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Linear Algebra
Fix integers n > d > 1. 1<ii<bh<--<ig<n

Vector space AyR" has standard basis ) = e, ANe, A--- Aej,

Column vectors ¢ = Z/e([”l) Yyer are called quantum states.
d

A scientist gives us a symmetric matrix H € R(Z)X(Z), called

Hamiltonian, and asks us to solve the eigenvalue problem

Hip = Mb.

This is easy, isn't it?
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Linear Algebra
Fix integers n > d > 1. 1<i<h<---<ig<n.

Vector space AyR" has standard basis ) = e, ANe, A--- Aej,

Column vectors ¢ = Z/e([”l) Yyer are called quantum states.
d

A scientist gives us a symmetric matrix H € R(Z)X(Z), called

Hamiltonian, and asks us to solve the eigenvalue problem

This is easy, isn't it? Yes, but (1) is very large. What to do?

GRADUATE STUDIES
IN MATHEMATICS

Coupled Cluster Theory replaces
a large problem of Linear Algebra
with a small problem Invitation to

of Nonlinear Algebra. Nonlinear Algebra

Mateusz Michatek
Bernd Sturmfels
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Math ...
Our Abstract

We develop algebraic geometry for coupled cluster (CC) theory

of quantum many-body systems. The high-dimensional eigenvalue
problems that encode the electronic Schrodinger equation are
approximated by a hierarchy of polynomial systems.

The exponential parametrization of the eigenstates
gives rise to truncation varieties. These generalize
Grassmannians in their Pliicker embedding.

12934 — Y13ts + Y143 = 0

x Kk K K
x Kk x K
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Math ...
Our Abstract

We develop algebraic geometry for coupled cluster (CC) theory

of quantum many-body systems. The high-dimensional eigenvalue
problems that encode the electronic Schrodinger equation are
approximated by a hierarchy of polynomial systems.

The exponential parametrization of the eigenstates
gives rise to truncation varieties. These generalize
Grassmannians in their Pliicker embedding.

Y1234 — Y13hos + Y1athrs = 0

We explain how to derive Hamiltonians, we offer a detailed
study of truncation varieties and their CC degrees, and we
present the state of the art in solving the CC equations.
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in Science

Electronic structure theory is a powerful quantum mechanical framework
for investigating the intricate behavior of electrons within molecules and
crystals. At the core lies the interaction between particles, specifically
electron-electron and electron-nuclei interactions. Embracing the
essential quantum physical effects, this theory is the foundation for

ab initio electronic structure calculations . ..

With its diverse applications in chemistry and materials science,
electronic structure theory holds vast implications for the mathematical
sciences. Integrating methods from algebra and geometry into this field
leads to the development of precise and scalable numerical methods,
enabling extensive in silico studies of chemistry for e.g. sustainable
energy, green catalysis, and nanomaterials.

The synergy between fundamental mathematics and electronic structure
theory offers potential for groundbreaking advances in addressing these

global challenges.
Sounds promising?
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A Tale of Two Vector Spaces

H = AgR" Vectors ¢ are quantum states
Reference state e[q) = first basis vector

YV = AgR" Vectors x are cluster amplitudes

The exponential parametrization is a nonlinear bijection

V = H, x — 1, where 1) = exp(T(x)) e[q]-
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A Tale of Two Vector Spaces

H = AgR" Vectors ¢ are quantum states
Reference state e[q) = first basis vector

YV = AgR" Vectors x are cluster amplitudes

The exponential parametrization is a nonlinear bijection

V = H, x — 1, where 1) = exp(T(x)) e[q]-

> T(x) is a strictly lower-triangular (1) x () matrix.

P |ts entries are xx or —xy or O.

» The matrix T(x) is nilpotent. We have T(x)9*+! = 0.
» The matrix exponential exp(T(x)) is idempotent.

» Its entries are polynomials in x of degree < d.
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Lower-triangular Matrix

The entry of T(x) in row J and column [ is zero

unless I\J C [d] and (J\/) N [d] = 0.
If this holds then

T(x)y = £xk  where K = ([d]U J)\/
with a combinatorially defined sign.

Rows and columns of T(x) are ordered by increasing level.
The level of a coordinate v, or x; is the cardinality of /\[d].

Example (d =3,n =6)

Level 0: 123
Level 1: 124, 125, 126, 134, 135, 136, 234, 235, 236
Level 2: 145, 146, 156, 245, 246, 256, 345, 346, 356,
Level 3: 456

7/21



Exponential Parametrization

1 = the leftmost column of the matrix exp( T (x)).

d=3,n=6

Y123 =1 Y135 = —X135 Y145 = X145 — X124X135 + X125X134 Y256 = — X256+ X125X236 — X126 X235
Y124 = X124 Y136 = —X136 146 = X146 — X124X136 + X126X134 345 = X345 — X134X235 + X135X234
Y125 = X125 234 = X234 Y156 = X156 — X125X136 + X126X135 346 = X346 — X134X236 + X136X234
Y126 = X126 Y235 = X235 245 = —X045+X124X035—X125X234 Y356 = X356 — X135X236 - X136X235
Y134 = —X134 Y236 = X236 Y246 = —X246+X124X236 —X126X234

456 = Xap6 + X124X356 — X125X346 + X126X345 — X134X256 + X135X246 — X136X245 + X145X236 — X146X235
+ X156 X234 — X124X135X236 + X124X136X235 + X125X134X236 — X125X136X234 — X126X134X235 + X126X135X234
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Exponential Parametrization

1 = the leftmost column of the matrix exp( T (x)).

d=3,n=6
Y123 =1 Y135 = —X135 Y145 = X145 — X124X135 + X125X134 Y256 = — X256+ X125X236 — X126 X235
Y124 = X124 Y136 = —X136 146 = X146 — X124X136 + X126X134 345 = X345 — X134X235 + X135X234
Y125 = X125 234 = X234 Y156 = X156 — X125X136 + X126X135 346 = X346 — X134X236 + X136X234
Y126 = X126 Y235 = X235 245 = —X045+X124X035—X125X234 Y356 = X356 — X135X236 - X136X235
Y134 = —X134 Y236 = X236 Y246 = —X246+X124X236 —X126X234

456 = Xap6 + X124X356 — X125X346 + X126X345 — X134X256 + X135X246 — X136X245 + X145X236 — X146X235
+ X156 X234 — X124X135X236 + X124X136X235 + X125X134X236 — X125X136X234 — X126X134X235 + X126X135X234

Proposition

The map has a polynomial inverse. Namely, x; equals
+ 4, plus a polynomial in 1-coordinates of strictly lower level.

x123 = 1, x124 = Y124, ... , Y236 = X236
X145 = Y145 — Y124135 + Y125¢134, - .., Y356 = X356 — X135X236 T X136X235
Xa56 = Pas6 — Y124Y356+1125346 — 1261345 +11341256 — V1359246 1369245 — 145236+ 1146235
— 1569234 + 2(11241135236 — 11241361235 — 112513490236 +0125 113610234 H1P126 113400235 — 126
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Combinatorics
All coordinates of the exponential parametrization H — V arise by
relabeling from the master polynomial 1;(x), where | = [2d]\[d].

x3() = P34 — Y1324 + Y14723

xa56(Y) = Yas6 — 1240356 + - - - — 290126%135¢234

x5678(V) = bser8 — P1235%a678 + - — 21p1278Y1346%2345 + - - - — 6101238%1247%1346%2345
x67800(%) = 67800 — V1234657890 + - - — 21V12800%13457%23456 + - - -

+ 6912300112458 1345723456 + - + + 241)123499012358112457%13456123450

Number of terms in the master polynomial:

3,16,131,1496,22482,426833 for d =2,3,4,5,6,7. (A023998)
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Combinatorics

All coordinates of the exponential parametrization H — V arise by
relabeling from the master polynomial 1;(x), where | = [2d]\[d].

x3a(y) = 134 — P131P2a + P1atha3

xa56(Y) = Yas6 — 1240356 + - - - — 290126%135¢234

x5678(V) = bser8 — P1235%a678 + - — 21p1278Y1346%2345 + - - - — 6101238%1247%1346%2345
x67800(%) = 67800 — V1234657890 + - - — 21V12800%13457%23456 + - - -

+ 6912300112458 1345723456 + - + + 241)123499012358112457%13456123450

Number of terms in the master polynomial:
3,16,131,1496,22482,426833 for d =2,3,4,5,6,7. (A023998)

Similarly, all coordinates of the inverse map V — H arise by
relabeling from the master polynomial x;(v), where | = [2d]\[d].

Theorem

We have explicit formulas for the master polynomials 1;(x) and
x/(1) as integer linear combinations of monomials that represent
the uniform block permutations on [2d]. [Orellana et al, 2022]
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Truncation Varieties

Fix a subset o of [d]. Restrict the map H — V to
the subspace whose coordinates x; whose level is in o.

Image of this restriction is the truncation variety
Vv, ¢ Pv) = pla-1,

Remark: dim(V,) = #{/ :level(/) € 5}
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Truncation Varieties

Fix a subset o of [d]. Restrict the map H — V to
the subspace whose coordinates x; whose level is in o.

Image of this restriction is the truncation variety
Vv, ¢ Pv) = pla-1,
Remark: dim(V,) = #{/ :level(/) € 5}
Example (d=3, n=6)
The six truncation varieties V. in P! are

{2} Vi ~ IP? = zero set of ten coordinates 1; of level 1 or 3.
{3} Line Vi3 ~ P! spanned by the points ejo3 and ess6.

{2,3} Vo3 =~ PO = zero set of nine coordinates v of level 1.

{1,2} Cubic hypersurface V() defined by master polynomial Xss6(7)).
{1,3} V13 has dim 10, degree 41, defined by 25 quadrics.
{1} Grassmannian Vi3, = Gr(3,6), dim 9, degree 42, 35 quadrics.
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|deals, Varieties and Algorithms

Theorem

The restriction of V,, to the affine chart {1jq = 1} in pa)-1 s
a complete intersection, defined by x;(1)) =0 for level(l) & o.

The homogeneous prime ideal of V, is the saturation

I(Ve) = (x(¥) : level(l) € o) - (Pra) )

Theorem

The truncation variety V, is a linear subspace of p(a)-1
if and only if the index set o is additively closed,

ie if i,j€o withi+je[d] theni+je€o.
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Grassmannians

Theorem (o = {1})

The truncation variety V(yy in p(e)-2 equals the
Grassmannian Gr(d, n) in its Pliicker embedding.

Punchline: The V, are generalizations of Grassmannians.
Proposition (Duality)

Fix o C [d] and n > 2d. There is a linear isomorphism

between two copies of p(e)-1 which switches the
truncation varieties V,, for (d, n) and for (n — d, n).
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A Variety of Varieties
Example (d =3,n=7)
The six varieties in P34 correspond to the six columns in this table:

4 {iv {2+ {3+ {12} {13} {2,3}
dim 12 18 4 30 16 22
degree 462 1 1 43 405 1

mingens [0,140] [16] [30] [0,0,7] [0,76,10] [12]
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A Variety of Varieties

Example (d =3,n=7)
The six varieties in P34 correspond to the six columns in this table:

4 {1y {2 {3y {n2} {13} {2,3}
dim 12 18 4 30 16 22
degree 462 1 1 43 405 1

mingens [0,140] [16] [30] [0,0,7] [0,76,10] [12]

Example (d =4,n=8)
The 14 varieties live in P%9. Five are linear spaces:
V{3} ~ P16, V{4} ~ ]P)]', V{274} ~ P37, V{374} ~ ]P)]J, V{2’374} ~ P53.

The nine others:

o {1} {2+ {12y {13} {14} {23} {1,2,3} {1,2,4} {1,3,4}
dim 6 36 52 32 17 52 68 53 33
mingens [0,721] [32,1] [0,0,63] [0,237,200] [0,668] [16,1] [0,0,0,1] [0,46,120] [0,236,200
degree 24024 2 442066 24024 24203 2 4 221033 12012
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Coupled Cluster Equations

(Hw)a — Awa
for ¢ € V,

The coupled cluster degree CCdeg, (o)

is the number of complex solutions in p(e)-1

for generic symmetric matrices H.

Back to Science: Where does H come from 7
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Electronic Schrodinger Equation

H\IJ(rl,rg,...,rd) = )\\U(rl,rz...,rd).

W is an unknown function in positions r; € R3 of d electrons.

By Pauli’s Exclusion Principle, ¥ is skew-symmetric. The Hamiltonian is

d d c
Foaka 3 gt ¥

i=1 j=1 1<I<j<d

dn u

I

A is the Laplacian, and R; € R3 are fixed nuclei. Nuclear charge Z;
is the number in the periodic table. We have dy.. < d = Z}i:ic Z;.

Example (Lithium hydride)
The molecule LiH has d,,. =2 atoms: lithium Li and hydrogen H.

# electrons is d = Z; + Z, =3+ 1 = 4. Two nuclei at locations
R; and R;,. Four electrons have variable locations rq, 1y, r3, 1y.

So, WV is a function of 12 scalar unknowns.
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Discretization
Restrict the Hamiltonian H to a k-dim’l space of nice functions
R3 — R, where k > d. Basis of atomic orbitals {X17X2a ceey Xk}
from www.basissetexchange.org

Example (LiH, d = k = 4)

Select k = 4 atomic orbitals, three for lithium and one for hydrogen:

° @ 00
L & - iy
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Discretization

Restrict the Hamiltonian H to a k-dim’l space of nice functions
R3 — R, where k > d. Basis of atomic orbitals {X17X2a ceey Xk}
from www.basissetexchange.org

Example (LiH, d = k = 4)

Select k = 4 atomic orbitals, three for lithium and one for hydrogen:

e @920

Electronic spin doubles the number of functions, and the LCAO method
leads to n = 2k molecular orbitals. Hence for LiH we have d = 4,n = 8.

° P
I i - :
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Computing H from H

Basis of molecular orbitals: {&1,&2,...,&a}.
Inner product on molecular orbit space:

6.6) = | amstodr

Galerkin basis of (Z) skew-symmetric d-particle functions:

1 . .
o, = ﬁfh Ao NE,, where !l ={i,... 04}
Inner product:
d),,CDJ Z H é‘H (ip)> EV(Jp
HES p=1
VES,

n

Compute entries of the (Z) X (d) matrix H by integration:

H[7J = <¢[7H¢J>.

For Lithium hydride, Hamiltonian H is a symmetric 70 x 70 matrix.
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Coupled Cluster Equations (H¢) _ )\wa
o

for ¢ € V;

18/27



Coupled Cluster Equations

Example (d =2,n=5,0 = {1})

(H¢)0 — )\wa

for ¢ € V;

Determinantal formulation for V,, = Gr(2,5):

0 P12 Y13 Y Yis
=12 0 4oz Yoa o5
rank | =113 —tY23 0 P Uss
—t1a —Yoq —P3q 0 g
—t15 —t2s —P35 —thgs 0

Hamiltonian H is a 10 x 10 matrix.

# solutions in P° equals CCdegy 5({1}) = 27 — 214 — 1.

< 2 and rank

le
P13
(o
(T
o3
¢24
o5
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Degree Bound

Theorem
The number of isolated solutions satisfies

CCdegy ,(0) < (dim(V,) + 1) deg(Vs).

Example (d =2,n=5,0 = {1})
For Gr(2,5), the inequality is strict: 27 < 7.5 = 35.

Corollary
Suppose V, is a linear space. Then (HY), = Hy %5, and
CCdegy p(0) = dim(V,) + 1.

The CC equations describe the usual eigenvalue problem for the
symmetric matrix Hy 5. In particular, all complex solutions are real.
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Catalan Numbers
Fix d = 2,0 = {1}.

The degree of the Grassmannian Gr(2, n) is the Catalan number
1 (2n—-4
Chn = .
-2 n—1 ( n—2 )

Theorem (arXiv today)

The CC degree of the Grassmannian Gr(2, n) equals

4 /2n—
2-C,,_1—1:<n 3)—1.
n\n—1

CCdeg:
Bound:

This was Conjecture 5.5 in the paper with Fabian and Svala.
Proved in the new paper with Svala and Viktoriia Borovik.

20/27



Master Polynomial Revisited

Proposition

Ifn=2d and o ={1,2,...,d — 1}, then the bound is off by d —1:

CCdegyo¢(Vo) = (dim(Vy) 4 1) deg(V,) — (d —1)

2d
= d —2d +1.
(5) -2+

Here the truncation variety is a hypersurface.

Example (d = 3)
Six truncation varieties in P19 revisited:

o 1y {2 {3 {12} {13} {23}
dim 9 9 1 18 10 10
degree 42 1 1 3 41 1
bound 420 10 2 57 451 11
CCdegs 6 250 10 2 55 420 11
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Previous Literature

Work presented here improves significantly over

» F. Faulstich and M. Oster: Coupled cluster theory: towards an
algebraic geometry formulation, SIAM J Appl Algebra Geom, 2024.

Section 6 reports that the CCSD model for three electrons in six
spin-orbitals (d =3,n=6,0 = {1,2}) supersedes the abilities of
state-of-the-art algebraic geometry software. Theorem 4.10 offers
upper bound 227 = 134217728 for CCdeg; (o).
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Previous Literature

Work presented here improves significantly over

» F. Faulstich and M. Oster: Coupled cluster theory: towards an
algebraic geometry formulation, SIAM J Appl Algebra Geom, 2024.

Section 6 reports that the CCSD model for three electrons in six
spin-orbitals (d =3,n=6,0 = {1,2}) supersedes the abilities of
state-of-the-art algebraic geometry software. Theorem 4.10 offers
upper bound 2% = 134217728 for CCdeg; ¢(c). True CC degree is 55.

Theorem

Our formulation of the CC equations is equivalent to the classical
equations in [FO| if and only if o is an arithmetic progression, i.e.
o={m,2m, ..., km} for some integers m, k > 1 with km < d.

This covers all models CCS, CCD, CCSD, CCSDT studied in the vast
computational chemistry literature. Sample reference: [K. Kowalski and
P. Piecuch: Complete set of solutions of multireference coupled-cluster

equations: The state-universal formalism, Physical Review A (2000)]
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Numerical Solutions

We solved the CC equations for a range of models with

HomotopyContinuation.jl

[P. Breiding and S. Timme: HomotopyContinuation.jl: A package for
homotopy continuation in Julia, Mathematical Software — ICMS 2018]

[P. Breiding, K. Rose and S. Timme: Certifying zeros of polynomial systems
using interval arithmetic, ACM Trans. Math. Software 49 (2023)]

Example (d =3,n=8)

The six CC models for three electrons in eight spin-orbitals:

o {1 {2

o] +1 16 31
deg(V,) 6006 1
CCdegyy 38610 31
#real 430 31
solve(sec) 619 8
certify(sec) 7 3

3t {12y {13} {23}
11 46 26 41

1 3894 4195 1
11 145608 58214 41
11 1376 658 41

3 26757 1948 7
0 41 8 0
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Scientists Like Figures

Prev. Bound
New bound

17 "
e 1071 - Prev. Bound g
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Number of spin orbitals Number of spin orbitals

Figure 4: Bounds to the number of roots of CCS (left panel) and CCD (right panel).

chemistry (cf. Section 4) is not generic, but has special structure. Therefore, the obtained
number of solutions for the target system can be much smaller than the CC degree.

0.10 0.10
CCs N - CCDh
| FCI | FCI
0.05 0.05 .
E 000{4 +# 4+ - bt t | E 0.00{h I-Hb b ocefee 4 oel |
~0.05 -0.05{ -
_OA10—12.5 -10.0 -7.5 -5.0 -2.5 0.0 _0‘10—12.5 -10.0 -7.5 -5.0 =25 0.0
Re Re
(a) CCS (only real) (b) CCD

Figure 5: Energy spectra from exact diagonalization (FCI) and from CCS and CCD.

= 8)). We use the Hamiltonian from Example 4.3.

Example 6.4 (Lithium hydride (d =
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Figure 5: Energy spectra from exact diagonalization (FCI) and from CCS and CCD.

CCS model for d =4, n=38
We use the Hamiltonian (70 x 70 matrix) derived from e 90 9

Solving generic start system for o = {1} takes 82 minutes
and yields 154441 solutions — the CC degree for Gr(4,8).

Tracking all paths yields 3 non-singular solutions, all real. We also find
104641 singular solutions. Only 399 of them yield real energies. Use these
for comparison to exact eigenvalues. Takes 11 minutes and 32 seconds.

Figure 5 compares the exact eigenvalue spectrum with the energies obtained
from CCS and CCD. Interesting observation: these appear to approximate

different subsets of eigenvalues that cover the whole spectrum..... etc...etc...
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Conclusions Homotopy

(HY)s = Ao Continuation jl
for v € V,
» Algebraic Geometry and Combinatorics are
essential ingredients for Mathematics in Science.

» Polynomial equations with ~ 100,000 zeros
can now be solved routinely, with certification.

» Everybody loves Grassmannians and Catalan numbers.
» Quantum chemistry offers very interesting problems.
» Our equations make sense for any projective variety V

Thank You
for Listening

Invitation to
Nonlinear Algebra

Mateusz Michatek
Bernd Sturmfels
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Math in Science Our Abstract

We develop algebraic geometry for coupled cluster (CC) theory

of quantum many-body systems. The high-dimensional eigenvalue
problems that encode the electronic Schrodinger equation are
approximated by a hierarchy of polynomial systems at various
levels of truncation. The exponential parametrization of the
eigenstates gives rise to truncation varieties. These generalize
Grassmannians in their Plicker embedding. We explain how to
derive Hamiltonians, we offer a detailed study of truncation
varieties and their CC degrees, and we present the state of

the art in solving the CC equations.

1034 — P13tPos + P1aths = 0

* Sk ok %k
* Sk ok %k
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