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LLMs are . . . Exciting

Large language models are exciting: they are really really good at
language generation.

I This is where I tell you that the text of this talk was actually
secretly written by GPT-3 . . .

I . . . and while that’s not actually true in this case the fact that
you at least had to consider the possibility underscores the
point that I want to make here.
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LLMs are . . . Large

Large language models are large. . .

I . . . as in size: the Megatron-Turing NLG tops out at 530
billion parameters.

[Smith/Patwary/Microsoft/NVIDIA]

I . . . as in (big) data: Chinchilla was trained on 1.4 trillion
tokens.

[Hoffmann/Borgeaud/Mensch/DeepMind/Sifre]

This is not a regime that’s typically thought to be useful. . .
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LLMs are . . . Predictable

Kaplan/McCandlish/OpenAI found empirical scaling laws in the test loss
of (autoregressive transformer) LLMs trained with early stopping
across a large variety of model and dataset sizes.
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LLMs are . . . Questionable

This empirical behavior implies many theoretical questions:

I What are the properties of datasets that lead to scaling laws?
I Which DNNs have scaling laws when trained on that data?
I How do they arise; what is the mechanism?
I Do they break down; what is the behavior when they do?
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LLMs are . . . Here

Large language models are powerful tools that can be used to
accomplish a wide range of tasks. For example, BERT
\cite{devlin-etal-2019-bert} was pre-trained on a large corpus and
fine-tuned for a wide variety of tasks, including question answering
and natural language inference, and achieved state-of-the-art
performance. However, large language models usually require a lot
of computational resources and training data, which limits their
use in many real-world applications.

[GPT-3]
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Goals

We want to understand this neural scaling phenomenology:

L(N,T ) =

(Nc
N

)αN
αT + Tc

T

αT

.

(i) Discover the joint properties of datasets and feature maps
that lead to this behavior.

(ii) Find and solve a joint generative data model and random
feature model that has same behavior.

(ii) Use the model to study mechanism and breakdown.
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Data Properties

AI tasks in different domains use very different underlying data:

I token features of textual data are used LLMs for NLP
I pixel features of image data are used for CV

Both domains can exhibit the neural scaling law phenomenology –
Gaussian noise does not(!) – so we should try to understand the
structure in common between these natural datasets.
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Data Properties: notation

Consider a dataset of T samples with components

xi ;α , with i = 1, . . . ,Nin ,

where the i indexes the Nin different input features, which may be
a particular pixel or token, and α indexes into the T different
samples in the dataset.

The correlation between input features in the dataset is
characterized by the feature-feature covariance matrix:

Λij = 1
T

T∑
α=1

xi ;αxj;α .

The spectrum of the dataset is the eigenvalues of λi of Λij .
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Data Properties: spectrum
Let’s look at the spectrum, λi , of some real natural datasets.
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Wikitext Feature-Feature Covariance Eigenvalues

T = 50
T = 100
T = 200
T = 400
T = 500

(1) λi are well fit by a power law:

λi ∼
1

i1+α .

[Bahri/Dyer/Kaplan/Lee/Sharma]

(2) For each T , λi terminates in a very rapid decline.
(3) Varying T , we also very the extent of the power law.
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Aside: PCA

In PCA, Λij is diagonalized to find the linear combinations of the xi
that account for the majority of the variance of the data:

I If the λi has a gap at some eigenvalue λM , such that M large
eigenvalues account for the majority of the total variance,
then the other λM+1, . . . , λNin eigenvalues are unimportant.

I Contrast with our natural datasets of images and embedded
text, which have continuous spectra (power law). Perhaps all
the eigenvalues are relatively important?
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Data Properties: spectrum
The extent of a power law in λi is bounded by Nin.
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I If the data was generated by p(x |Nin), we would expect more
information as we increased Nin.

I For fixed Nin, if increased T , is there additional information in
those extra samples?
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Feature Maps
What if we try to map to a space N that’s larger than Nin?

DNN extends power law, samples for T > Nin are useful!
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A Statistical Model

Want a joint generative data model and random feature model that
captures the broad empirical properties of these real datasets and
the effect of the ReLU layer (our stand-in for more general DNNs).
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A Statistical Model: Data
Rather than generating data in the raw input space, we will
generate data in a latent space:

xJ , with J = 1, . . . ,M ,

where J indexes the latent space features.

Latent data are drawn from a zero-mean Gaussian distribution with
latent features having a power-law covariance:

〈xJxK 〉 = δJKλJ , λJ ≡ λ+

(1
J

)1+α
.

For every latent sample xJ , we will generate a teacher label:

y =
M∑

J=1
wJxJ + ε,

with w sampled from a zero-mean Gaussian and ε per sample noise.
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A Statistical Model: Data

For a finite dataset of size T , the spectrum of latent data will be
similar to what we observed empirically for natural data:
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A Statistical Model: Features
What if we map T samples to a space N that’s smaller than M?
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A Statistical Model: (Generalized) Linear Model
We “train” a generalized linear model to reproduce the teacher
labels (generated from the underlying latent features) using a
linear transformation of only the random features (see also
[Bahri/Dyer/Kaplan/Lee/Sharma]):

z =
N∑

j=1
θiϕi (xJ) .

We minimize a standard MSE loss with a ridge parameter:

LA(θ) = 1
2 ||θϕ− y + ε||2 + γ

2 ||θ||
2 .

This has a well known solution:

θ? ≡ (y + ε)ϕT q , q ≡ q(γ) = 1
ϕϕT + γIN

.
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A Statistical Model: Test Loss
Sample a test set of T̂ samples, denoted by matrices {x̂ , ŷ}. The
test loss is evaluated on our regression solution, ẑ? ≡ θ? · ϕ(x̂):

LB(θ?) = 1
2T̂
||ẑ? − ŷ ||2

= 1
2T̂

∣∣∣∣∣∣(y + ε)ϕT qϕ̂− ŷ
∣∣∣∣∣∣2 .

The goal of analysis is to compute the average:

〈LB(θ?)〉ε,w ,ϕ(x),x .

Some of which are easy:

〈LB(θ?)〉ε,w = σ2
w

2T̂M

∣∣∣∣∣∣xϕT qϕ̂− x̂
∣∣∣∣∣∣2 + σ2

ε

2T̂

∣∣∣∣∣∣ϕT qϕ̂
∣∣∣∣∣∣2 .

And the remaining ones are not. . .

[Louart/Liao/Couillet]
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test loss is evaluated on our regression solution, ẑ? ≡ θ? · ϕ(x̂):
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LB(θ?) = 1
2T̂
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A Statistical Model: Empirics
One advantage of a joint model of data and features is that we can
just simulate to see what happens:
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(We optimize over the ridge parameter γ?.)
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The γ → 0 limit is what we are able to compute analytically.
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Breakdown of Scaling Laws

I Does this phenomenological model stop being predictive?

L(N,T ) = k
( 1

N + 1
T

)α
I What is behavior in the new regime?

Hint: it only depends on 2 of the 3 scales in the problem. . .

23 / 29



Breakdown of Scaling Laws

I Does this phenomenological model stop being predictive?

L(N,T ) = k
( 1

N + 1
T

)α

I What is behavior in the new regime?

Hint: it only depends on 2 of the 3 scales in the problem. . .

23 / 29



Breakdown of Scaling Laws

I Does this phenomenological model stop being predictive?

L(N,T ) = k
( 1

N + 1
T

)α
I What is behavior in the new regime?

Hint: it only depends on 2 of the 3 scales in the problem. . .

23 / 29



Breakdown of Scaling Laws

I Does this phenomenological model stop being predictive?

L(N,T ) = k
( 1

N + 1
T

)α
I What is behavior in the new regime?

Hint: it only depends on 2 of the 3 scales in the problem. . .

23 / 29



Breakdown of Scaling Laws: M . N
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L(N,T ) = k
(

1
N + 1

T

)α
breaks down when M . N.
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The Equiparameterization Regime
Equiparameterization vs. Double Descent (Log-Log Scale) 

underparameterized overparameterized

equiparameterized

The unregularized test loss curve shows the double descent phe-
nomenon in the overparameterized regime.

[Belkin/Hsu/Ma/Mandal]
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The Equiparameterization Regime
Equiparameterization vs. Double Descent (Log-Log Scale) 

underparameterized overparameterized

equiparameterized

The non-analytic peak is an artifact and can be eliminated by regu-
larization, e.g. early-stopping or a ridge parameter γ?.
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. . . but increases much more by scaling the parameters and training
set size together: N ∼ T .

[Kaplan/McCandlish/OpenAI, Hoffmann/Borgeaud/Mensch/DeepMind/Sifre]
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The Equiparameterization Regime
Equiparameterization vs. Double Descent (Log-Log Scale) 

underparameterized overparameterized

equiparameterized

. . . but increases much more by scaling the parameters and training
set size together: N ∼ T .

[Kaplan/McCandlish/OpenAI, Hoffmann/Borgeaud/Mensch/DeepMind/Sifre]

I Because of the power-law structure with N,T < M.
25 / 29



Latent Dimensions: A Puzzle

A Puzzle:

I We usually expect that the latent dataset is low dimensional
encoded representation of the input.

M < Nin,N,T

I Our scaling-law model requires that the size of the latent
space is the largest scale in the problem.

M > Nin,N,T
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Latent Dimensions: A Possible Resolution
There are multiple ways to think about the intrinsic dimension:

1. M
2. A nice method considers the typical (Euclidean) distance, 〈δ〉,

between neighboring points:

〈δ〉 ∼ T−1/dintrinsic .

[Levina/Bickel, Facco/et al.]

Using this, Sharma/Kaplan argued that the test loss should be
inversely proportional to typical linear size, 〈δ〉, of a subregion
occupied by each data point:

dintrinsic = #
α
.
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between neighboring points:

〈δ〉 ∼ T−1/dintrinsic .

[Levina/Bickel, Facco/et al.]

Using this, Sharma/Kaplan argued that the test loss should be
inversely proportional to typical linear size, 〈δ〉, of a subregion
occupied by each data point:

dintrinsic = #
α
.

Conclusion: While the latent space is M-dimensional, it has a rigid
power-law structure that leads to different notions of dimension.
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There are multiple ways to think about the intrinsic dimension:

1. M
2. A nice method considers the typical (Euclidean) distance, 〈δ〉,

between neighboring points:

〈δ〉 ∼ T−1/dintrinsic .

[Levina/Bickel, Facco/et al.]

Using this, Sharma/Kaplan argued that the test loss should be
inversely proportional to typical linear size, 〈δ〉, of a subregion
occupied by each data point:

dintrinsic = #
α
.

But also: Regardless, the analysis implies that an AI systems will
still need to scale its resources as T ,N . M.
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Conclusion

I We presented explored the properties of datasets and feature
maps that occur in natural datasets and DNNs and used that
to build a joint generative data model and random feature
model that captures the phenomenology of neural scaling laws.

I (We also solved the model, but we didn’t explain how.)
I This let us explore how power laws and plateaus arise, the

breakdown of the empirical LLM behavior, as well as
understand why equiparameterization is important.
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Future Directions

I Where do the power laws in natural datasets come from?
I Can we improve our theoretical analysis to optimize over the

ridge parameter γ?
I Can we extend our scaling-law analysis to nonlinear models

with feature learning such as quadratic models?
[DR/Yaida/Hanin]

I Can we learn the latent dimension M of real data since it
shows up in our solution?

I Can we use our knowledge of why scaling laws arise to predict
exponents in more complicated systems of practical relevance?

Thank You!
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