = 0, 2, 3, 4, 6, 12− 2, 12− 3, 12− 4

for types mIbi , II,III,IV,I∗bi ,II
∗,III∗,IV∗. The eigenvalue of the local mon-

odromy on H1(E,Z) around the singular fiber Fi is equal to e
2πni/12.

The denominator 12 appears in many places:
(1) It is the denominator in Noether’s formula.
(2) It is the degree of the automorphic function ∆ = g32 − 27g23, the j-

function, where bi is the order of its pole.
(3) It is the least common multiple of the orders of finite order automor-

phisms of elliptic curves.

Kodaira gave detailed description as well as the construction of elliptic
surfaces by:

(1) j-function of fibers E.
(2) monodromy of H1(E,Z).
(3) torsor construction under the action of the group E.
(4) logarithmic transformation for multiple fibers.
In this way, one can say that elliptic surfaces are now well understood.
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7.4. V II0 surfaces. Kodaira classified all minimal compact complex sur-
faces into seven classes (0 means minimal):

(I0): b1 even, pg := dimH0(X,KX) = 0. (algebraic surface)
(II0): b1 = 0, pg = 1, KX ∼ 0. K3 surface.
(III0): b1 = 4, pg = 1, KX ∼ 0. complex torus.
(IV0): b1 even, pg > 0, KX ̸∼ 0, (K2

X) = 0. (elliptic surface)
(V0): b1 even, pg > 0, (K2

X) > 0. (general type)
(VI0): b1 odd, pg > 0, (K2

X) = 0. (elliptic surface)
(VII0): b1 = 1, pg = 0. (???)

The last class VII0 was (and is) mysterious even for Kodaira. He consid-
ered only a special case. A compact complex surface is called a Hopf surface
if its universal covering is isomorphic to C2 \ {0}.

An example of a Hopf surface is given by

X = (C2 \ {0})/Z, (z1, z2) 7→ (α1z1, α2z2)

with 0 < |αi| < 1. It is an elliptic surface if and only if αi
1 = αj

2 for some
positive integers i, j. Indeed the fibration is given by

f = zi1/z
j
2 : X → P1.

Otherwise, there are only 2 curves on X: {(z1, 0)}/Z and {(0, z2)}/Z.

Theorem 7.6 (Kodaira 1966 [10]). If X is homeomorphic to S1×S3, then
X is a Hopf surface.

An almost complex structure exists only on S2 and S6 among spheres.
So a related question is whether there is a complex structure on S6.

His students Inoue, Kato and Nakamura continued investigation of VII0
surfaces [18], [19], [28], also [15], [17], [24], [25].
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