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Abstract

We study evolutionary games on graphs. The individuals of a population
occupy the vertices of the graph and interact with their neighbors to re-
ceive payoff. We consider finite population size, regular graphs, probabilistic
death-birth updating and weak selection. There are two types of strategies,
A and B, and a payoff matrix [(a, b), (c, d)]. The initial condition is given by
an arbitrary configuration where each vertex is occupied by either A or B.
The conjugate initial condition is obtained by swapping A and B. We ask:
when is the fixation probability of A for the original configuration greater
than the fixation probability of B for the conjugate configuration? The an-
swer is a linear condition of the form σa+ b > c+σd. We calculate σ for any
initial condition. For large population size we obtain the well known result
σ = (k + 1)/(k − 1), but now this result extends to any mixed initial condi-
tion. As a specific example we study evolution of cooperation. We calculate
the critical benefit-to-cost ratio for natural selection to favor the fixation of
cooperators for any initial condition. We obtain results that specify which
initial conditions reduce and which initial conditions increase the critical
benefit-to-cost ratio. Adding more cooperators to the initial condition does
not necessarily favor cooperation. But strategic placing of cooperators in a
network can enhance the takeover of cooperation.
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1. Introduction and main results

Population structure can affect the outcome of evolutionary dynamics
(Nowak and May 1992; Hutson and Vickers, 2002; Hauert and Doebeli, 2004;
Jansen and Van Baalen, 2006; Nowak et al., 2010; Fu et al., 2008). For exam-
ple, strategies that lose in a well-mixed setting could win in a structured pop-
ulation by forming clusters or vice versa. Traditionally evolutionary games
have been studied in well mixed populations (Cressman, 2003; Hofbauer and
Sigmund, 1988; Hofbauer and Sigmund, 1998; Maynard Smith, 1982; Nowak
and Sigmund, 2004; Nowak et al., 2004; Skyrms, 1996; Weibull, 1995) or on
regular grids (Nowak and May, 1993; Lindgren and Nordahl, 1994; Nakamaru
et al., 1997; Szabó et al., 1998; Szabó et al., 2000; Simon, 2008; Helbing et
al., 2010; Fu et al., 2010). A generalization of this approach is evolutionary
graph theory (Lieberman et al., 2005; Ohtsuki and Nowak, 2006; Ohtsuki et
al., 2006; Santos et al., 2008; Szabó, 2007; Szolnoki et al., 2009; Broom et
al., 2011; Broom and Rychtář, 2012; Van Veelen et al., 2012; Chen, 2013;
Maciejewski et al., 2014; Débarre et al., 2014; Wardil and Hauert, 2014). The
individuals occupy the vertices of the graph, and the edges determine who
interacts with whom. There are two types of interactions: (i) those that gen-
erate payoff and (ii) those that specify evolutionary updating. Consequently
there can be two different graphs, which are called interaction and replace-
ment graph (Ohtsuki et al., 2007). But in many papers and also here it is
assumed that these two graphs are the same. Other extensions of evolution-
ary graph theory include situations where the population structure changes
during evolutionary updating (Antal et al., 2009; Tarnita et al., 2009; Wu et
al., 2010; Wardil and Hauert, 2014), but here we study evolutionary dynam-
ics on a constant graph. Moreover, we focus on regular graphs of degree k,
which means that each individual has the same number, k, of neighbors. Un-
der these assumptions we study how the initial configuration of individuals
on the graph affects evolutionary outcomes.

Throughout this paper, we consider death-birth updating. At any time
step a random individual is chosen for death. The neighbors compete for
the empty site with probability proportional to payoff. In a social setting,
death-birth updating means that a random individual decides to update its
strategy: it adopts one of its neighbors strategies proportional to payoff. We
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consider the limit of weak selection. The effective payoff or fecundity is

1 + w · payoff

(Nowak et al., 2004). Here w is a parameter that scales the intensity of
selection. The limit of weak selection is w → 0 (Nowak et al., 2004; Fu
et al., 2009; Wu et al., 2010; Wu et al., 2013). In a social setting, weak
selection means that players are confused about payoffs or that the game
under consideration is only a small contribution to overall success (Rand and
Nowak, 2013).

At first we present our results for the game of cooperators versus defectors.
Cooperators pay a cost, c, for the other individual to receive a benefit, b.
Defectors pay no cost and distribute no benefit. We have b > c > 0. We will
first focus on this game and then discuss the case of general payoffs which
can be handled by a linear extension argument as in Tarnita et al. (2009).

The main objective of this paper is to compare the fixation probabilities
of the two competing strategies for any initial condition. Fixation means
that one of the two strategies takes over the entire population. Fixation of
cooperators means that all individuals in the population eventually become
cooperators. Fixation of defectors means that all individuals in the popula-
tion eventually become defectors. These are the only two absorbing states.
All mixed states are transient. For any initial condition, we can ask: what
is the probability that starting from this configuration we reach the state of
all-cooperators. This quantity is the fixation probability of cooperators for
this initial condition. For the same initial condition we can also calculate the
fixation probability of defectors. The two quantities add up to one, because
the system must eventually reach one of the two absorbing states.

We assume that the underlying population structure is a finite, connected,
regular graph. Regular means that each individual has exactly k neighbors.
The parameter k denotes the degree of the graph.

In the simple case that only one cooperator is present in the initial condi-
tion, we say natural selection favors the fixation of cooperators, if the fixation
probability of cooperators is greater than 1/N , where N is population size. A
neutral variant has fixation probability 1/N . Whether or not natural selec-
tion favors cooperators depends on the benefit-to-cost ratio, the population
size N and the degree of the graph, k. The critical benefit-to-cost ratio is
given by (

b

c

)?
=
k(N − 2)

N − 2k
(1.1)
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provided that

N − 2k > 0. (1.2)

If the benefit-to-cost ratio exceeds this critical value then natural selection
favors the fixation of cooperators. The critical benefit-to-cost ratio (1.1) is
independent of the location of the single cooperator. For large population
size with fixed degree, the above formula leads to the limiting value

lim
N→∞

(
b

c

)?
= k. (1.3)

The critical benefit-to-cost ratio is given by the degree of the graph, k (Oht-
suki et al., 2006; Chen, 2013). Note that (1.2) is a necessary and sufficient
condition for achieving a finite critical benefit-to-cost ratio beyond which
cooperation can be favored. If (1.2) does not hold, then the critical benefit-
to-cost ratio is infinite.

More generally, we can consider initial conditions of n cooperators that
are placed in certain positions on the graph. The analogous question is
then: for which benefit-to-cost ratio is the fixation probability of cooperators
greater than n/N? The value n/N is the fixation probability of n neutral
variants regardless of their locations. In this case, the a-priori condition that
cooperation can be favored for some choices of benefits and costs is given by
a generalization of (1.2):

Nf1 · f0 − kf10 − kf1f0 > 0. (1.4)

We use the following notation. The probability of finding a cooperator within
neighbors of a random position on the graph is given by f1. Averaging this
probability over all positions we obtain f1 = n/N , which is the frequency
of cooperators in the initial condition. Likewise, the probability of finding a
defector within one step of a random position on the graph is given by f0.
Averaging this probability over all positions we obtain f0 = (N−n)/N , which
is the frequency of defectors in the initial condition. Clearly f1 +f0 = 1. The
quantity f10 is defined as follows: choose a random position on the graph,
perform a random walk starting in that position and calculate the probability
of finding a cooperator at step zero and a defector at step one; average
over all positions. The quantity f1f0 is defined as follows: choose a random
position on the graph, calculate the probability that one of its neighbors is a
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cooperator and one of its neighbors is a defector. Note that f1f0 is the same
as f1∗0, which is calculated as follows: choose a random position on the graph,
perform a random walk starting in that position and calculate the probability
of finding a cooperator at step zero and a defector at step two; average over all
starting positions. In particular, calculating f10 and f1f0 amounts to counting
the numbers of cooperator-defector paths and cooperator-anything-defector
paths in the initial configuration. Computing f10 and f1f0 requires only a
few elementary matrix operations of the adjacency matrix of the underlying
graph.

Whenever (1.4) is valid, we find that the critical benefit-to-cost ratio for
natural selection to favor the fixation of cooperators for any initial condition
that contains some cooperators and some defectors is given by the simple
equality (

b

c

)?
=

k
(
Nf1 · f0 − f10

)
Nf1 · f0 − kf10 − kf1f0

. (1.5)

See Figure 6–8 for some examples of the critical benefit-to-cost ratios on reg-
ular graphs. In particular, (1.5) generalizes the earlier results of Chen (2013)
for benefit-to-cost ratios where population configurations are uniformly cho-
sen with a fixed number n of cooperators, for any n ∈ {1, 2, · · · , N − 1} (see
Proposition 2.2). In Section 2, we will discuss some specific implications of
(1.5).

We point out two interesting features of (1.4) and (1.5). First, both
expressions are invariant under reversal of players. Consider a particular
initial condition, where some vertices are occupied by cooperators and the
remaining ones are by defectors. Now consider the conjugate initial condition,
where the types of all players are exactly reversed. For both initial conditions,
we have the same critical benefit-to-cost ratio for favoring the fixation of
cooperators. Second, both conditions, (1.4) and (1.5), depend only on local
properties of the initial conditions. We only need to calculate features of the
initial condition that depend on random walks of length at most two. Higher
correlations do not matter.

Let us turn to the results for death-birth updating with general game
payoffs. Now we assume that players interact according to the following
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payoff matrix

(A B

A a b

B c d

)
. (1.6)

This payoff matrix has the following meaning. If an A-player meets another
A player, both get payoff a. If an A player meets a B player, then the A
player gets payoff b while the B player gets payoff c. If two B-players meet,
both get payoff d.

We consider the following selection criterion: when is the fixation proba-
bility of A for a particular initial condition greater than the fixation proba-
bility of B for the conjugate initial condition? The conjugate configuration is
generated by reversing all player types in the original initial condition (swap-
ping A for B and vice versa). In particular, if there are n many A-players
under a configuration, then the role-reversed configuration has precisely n
many B-players.

Calculating the condition for the fixation probability of A to exceed n/N
requires the exact evaluation of some expected meeting times of multiple
random walks on regular graphs, which seem difficult to obtain in general.
See Remark 3.5 for this issue.

For any mixed population configuration ξ and the conjugate initial con-
dition ξ̂, we find that the fixation probability of A starting from ξ exceeds
the fixation probability of B starting from ξ̂ if

σa+ b > c+ σd, (1.7)

where

σ =
Nf1 · f0

(
1 + 1

k

)
− 2f10 − f1f0

Nf1 · f0
(
1− 1

k

)
+ f1f0

(1.8)

(see also Corollary 11 in Allen and Nowak, 2014). Here the average fre-
quencies f1, f0, f10, f1f0 are defined as before (1.5). In particular, this result
generalizes the so-called “sigma” theorem of Tarnita et al. (2009) where
only single cooperators in initial conditions are considered. Notice that the
σ values defined by (1.8) apply without any a-priori condition; in contrast
recall that critical benefit-to-cost ratios are meaningful only if (1.4) holds.
See Figure 7 (a) for an example.
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This paper is organized as follows. In Section 2 we discuss some impli-
cations of the critical benefit-to-cost ratio (1.5). From Section 3 on, we give
the proofs of the results stated in Section 1 and 2. In Section 3, we first re-
call a general perturbation result to study fixation probabilities. The proofs
of (1.4) and (1.5) are particular consequences of Theorem 3.3. The proof
of the alternative selection criterion for a general payoff matrix is given in
Theorem 3.4. In Section 4, we consider applications of Theorem 3.3 and give
the proofs of Proposition 2.1–2.6. Proposition 2.1 is restated as the stronger
version Proposition 4.1.

2. The critical benefit-to-cost ratio

In this section, we discuss some implications of the critical benefit-to-cost
ratio (1.5). The proofs are provided in Section 4.

The first implication concerns the limit of large population size, which is
the emphasis of earlier studies (Ohtsuki et al., 2006; Chen, 2013; Allen and
Nowak, 2014).

Proposition 2.1. Fix k ≥ 2. In the limit of large population size, N →∞,
the benefit-to-cost ratio for all mixed initial conditions on k-regular graphs
with size N converges uniformly to k.

Proposition 4.1 gives the rate of convergence for the critical benefit-to-
cost ratio. Proposition 2.1 can be compared to an invariance of the critical
benefit-to-cost ratio when the number of cooperators is increased (Chen,
2013):

Proposition 2.2. For all initial conditions where we place an arbitrary num-
ber of cooperators uniformly at random we obtain the critical benefit-to-cost
ratio given by (1.1).

For a k-regular graph with N vertices, we can call the associated value in
(1.1) the critical benefit-to-cost ratio for random placing, without referring
to a number n ∈ {1, 2, · · · , N − 1} of cooperators. See Section 4 for a proof
of Proposition 2.2 which uses (1.5). On the other hand, if we consider a
particular initial condition for the game, Proposition 2.2 does not apply and
the use of (1.5) is necessary in order to obtain the critical benefit-to-cost
ratio.
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We now study how the critical benefit-to-cost ratio varies when increasing
the number of cooperators in the initial condition.

Our first two results (Proposition 2.3 and Proposition 2.4) consider the
question whether on small graphs, having more cooperators in the initial
condition favors cooperators (by reducing the critical benefit-to-cost ratio).
Proposition 2.3 below gives a rough confirmation of this question. Here and
in what follows, on any graph we define N0 to be the maximum number of
vertices which can be chosen such that any of these vertices cannot find an-
other within distance 2. For example, on a cycle with 10 vertices, we have
N0 = 3 (see Figure 4 (c)). See Remark 4.2 for a connection between the
a-priori condition (1.2) and N0.

Proposition 2.3. (1) There exists a k-regular graph such that for some
initial condition with one cooperator cooperation can never be favored,
but for some initial condition with two cooperators cooperation can be
favored.

(2) Consider a finite regular graph with N − 2k > 0. Then cooperation
can be favored for a mixed initial condition with n cooperators for any

n ∈ {1, · · · , N0 + 1, N −N0 − 1, · · · , N − 1}.

In particular, since N0 ≥ 1, cooperation can be favored under any
initial condition with two cooperators or with two defectors.

Here in Proposition 2.3, “cooperation can be favored” means that the a-
priori condition (1.4) holds for the population configuration under considera-
tion. In this case there is a finite critical benefit-to-cost ratio. “Cooperation
can never be favored” means otherwise. In addition, recall that N − 2k > 0
is the a-priori condition (1.4) for a single cooperator in the initial condition.

Proposition 2.3 (2) only assures cooperation under initial conditions with
“small” numbers 1, 2, · · · , N0 + 1 of cooperators or with “large” numbers
N − N0 − 1, N − N0, · · · , N − 1 of cooperators. It says nothing about the
“intermediate” range

N0 + 2, N0 + 3, · · · , N −N0 − 2 (2.1)

of numbers of cooperators in initial conditions such that cooperation can be
favored. The following result shows that such an omission is necessary in
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general, and moreover, the lower bound and upper bound for the range (2.1)
are sharp.

Proposition 2.4. There exists a finite regular graph such that cooperation
can be favored for initial conditions with one cooperator, but for some mixed
initial conditions with N0 + 2 cooperators and with N −N0− 2 cooperators,
cooperation can be never favored.

Our next two results (Proposition 2.5–2.6) describe the variation of the
critical benefit-to-cost ratio when increasing the number of cooperators in the
initial condition. We focus on regular graphs satisfying (1.2) and on having
either large numbers of cooperators or small numbers of cooperators in the
initial condition.

We introduce the initial placing of large numbers of cooperators which
makes defectors isolated in the sense that any defector cannot find another
defector within distance 2. For any configuration with only one defector,
that defector is obviously always isolated.

Proposition 2.5. Consider a finite k-regular graph with N − 2k > 0. Let
ξ′ and ξ be any mixed initial conditions with n − 1 and n cooperators, re-
spectively, such that the defectors under both configurations are isolated and
condition (1.4) holds. Then we have:(

b

c

)?
ξ′
>

(
b

c

)?
ξ

. (2.2)

For the initial placing of a small number of cooperators, we compare the
critical benefit-to-cost ratio with the critical benefit-to-cost ratio for random
placing. The results are given in Proposition 2.6 below. Notice that on any
regular graph, the integer N0 defined above is equal to the maximal number
of defectors which a configuration with isolated defectors can carry.

Proposition 2.6. Consider a finite k-regular graph with N − 2k > 0.

(1) If N0 ≥ 2, then for any n ∈ {2, 3, · · · , N0} there exists a configuration
with n cooperators such that its critical benefit-to-cost ratio is smaller
than the critical benefit-to-cost ratio for random placing.

(2) For any configuration with two cooperators where the cooperators are
neighbors to each other, cooperation can be favored and the correspond-
ing critical benefit-to-cost ratio is smaller than the critical benefit-to-
cost ratio for random placing.
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Proposition 2.5 and 2.6 can be read in a different way if we take into
account the invariance of critical benefit-to-cost ratio under reversal of play-
ers and recall that the critical benefit-to-cost ratios for random placing and
for any configuration with one cooperator are the same (Proposition 2.1).
Proposition 2.5 is equivalent to a statement for the initial placing of a small
number of cooperators: an increase in the number of isolated cooperators
gives a larger critical benefit-to-cost ratio. Similarly, Proposition 2.6 can be
stated alternatively in terms of initial conditions with large numbers of co-
operators which have critical benefit-to-cost ratios smaller than that for any
configuration with N−1 cooperators. By the invariance of critical benefit-to-
cost ratio under reversal of players, we can translate methods which enhance
cooperation by placing more cooperators to arrangements such that coopera-
tion becomes discouraged after more cooperators are placed, and conversely.

3. Methods

In the rest of this paper, we give proofs of the results stated in Section 1
and Section 2. As announced in Section 1, the underlying graph is assumed
to be a finite, connected, simple k-regular graph G = (V,E) with #V = N ,
for k ≥ 2, throughout this paper. We denote {1, 0}-valued configurations on
G by ξ, η with “1” standing for cooperator and “0” for defector, and vertices
in G by x, y. In addition, ξ̂ stands for the configuration obtained from ξ by
changing 1’s to 0’s and 0’s to 1’s.

Death-birth evolutionary game under weak selection depends on effective
payoffs of players which are defined as follows. If individuals play games
according to the payoff matrix (1.6) and sufficiently small intensity of selec-
tion w ∈ [0, 1], then, under population configuration ξ, the effective payoff
ewi (x, ξ) of an i-player at x is given by

ew1 (x, ξ) = 1 + w[an1(x, ξ) + bn0(x, ξ)],

ew0 (x, ξ) = 1 + w[cn1(x, ξ) + dn0(x, ξ)],
(3.1)

where ni(x, ξ) denotes the number of i-neighbors of x under configuration ξ.
We work with death-birth game under weak selection w → 0+. It defines

a rate-N pure-jump Markov chain such that at each updating time, a random
individual x is chosen to die and its neighbors compete for the vacant site
with probability proportional to effective payoff. Hence, when a random site
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u

v

x

w

Figure 1: Consider the above configuration, say ξ, where the red vertex is occupied by a
defector and the other blue vertices are occupied by cooperators. Let vertex x be a focal
vertex. To find f10(x, ξ) and f1(x, ξ) · f0(x, ξ), consider the following. Note that each
random-walk path of length 2 has probability 1

9 and there are two x-cooperator-defector
paths: x→ v → u and x→ w → u. This gives f10(x, ξ) = 2

9 . Also, there are two ordered
pairs of (x-cooperator, x-defector) paths of length 1: (x→ w, x→ u) and (x→ v, x→ u).
Each pair has probability 1

9 . Hence, f1(x, ξ) · f0(x, ξ) = 2
9

x is chosen to update, a new i-player is born at x with probability

πwi (x, ξ) =

∑
y∼x e

w
i (y)1{ξ(y)=i}∑

y∼x[e
w
1 (y)ξ(y) + ew0 (y)ξ̂(y)]

(3.2)

for i ∈ {1, 0}, where y ∼ x means that y and x are neighbors to each other.
In particular, for w = 0, the evolutionary game reduces to the voter model
(or equivalently the neutral model) defined by random walk on G: at each
updating time, a random individual chooses to adopt a random neighbor’s
strategy (Liggett, 1985).

We write Pwξ and Ewξ for the probability and expectation, respectively, of
the game under which selection strength is w and initial population configu-
ration is ξ.

Let us define some local frequencies of configurations in order to study
the fixation probabilities of the game. Recall that the number of neighbors
of each vertex on G is k. We set

fi(x, ξ) =
1

k
#{y;x ∼ y, ξ(y) = i},

fij(x, ξ) =
1

k2
#{(y, z);x ∼ y ∼ z, ξ(y) = i, ξ(z) = j},

(3.3)

for i, j ∈ {1, 0}, and for any function f(x, ξ),

f(ξ) =
1

N

∑
x∈V

f(x, ξ) (3.4)
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as its arithmetic average with respect to site x. See Figure 1 for an example
of f10(x, ξ) and f1f0(x, ξ) = f1(x, ξ) · f0(x, ξ).

The particular average frequencies f1, f0, f10 and f1f0 play a crucial role in
the subsequent arguments. With respect to a given population configuration,
they have the following interpretations. If we run a random walk on the graph
with a uniformly chosen starting point, then fi gives the probability of finding
an i-player at step 1, and f10 gives the probability of finding a cooperator at
step 1 and a defector at step 2. If we run two independent copies of random
walks on the graph with the same starting point and the shared starting
point is randomly chosen, then f1f0 is equal to the probability of finding one
cooperator at step 1 along the first random walk and one defector at step 1
along the second random walk. These interpretations are equivalent to those
introduced in Section 1, thanks to the reversibility of the walks and the fact
that stationary distributions of random walks on regular graphs are uniform.

Lemma 3.1. Consider death-birth game, and assume payoff matrix (1.6) for
players. For any configuration ξ, we have the following first-order expansion
of fixation probabilities as w → 0+:

Pwξ (cooperators fixate) = P0
ξ(cooperators fixate)

+ w

(
ak

∫ ∞
0

E0
ξ

[
f0f11(ξt)

]
dt+ bk

∫ ∞
0

E0
ξ

[
f0f10(ξt)

]
dt

− ck
∫ ∞
0

E0
ξ

[
f1f01(ξt)

]
dt− dk

∫ ∞
0

E0
ξ

[
f1f00(ξt)

]
dt

)
+O(w2).

(3.5)

Proof. We work with the following expansion:

Pwξ (cooperators fixate) =P0
ξ(cooperators fixate)

+ w

∫ ∞
0

E0
ξ

[
D(ξt)

]
dt+O(w2)

(3.6)

as w → 0+, where the function D(ξ) is defined by

D(ξ) =
1

N

∑
x∈V

(
ξ̂(x)h1(x, ξ)− ξ(x)h0(x, ξ)

)
, (3.7)

hi(x, ξ) =
d

dw
πwi (x, ξ)

∣∣
w=0

(3.8)
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(cf. Theorem 3.8 in Chen (2013) for the expansion (3.6)). Then by (3.2) and
(3.8), we have

h1(x, ξ) ≡ akf0f11(x, ξ) + bkf0f10(x, ξ)− ckf1f01(x, ξ)− dkf1f00(x, ξ),
h0(x, ξ) ≡ −h1(x, ξ).

Apply the foregoing explicit forms of hi to (3.7), and then we obtain the
required expansion (3.5) from (3.6).

We remark that the approach to study fixation probabilities by expansion
as in (3.6) also appears in Rousset (2003), Lessard and Ladret (2007), and
Ladret and Lessard (2008). The proof for the expansion (3.6) of fixation
probabilities in Chen (2013) was obtained independently, and considers an
expansion of transition probabilities of the game dynamics which leads to a
series-like expansion for fixation probabilities.

Next, let us recall coalescing random walks on graphs in order to compute
voter-model integrals as those on the right-hand side of (3.5), and introduce
some auxiliary random walks to simplify notation. First, let {Bx;x ∈ V}
be a system of rate-1 coalescing random walks on G, where Bx starts at x.
These interacting random walks move independently of each other until they
meet another and move together afterwards. The duality between the voter
model and the coalescing random walks is through the following equation:

E0
ξ

[∏
x∈S

ξt(x)

]
= E

[∏
x∈S

ξ(Bx
t )

]
(3.9)

for S ⊆ V, t ∈ R+ and configurations ξ ∈ {1, 0}V. See Section III.4 in Liggett
(1985) for the identity (3.9), and also Section III.6 in the same reference for
its interpretation by graphical representations.

Second, we introduce two independent discrete-time random walks

(Xn;n ≥ 0) and (Yn;n ≥ 0)

starting at the same vertex, both independent of {Bx;x ∈ V}. We will write
Ex for the expectation under which the common starting point for (Xn) and
(Yn) is x, and Eπ for the expectation under which the common starting point
is randomized according to the stationary distribution π, namely uniform
distribution, of random walk. The random walk probabilities Px and Pπ are
understood in the same way. These random walks (Xn) and (Yn) will be used
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to save notation when we compute local frequencies of configurations. For
example, we can write

∑
x

1
N
ξ(x)

∑
y∼x

1
k
ξ̂(y) as Eπ[ξ(X0)ξ̂(X1)].

In Lemma 3.2 we evaluate some voter-model integrals which will be used
in the proof of Theorem 3.3 below. See also Remark 3.5 (1) for discussions
of this lemma.

Lemma 3.2. We have the following exact formulas:∫ ∞
0

E0
ξ

[
f10(ξt)

]
dt =

Nf1(ξ)f0(ξ)

2
, (3.10)∫ ∞

0

E0
ξ

[
f1f0(ξt)

]
dt =

Nf1(ξ)f0(ξ)

2
− f10(ξ)

2
, (3.11)∫ ∞

0

E0
ξ

[
f1f∗0(ξt)

]
dt =

Nf1(ξ)f0(ξ)

2
− f10(ξ)

2

− f1f0(ξ)

2
+
Nf1(ξ)f0(ξ)

2k
,

(3.12)

for any initial configuration ξ, where f∗0 = f10 + f00.

Proof. Let us state some preliminaries. First, we recall the following equation
under the voter model: for any initial condition ξ,

E0
ξ

[
f1(ξt)f0(ξt)

]
=f1(ξ)f0(ξ)−

2

N

∫ t

0

E0
ξ

[
f10(ξs)

]
ds ∀ t ∈ R+ (3.13)

(cf. Theorem 3.1 in Chen, Choi and Cox (2014)). Second, for any vertices
x 6= y, we have the integral equation

E[ξ(Bx
t )ξ̂(By

t )] = e−2tξ(x)ξ̂(y)

+

∫ t

0

e−2(t−s)

(∑
z∼x

1

k
E[ξ(Bz

s )ξ̂(B
y
s )] +

∑
z∼y

1

k
E[ξ(Bx

s )ξ̂(Bz
s )]

)
ds,

(3.14)

which follows by considering whether the first epoch time of the bivariate
Markov chain (Bx, By) occurs before time t or not. Notice that the above
equality is false if x = y since the left-hand side is zero but the integral
term on the right-hand side is not in general. This fact needs be taken into
account when (3.14) is applied. Third, we can use duality (3.9) and rewrite
the voter-model integrals in question as∫ ∞

0

E0
ξ

[
f10(ξt)

]
dt =

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX1

t )]dt, (3.15)
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∫ ∞
0

E0
ξ

[
f1f0(ξt)

]
dt =

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX2

t )]dt, (3.16)∫ ∞
0

E0
ξ

[
f1f∗0(ξt)

]
dt =

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX3

t )]dt. (3.17)

We are ready to prove (3.10)–(3.12). The first equality (3.10) follows upon
passing t→∞ for both sides of (3.13), since f1 ·f0 is zero for a homogeneous
configuration. For (3.11), we use the assumption that the graph has no
self-loops to see X0 6= X1 a.s. and then obtain from (3.14) that

Eπ[ξ(BX0
t )ξ̂(BX1

t )] =e−2tEπ[ξ(X0)ξ̂(X1)]

+

∫ t

0

e−2(t−s)
(
Eπ[ξ(BY1

s )ξ̂(BX1
s )] + Eπ[ξ(BX0

s )ξ̂(BX2
s )]

)
ds

= e−2tEπ[ξ(X0)ξ̂(X1)] +

∫ t

0

2e−2(t−s)Eπ[ξ(BX0
s )ξ̂(BX2

s )]ds

by the reversibility of the chain (Xn) under Pπ. Integrating both sides of the
last equality with respect to t over (0,∞) implies that∫ ∞

0

Eπ[ξ(BX0
t )ξ̂(BX2

t )]dt =

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX1

t )]dt− Eπ[ξ(X0)ξ̂(X1)]

2
,

which gives (3.11) by (3.10), (3.15) and (3.16).
The proof of the last equality (3.12) is similar except that we have to take

into account the fact Pπ(X0 = X2) > 0 in applying (3.14):

Eπ[ξ(BX0
t )ξ̂(BX2

t )] = e−2tEπ[ξ(X0)ξ̂(X2)]

+

∫ t

0

e−2(t−s)
(
Eπ[ξ(BY1

s )ξ̂(BX2
s )1{X0 6=X2}] + Eπ[ξ(BX0

s )ξ̂(BX3
s )1{X0 6=X2}]

)
ds

= e−2tEπ[ξ(X0)ξ̂(X2)]

+

∫ t

0

e−2(t−s)
(
Eπ[ξ(BX3

s )ξ̂(BX0
s )1{X2 6=X0}] + Eπ[ξ(BX0

s )ξ̂(BX3
s )1{X0 6=X2}]

)
ds,

where the last equality follows since by reversibility (Y1, X0, X1, X2) under
Pπ has the same distribution as (X3, X2, X1, X0) under Pπ. Integrating both
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sides of the foregoing equality with respect to t over (0,∞), we get∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX2

t )]dt =
Eπ[ξ(X0)ξ̂(X2)]

2

+
1

2

∫ ∞
0

Eπ[ξ(BX3
t )ξ̂(BX0

t )1{X0 6=X2}]dt

+
1

2

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX3

t )1{X0 6=X2}]dt.

(3.18)

Then we obtain∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX3

t )]dt

=
1

2

∫ ∞
0

Eπ[ξ(BX3
t )ξ̂(BX0

t )]dt+
1

2

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX3

t )]dt

=
1

2

∫ ∞
0

Eπ[ξ(BX3
t )ξ̂(BX0

t )1{X0 6=X2}]dt+
1

2

∫ ∞
0

Eπ[ξ(BX3
t )ξ̂(BX0

t )1{X0=X2}]dt

+
1

2

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX3

t )1{X0 6=X2}]dt+
1

2

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX3

t )1{X0=X2}]dt

=

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX2

t )]dt− Eπ[ξ(X0)ξ̂(X2)]

2

+
1

2

∫ ∞
0

Eπ[ξ(BX3
t )ξ̂(BX2

t )1{X0=X2}]dt+
1

2

∫ ∞
0

Eπ[ξ(BX2
t )ξ̂(BX3

t )1{X0=X2}]dt

=

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX2

t )]dt− Eπ[ξ(X0)ξ̂(X2)]

2

+
1

2k

∫ ∞
0

Eπ[ξ(BX1
t )ξ̂(BX0

t )]dt+
1

2k

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX1

t )]dt

=

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX2

t )]dt− Eπ[ξ(X0)ξ̂(X2)]

2
+

1

k

∫ ∞
0

Eπ[ξ(BX0
t )ξ̂(BX1

t )]dt,

where the first and last equalities follow from reversibility, the third equality
from (3.18), and the fourth equality from the Markov property of (Xn) at n =
2, 0 and the implication of the graph spatial structure: Px(X0 = X2) = 1/k
for any x. Hence (3.12) follows upon recalling (3.17) and applying (3.10) and
(3.11) to the right-hand side of the last equality. The proof is complete.

Now we prove the main results of this paper. They are stated as the
following two theorems.
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Theorem 3.3. Consider death-birth game between cooperators (“C”s) and
defectors (“D”s) subject to payoff matrix

( C D

C b− c −c
D b 0

)
, (3.19)

and assume that the underlying social network is a simple, connected, k-
regular graph G = (V,E) on N vertices. Then under weak selection (w →
0+), the fixation probability of cooperators for any initial configuration ξ
satisfies the first-order expansion:

Pwξ (cooperators fixate) = P0
ξ(cooperators fixate)

+
w

2

{
b
[
Nf1(ξ)f0(ξ)− kf10(ξ)− kf1f0(ξ)

]
− c
[
kNf1(ξ)f0(ξ)− kf10(ξ)

]}
+O(w2).

(3.20)

As immediate applications of (3.20), we obtain the a-priori condition (1.4)
for cooperation to be favored, and the equation (1.5) for the critical benefit-
to-cost ratio whenever (1.4) holds.

Proof of Theorem 3.3. By Lemma 3.1, it is enough to obtain the required
explicit form for the first-order coefficient of w on the right-hand side of
(3.5). Since the payoff matrix under present consideration is given by (3.19),
a simple computation shows that∫ ∞

0

E0
ξ

[
D(ξt)

]
dt = −ckE0

ξ

∫ ∞
0

E0
ξ

[
f1f0(ξt)

]
dt

+ bk

∫ ∞
0

E0
ξ

[
f1f∗0(ξt)

]
dt− bk

∫ ∞
0

E0
ξ

[
f10(ξt)

]
dt.

(3.21)

Applying the exact formulas in Lemma 3.2 to the right-hand side of (3.21)
proves the theorem.

Theorem 3.4. Consider death-birth game on a simple connected k-regular
graph over N vertices with general payoff matrix (1.6). Then

Pwξ (cooperators fixate) > Pw
ξ̂

(defectors fixate)

17



for all small w > 0 if and only if

(a− d)

[
Nf1(ξ) · f0(ξ)

(
1 +

1

k

)
− 2f10(ξ)− f1f0(ξ)

]
+ (b− c)

[
Nf1(ξ) · f0(ξ)

(
1− 1

k

)
+ f1f0(ξ)

]
> 0.

(3.22)

An analogous equivalence holds if we reverse both of the inequalities in the
foregoing two displays.

Proof. The idea of this proof is due to Tarnita et al. (2009). We begin with
an application of (3.6): for all small w > 0,

Pwξ (cooperators fixate) > Pw
ξ̂

(defectors fixate) = 1− Pw
ξ̂

(cooperators fixate)

if and only if

P0
ξ(cooperators fixate) + w

∫ ∞
0

E0
ξ

[
D(ξt)

]
dt+O(w2)

> P0
ξ̂
(defectors fixate)− w

∫ ∞
0

E0
ξ̂

[
D(ξt)

]
dt+O(w2).

(3.23)

An analogous equivalence holds if we replace “<” in both of the last two
displays by “>”. On the other hand, the neutrality of players under the
voter model implies that

P0
ξ̂
(defectors fixate) = P0

ξ(cooperators fixate).

Hence by (3.23), to prove the theorem, we need to find∫ ∞
0

E0
ξ

[
D(ξt)

]
dt+

∫ ∞
0

E0
ξ̂

[
D(ξt)

]
dt

=(a− d)k

(∫ ∞
0

E0
ξ

[
f0f11(ξt)

]
dt+

∫ ∞
0

E0
ξ

[
f1f00(ξt)

]
dt

)
+ (b− c)k

(∫ ∞
0

E0
ξ

[
f0f10(ξt)

]
dt+

∫ ∞
0

E0
ξ

[
f1f01(ξt)

]
dt

)
.

(3.24)

Here, the foregoing equality follows from (3.5), (3.6) and the neutrality of
players under the voter model.

18



To determine the coefficients of a − d and b − c on the right-hand side
of (3.24), we consider the special payoff matrix (3.19). Under (3.19), the
foregoing equation (3.24) reads∫ ∞

0

E0
ξ

[
D(ξt)

]
dt+

∫ ∞
0

E0
ξ̂

[
D(ξt)

]
dt

=(b− c)k
(∫ ∞

0

E0
ξ

[
f0f11(ξt)

]
dt+

∫ ∞
0

E0
ξ

[
f1f00(ξt)

]
dt

)
− (b+ c)k

(∫ ∞
0

E0
ξ

[
f0f10(ξt)

]
dt+

∫ ∞
0

E0
ξ

[
f1f01(ξt)

]
dt

)
.

(3.25)

On the other hand, we can use (3.20) (see also (3.6)) to write the sum of
voter-model integrals on the left-hand side of (3.25) as a linear combination
of b and c with coefficients in local frequencies of ξ. Comparing this linear
combination with (3.25) and letting b and c vary, we can solve for the coeffi-
cients of (b − c) and (b + c) in (3.25) explicitly in terms of local frequencies
of ξ. Theorem 3.4 follows if we insert the solutions into (3.24). The proof is
complete.

Let us close this section with some remarks on the methods in this section.

Remark 3.5. (1). Earlier results of critical benefit-to-cost ratios are for
death-birth game with suitably randomized initial configurations (Chen, 2013;
Allen and Nowak, 2014), and the methods there have strong dependence on
links to coalescence times for coalescing random walks. In contrast, the
readers may observe that the main objects in our arguments here are some
integrated spatial locations visited by coalescing walks with randomized ini-
tial conditions as in (3.15)–(3.17). Their use is essential to obtain explicit
first-order expansions of fixation probabilities under arbitrary initial condi-
tions.

(2). The result for general payoff matrices in Theorem 3.4 could be rein-
forced to explicit first-order expansions as in Theorem 3.3 if the voter-model
integrals on the right-hand side of (3.5) were evaluated explicitly. For this
case, the use of a system of three coalescing random walks is required if we
apply the duality equation (3.9).

In this direction, it can be shown that the evaluation problem for the
voter-model integrals in (3.5) can be simplified if we consider the context
of single random cooperators in initial conditions of the game (see Section
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3 in Chen (2013)), since, in this case, each of them can be written as an
explicit sum of expected coalescence times of three coalescing random walks,
or equivalently, expected first meeting times of three independent random
walks on the same graph. Nonetheless, it seems that so far, exact formulas
for expected first meeting times by multiple random walks are possible only
in very special cases (cf. Karlin and McGregor (1959)).

4. Proofs for Section 2

In this section, we prove Proposition 2.1–2.6. We begin with a quantita-
tive version of Proposition 2.1.

Proposition 4.1. For fixed k ≥ 2 and N ∈ N such that there exists at least
one k-regular graph on N vertices and (N − 1)1/2 − k > 0, we have

max
G

max
ξ

∣∣∣∣∣
(
b

c

)?
ξ

− k

∣∣∣∣∣ ≤ k + 2k2

(N − 1)1/2 − k
, (4.1)

where G range over all k-regular graphs on N vertices, and for such a k-
regular graph G, ξ range over all configurations different from the all-1 con-
figuration and the all-0 configuration.

Proof. Observe that the functions f10 and f1f0 are bounded by
(
f1 ·f0

)1/2
by

the Cauchy-Schwarz inequality and the reversibility of random walk. Hence
on any k-regular graph with N vertices and for any population configuration
ξ different from the all-i configuration for i = 1, 0, it follows from (1.5) that

∣∣∣∣∣
(
b

c

)?
ξ

− k

∣∣∣∣∣ ≤ max
1≤n≤N

(k + 2k2)
(
n(N−n)
N2

)1/2
N n(N−n)

N2 − 2k
(
n(N−n)
N2

)1/2 =
k + 2k2

(N − 1)1/2 − 2k
,

as required in (4.1), since the bound on the right most side is independent
of G and ξ.

Proof of Proposition 2.2 using (1.5). Fix a k-regular graph on N ver-
tices. Let un denote the uniform distribution on the set of configurations ξ
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Figure 2: This figure is for the proof of Proposition 2.3. Cooperation can be favored
under this initial condition. Blue vertices are occupied by cooperators and red vertices by
defectors.

with exactly n many 1’s, for n ∈ {1, 2, · · · , N − 1}. Since graph geometry is
irrelevant under un, it follows that

un[ξ(x)ξ̂(y)] =
n(N − n)

N(N − 1)
, ∀ x 6= y.

Hence by the definitions of fi and fij in (3.3), we get

un
[
f10(ξ)

]
=
n(N − n)

N(N − 1)
and un

[
f1f0(ξ)

]
=
k − 1

k
· n(N − n)

N(N − 1)
. (4.2)

Then by (1.5), the critical benefit-to-cost ratio for initial condition un is given
by (

b

c

)?
un

=
un
[
k
(
Nf1 · f0 − f10

)]
un
[
Nf1 · f0 − kf10 − kf1f0

] =
k(N − 2)

N − 2k
.

These critical benefit-to-cost ratios are independent of n ∈ {1, 2, · · · , N − 1}
and coincide with the value in (1.1).

On the other hand, one can use the equalities (4.2) to see that the coeffi-
cient of w on the right-hand side of (3.20) under initial condition un is equal
to

n(N − n)

2N(N − 1)
[b(N − 2k)− ck(N − 2)], (4.3)

which is consistent with Theorem 1 (1) in Chen (2013).
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Recall the paragraph before Proposition 2.5 for the placing which makes
defectors isolated. The placing which makes cooperators isolated is defined
analogously.

Proof of Proposition 2.3. (1) We consider the 4-regular graph on N = 8
vertices in Figure 2, where we have two defectors in the graph located at
vertex α and β. In this case, f10 = 6

32
since we have 6 cooperator-defector

paths as
(a, α), (a, β), (c, β), (e, α), (f, α), (f, β),

and f1f0 = 20
128

since we have 20 cooperator-anything-defector paths as

(a, c, β), (a, α, β), (a, β, α), (b, a, α), (b, a, β),
(b, c, β), (b, e, α), (c, a, α), (c, a, β), (c, β, α),
(d, c, β), (d, e, α), (d, f, α), (d, f, β), (e, f, α),
(e, f, β), (e, α, β), (f, e, α), (f, α, β), (f, β, α).

The a-priori condition (1.4) for cooperation to be favored under the config-
uration in Figure 2 holds since the left-hand side of (1.4) is equal to 1

8
. On

the other hand, in this case, N − 2k = 0 and so the a-priori condition (1.2)
for cooperation to be favored under a configuration with one cooperator fails.

(2) We begin with the observation that for any configuration with n cooper-
ators,

f10 ≤
n

N
and f1f0 ≤

n(k − 1)

Nk
. (4.4)

Notice that for (4.4), equalities are attained by a configuration with n iso-
lated cooperators. Indeed f10 and f1f0 depend on the numbers of cooperator-
defector paths and cooperator-anything-defector paths, respectively, in the
underlying configuration, and such a path is defined by an edge or two inci-
dent edges. On the other hand, at least one of the equalities (4.4) is a strict
inequality, for any configuration which is not a configuration with isolated
cooperators. For a configuration where there are two cooperators adjacent
to each other, the first inequality in (4.4) is strict; for a configuration where
there is a pair of cooperators facing the same defecting neighbor, the second
inequality in (4.4) is strict.

Now the proof of (2) follows if we can show that the a-priori condition
(1.4) holds for any configuration with n cooperators for n ∈ {2, 3, · · · , N0+1},
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since the left-hand side of (1.4) is invariant under role reversal. Moreover, to
verify (1.4) for configurations with these numbers of cooperators, it suffices
to show that

N −N0 − 2k ≥ 0 (4.5)

if we consider the inequality

Nf1 · f0 − kf10 − kf1f0 ≥
n(N − n− 2k + 1)

N
, (4.6)

which follows from (4.4). Indeed, for any configuration with n = N0 + 1
cooperators, the foregoing inequality (4.6) is strict by the discussion after
(4.4) since the cooperators are not isolated.

We now prove that (4.5) holds, using the assumption that the underlying
graph satisfies (1.2). Suppose the converse of (4.5) holds for the graph:
N − 2k < N0. Then by the definition of N0, we can find a configuration with
N − 2k + 1 isolated cooperators. Counting these isolated cooperators and
their neighboring defectors (they do no repeat) yields

(N − 2k + 1)(1 + k) ≤ N ⇐⇒ N − 2k ≤ 0,

which contradicts (1.2). We have proved (2).

Remark 4.2. The proof of Proposition 2.3 (2) shows that wheneverN−2k >
0, the stronger inequality N − 2k ≥ maxGN0 holds, where N0 is defined for
G as before and G ranges over all k-regular graphs on N vertices. This lower
bound for N − 2k is sharp by the example in Figure 3, since the graph is a
4-regular graph on 9 vertices which satisfies N0 = 1.

Proof of Proposition 2.4. The required graph and configuration are given
in Figure 3. Some features of the graph has been stated in Remark 4.2, and
there are 3 = N0 + 2 cooperators in the configuration.

Notice that (1.2) holds, but the a-priori condition (1.4) for cooperation
under the configuration in Figure 3 fails since Nf1·f0−kf10−kf1f0 = 0. Role-
reversing this configuration produces a configuration with 6 = N − N0 − 2
cooperators such that the corresponding a-priori condition (1.4) fails.
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Figure 3: This figure is for the proof of Proposition 2.4. Cooperation cannot be favored
under this initial condition. Blue vertices are occupied by cooperators and red vertices by
defectors.

Proof of Proposition 2.5. For any configuration η with m isolated defec-
tors, Proposition 2.3 (2) implies that the a-priori condition (1.4) holds for
n = N −m. Also, equalities occur for both of the inequalities in (4.4) with
n replaced by m by role reversal.

Now, if there are m+ 1 and m isolated defectors under ξ′ and ξ, respec-
tively, then by (1.5), we obtain(

b

c

)?
ξ′

=
k(N −m− 2)

N −m− 2k
and

(
b

c

)?
ξ

=
k(N −m− 1)

N −m+ 1− 2k
.

The foregoing equalities imply (2.2).

Proof of Proposition 2.6. (1) Since N − 2k > 0, Proposition 2.3 (2)
applies and the a-priori condition (1.4) holds for all of the initial conditions
considered in (1) and (2).

First we claim that the critical benefit-to-cost ratio for any configuration
ξ with n isolated cooperators exceeds the critical benefit-to-cost ratio (1.1)
for any configuration with one cooperator. To see this, consider the sequence
of configurations {ξ(n), ξ(n−1), · · · , ξ(1)} obtained from ξ by converting the iso-
lated cooperators of ξ to defectors one after the other in an arbitrary order,
such that ξ(j) has j cooperators. Cooperators under these derived config-
urations remain isolated. Hence, by role reversal and Proposition 2.5, the
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sequence of the critical benefit-to-cost ratios associated with {ξ(j)} decreases
as we decrease the number of cooperators. This is enough for our claim.

We prove (1) now. Recall that the critical benefit-to-cost ratio for any
configuration with one cooperator is the same as the critical benefit-to-cost
ratio for the random placing of any number n ∈ {1, 2, · · · , N − 1} of cooper-
ators. In addition, note that by (3.21) the critical benefit-to-cost ratio under

configuration ξ takes the form
(
b
c

)?
ξ

=
Nξ
Dξ

, for some voter-model expectations

Nξ and Dξ. By these two observations, the above claim and a simple averag-
ing argument, we deduce the existence of the required configurations with n
cooperators for all n ∈ {2, 3, · · · , N0}.

(2) Let ξ be a configuration with two cooperators placed at adjacent vertices
x and y. Then

f10(ξ) =
2k − 2

Nk
and f1f0(ξ) =

2k(k − 1)− 2T (x, y)

Nk2

(cf. (4.4)). Here, T (x, y) is the number of vertices which are adjacent to both
x and y. Then applying the foregoing display to (1.5), we get(

b

c

)?
ξ

=
k
(
N − 3 + 1

k

)
N − 2k + T (x,y)

k

. (4.7)

It is now readily checked that
(
b
c

)?
ξ

is smaller than the critical benefit-to-cost

ratio (1.1) for random placing by the assumption N − 2k > 0.

5. Conclusions

In summary, we have calculated how the initial condition affects strategy
selection for evolutionary games on graphs. Our calculations apply to regular
graphs, where each individual has the same number of neighbors, k, which
is also called the degree of the graph. We assume death-birth updating and
weak selection. For evolution of cooperation, we have calculated how the
critical benefit-to-cost ratio depends on the population size, N , the degree
k and the initial condition. Previous work has always calculated the critical
benefit-to-cost ratio for the initial condition of placing a single cooperator in
a population of defectors. Here we have provided a method that applies to ev-
ery initial condition. Thus, several cooperators can be placed in an arbitrary
configuration on the graph. We show that placing additional cooperators can
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increase or decrease the critical benefit-to-cost ratio depending on the exact
configuration. For general two-strategy games, we prove the existence of a σ
value and calculate how that σ value depends on the population size, N , the
degree k and the initial condition. Both the value and the critical benefit-to-
cost ratio only depend on local properties of the initial configuration, which
are evaluated by performing random walks of up to length two.
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Szabó, G., Tőke, C., 1998. Evolutionary prisoner’s dilemma game on a
square lattice. Phys. Rev. E 58, 69–73.
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Wu, B., Garćıa, J., Hauert, C., Traulsen, A., 2013. Extrapolating weak
selection in evolutionary games. PLoS Computational Biology 9, e1003381.

Wu, B., Zhou, D., Fu, F., Luo, Q., Wang, L., Traulsen, A., 2010. Evolution
of cooperation on stochastic dynamical networks. PLoS ONE 5, e11187.

30



(a)

(
b

c

)?
=

8

3
, σ =

11

5
(b)

(
b

c

)?
=

14

5
, σ =

19

9
(c)

(
b

c

)?
= 3, σ = 2

(d)

(
b

c

)?
=

8

3
, σ =

11

5
(e)

(
b

c

)?
=

5

2
, σ =

7

3
(f)

(
b

c

)?
=

40

17
, σ =

57

23

(g)

(
b

c

)?
=

23

10
, σ =

33

13
(h)

(
b

c

)?
=

16

7
, σ =

23

9
(i)

(
b

c

)?
=

23

10
, σ =

33

13

(j)

(
b

c

)?
=

40

17
, σ =

57

23
(k)

(
b

c

)?
=

5

2
, σ =

7

3
(l)

(
b

c

)?
=

8

3
, σ =

11

5

Figure 4: Finite cycle with N = 10. Blue vertices are occupied by cooperators and red
vertices by defectors.
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Figure 5: A 4-regular graph on 8 vertices with diameter 2. Blue vertices are occupied by
cooperators and red vertices by defectors.
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Figure 6: A 3-regular graph on 12 vertices (see Theorem 2.3 in Frucht, 1949). Blue vertices
are occupied by cooperators and red vertices by defectors.
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