K-theory and characteristic classes in topology and complex geometry (a tribute to Atiyah and Hirzebruch)

Claire Voisin

CNRS, Institut de mathématiques de Jussieu

CMSA Harvard, May 25th, 2021

- I. The early days of Riemann-Roch
- Characteristic classes of complex vector bundles
- Hirzebruch-Riemann-Roch.

Ref. F. Hirzebruch. *Topological Methods in Algebraic Geometry* (German, 1956, English 1966)

II. K-theory and cycle class

- The Atiyah-Hirzebruch spectral sequence and cycle class with integral coefficients.
- Resolutions and Chern classes of coherent sheaves

Ref. M. Atiyah, F. Hirzebruch. *Analytic cycles on complex manifolds* (1962)

III. Later developments on the cycle class

- Complex cobordism ring. Kernel and cokernel of the cycle class map.
- Algebraic K-theory and the Bloch-Ogus spectral sequence

• X = compact Riemann surface (= smooth projective complex curve). $E \rightarrow X$ a holomorphic vector bundle on X.

• \mathcal{E} the sheaf of holomorphic sections of E. Sheaf cohomology $H^0(X, \mathcal{E}) =$ global sections, $H^1(X, \mathcal{E})$ (eg. computed as Čech cohomology).

Def. (holomorphic Euler-Poincaré characteristic) $\chi(X, E) := h^0(X, \mathcal{E}) - h^1(X, \mathcal{E}).$

- E has a rank r and a degree $\deg E = \deg (\det E) := e(\det E)$.
- X has a genus related to the topological Euler-Poincaré characteristic: $2 - 2g = \chi_{top}(X)$.

• Hopf formula: $2g - 2 = \deg K_X$, where K_X is the canonical bundle (dual of the tangent bundle).

Thm. (*Riemann-Roch formula*) $\chi(X, E) = \deg E + r(1 - g)$

Sketch of proof

Sketch of proof. (a) **Reduction to line bundles**: any E has a filtration by subbundles E_i such that E_i/E_{i+1} is a line bundle. The 3 quantities r, χ and deg are additive under short exact sequences.

(b) **Reduction to** $\mathcal{O}_X : L$ = holomorphic line bundle on $X, x \in X$. Line bundle L(-x) whose sheaf of sections is $\mathcal{L} \otimes \mathcal{I}_x$, with short exact sequence $0 \to \mathcal{L} \otimes \mathcal{I}_x \to \mathcal{L} \to \mathbb{C}_x \to 0$. One has $\deg L(-x) = \deg (L) - 1, \chi(X, L(-x)) = \chi(X, L) - 1$. \Rightarrow (*) $\chi(X, L) = \chi(X, \mathcal{O}_X) + \deg L$.

(c) Serre duality $\Rightarrow \chi(X, K_X) = -\chi(X, \mathcal{O}_X)$. Formula (*) for K_X then gives $2\chi(X, \mathcal{O}_X) = -\deg K_X$ hence $\chi(X, \mathcal{O}_X) = 1 - g$. qed

• Surfaces. For a holomorphic line bundle L on a projective surface X, one "easily" gets using the Riemann-Roch formula on curves, (**) $\chi(X,L) = \chi(X,\mathcal{O}_X) + \frac{L^2 - K_X \cdot L}{2}$.

• Serre duality gives $\chi(X, \mathcal{O}_X) = \chi(X, K_X)$; already contained in (**).

• Hirzebruch uses the *Hodge index theorem* + topological formulae for the signature \Rightarrow Noether formula $\chi(X, \mathcal{O}_X) = \frac{c_1(X)^2 + c_2(X)}{12}$.

Sketch of proof

Sketch of proof. (a) Reduction to line bundles: any E has a filtration by subbundles E_i such that E_i/E_{i+1} is a line bundle. The 3 quantities r, χ and deg are additive under short exact sequences.

(b) **Reduction to** $\mathcal{O}_X : L$ = holomorphic line bundle on $X, x \in X$. Line bundle L(-x) whose sheaf of sections is $\mathcal{L} \otimes \mathcal{I}_x$, with short exact sequence $0 \to \mathcal{L} \otimes \mathcal{I}_x \to \mathcal{L} \to \mathbb{C}_x \to 0$. One has $\deg L(-x) = \deg (L) - 1, \chi(X, L(-x)) = \chi(X, L) - 1$. \Rightarrow (*) $\chi(X, L) = \chi(X, \mathcal{O}_X) + \deg L$.

(c) Serre duality $\Rightarrow \chi(X, K_X) = -\chi(X, \mathcal{O}_X)$. Formula (*) for K_X then gives $2\chi(X, \mathcal{O}_X) = -\deg K_X$ hence $\chi(X, \mathcal{O}_X) = 1 - g$. qed

• Surfaces. For a holomorphic line bundle L on a projective surface X, one "easily" gets using the Riemann-Roch formula on curves, (**) $\chi(X,L) = \chi(X,\mathcal{O}_X) + \frac{L^2 - K_X \cdot L}{2}$.

• Serre duality gives $\chi(X, \mathcal{O}_X) = \chi(X, K_X)$; already contained in (**).

• Hirzebruch uses the *Hodge index theorem* + topological formulae for the signature \Rightarrow Noether formula $\chi(X, \mathcal{O}_X) = \frac{c_1(X)^2 + c_2(X)}{12}$.

Chern classes of complex vector bundles (Chern, Borel, Borel-Hirzebruch)

• Chern. E= complex differentiable vector bundle on a manifold X. \mathbb{C} -linear Hermitian connection ∇ on $E \rightsquigarrow$ curvature $R_{\nabla} = \frac{1}{2i\pi} \nabla \circ \nabla$ and real closed forms $\operatorname{Tr} R_{\nabla}^k$ of degree $2k \rightsquigarrow$ real cohomology classes.

• Chern classes $c_k(E) := "k$ -th symmetric functions of the eigenvalues of R_{∇} ". Related to the classes above by the Newton formulas.

• L=complex line bundle on $X \rightsquigarrow$ first Chern class $c_1(L) \in H^2(X, \mathbb{Z})$. Thm. (Axiomatic construction/characterization of Chern classes) There The proof uses the **splitting principle** : Given $E \to X$, there exists a

Chern classes of complex vector bundles (Chern, Borel, Borel-Hirzebruch)

• Chern. E= complex differentiable vector bundle on a manifold X. \mathbb{C} -linear Hermitian connection ∇ on $E \rightsquigarrow$ curvature $R_{\nabla} = \frac{1}{2i\pi} \nabla \circ \nabla$ and real closed forms $\operatorname{Tr} R_{\nabla}^k$ of degree $2k \rightsquigarrow$ real cohomology classes.

• Chern classes $c_k(E) :=$ "k-th symmetric functions of the eigenvalues of R_{∇} ". Related to the classes above by the Newton formulas.

• L=complex line bundle on $X \rightsquigarrow$ first Chern class $c_1(L) \in H^2(X, \mathbb{Z})$. Defined using the map $H^1(X, (\mathcal{C}^0)^*) \to H^2(X, \mathbb{Z})$ induced by the exponential exact sequence $0 \to \mathbb{Z} \to \mathcal{C}^0 \to (\mathcal{C}^0)^* \to 1$. Thm. (Axiomatic construction/characterization of Chern classes) There exist unique Chern classes $c_i(E) \in H^{2i}(X,\mathbb{Z})$ for any E, X, with total Chern class $c(E) = \sum_{i} c_i(E)$ satisfying the following axioms. (i) Contravariant functoriality. (ii) (Whitney formula) $c(E \oplus F) = c(E) \cdot c(F)$. (iii) $c(L) = 1 + c_1(L)$, where $c_1(L)$ is as defined above. The proof uses the **splitting principle** : Given $E \to X$, there exists a

Chern classes of complex vector bundles (Chern, Borel, Borel-Hirzebruch)

• Chern. E= complex differentiable vector bundle on a manifold X. \mathbb{C} -linear Hermitian connection ∇ on $E \rightsquigarrow$ curvature $R_{\nabla} = \frac{1}{2i\pi} \nabla \circ \nabla$ and real closed forms $\operatorname{Tr} R_{\nabla}^k$ of degree $2k \rightsquigarrow$ real cohomology classes.

• Chern classes $c_k(E) :=$ "k-th symmetric functions of the eigenvalues of R_{∇} ". Related to the classes above by the Newton formulas.

• L=complex line bundle on $X \rightsquigarrow$ first Chern class $c_1(L) \in H^2(X, \mathbb{Z})$. Defined using the map $H^1(X, (\mathcal{C}^0)^*) \to H^2(X, \mathbb{Z})$ induced by the exponential exact sequence $0 \to \mathbb{Z} \to \mathcal{C}^0 \to (\mathcal{C}^0)^* \to 1$. Thm. (Axiomatic construction/characterization of Chern classes) There exist unique Chern classes $c_i(E) \in H^{2i}(X,\mathbb{Z})$ for any E, X, with total Chern class $c(E) = \sum_{i} c_i(E)$ satisfying the following axioms. (i) Contravariant functoriality. (ii) (Whitney formula) $c(E \oplus F) = c(E) \cdot c(F)$. (iii) $c(L) = 1 + c_1(L)$, where $c_1(L)$ is as defined above. The proof uses the **splitting principle** : Given $E \rightarrow X$, there exists a $f: Y \to X$ such that $f^*: H^*(X, \mathbb{Z}) \to H^*(Y, \mathbb{Z})$ is injective and f^*E is a direct sum of line bundles.

Chern character and Todd genus; formalism of virtual roots

• Virtual roots and symmetric functions. For any symmetric polynomial f in k variables $\lambda_1, \ldots, \lambda_k$, one has a polynomial P_f in the symmetric functions σ_i of $\lambda_1, \ldots, \lambda_k$, such that $P_f(\sigma) = f(\lambda)$.

• Works as well with formal series. If f has coefficients in A, so does P_f .

• E a vector bundle of rank k on X with Chern classes $c_i(E) \in H^*(X, \mathbb{Q})$. For any f as above $\rightsquigarrow P_f(c_i(E)) \in H^*(X, \mathbb{Q})$. The λ_i implicitly used in the function f are called the *virtual roots of the Chern polynomial*. When the vector bundle is a direct sum of line bundles, one can take $\lambda_i = c_1(L_i)$.

• In general, the λ_i can be realized as cohomology classes only on a splitting manifold $Y \to X$ for E.

- Chern character: $\operatorname{ch} E = \sum_{i} \exp \lambda_{i}$. Obviously $\operatorname{ch} (E \oplus F) = \operatorname{ch} E + \operatorname{ch} F$, $\operatorname{ch} (E \otimes F) = \operatorname{ch} E \cdot \operatorname{ch} F$.
- Todd genus. $\operatorname{td} E = \prod_i \frac{\lambda_i}{1 \exp(-\lambda_i)}$. Obviously $\operatorname{td} (E \oplus F) = \operatorname{td} E \cdot \operatorname{td} F$.

Hirzebruch-Riemann-Roch formula

• E=complex vector bundle on X= complex manifold. T_X has a complex structure \rightsquigarrow Chern classes $c_i(E)$, $c_j(T_X)$.

• Holomorphic structure on $E \rightsquigarrow$ sheaf \mathcal{E} of holomorphic sections, cohomology groups $H^i(X, \mathcal{E})$ and holomorphic Euler-Poincaré characteristic $\chi(X, E) := \chi(X, \mathcal{E}) = \sum_i (-1)^i h^i(X, \mathcal{E})$ (X compact).

Thm. (*Hirzebruch-Riemann-Roch formula*) One has $\chi(X, E) = \int_X \operatorname{ch} E \cdot \operatorname{td} X =: T_0(X, E).$

• The χ_y -genus. T_X is a holomorphic vector bundle, hence also $\Omega_X = T_X^*$. Define $\chi_y(E) := \sum_p y^p \chi(X, E \otimes \Omega_X^p)$.

• Obvious.
$$\chi(X, E) = \chi_0(E)$$
.

• Less obvious, due to Serre. For the trivial bundle \mathcal{O}_X , one has $\chi_{-1}(X, \mathcal{O}_X) = \chi_{top}(X)$. **Proof.** Holomorphic de Rham complex $0 \to \mathcal{O}_X \to \Omega_X \to \ldots \to \Omega_X^n \to 0$. This is a resolution of the constant sheaf \mathbb{C} . **qed**

• T_y -genus $T_y(X, E)$: plug-in y in the formal expression for $\operatorname{ch} E \cdot \operatorname{td} X$, eg $\operatorname{ch}_y(E) = \sum_i \exp(1+y)\lambda_i$.

Hirzebruch-Riemann-Roch formula

• E=complex vector bundle on X= complex manifold. T_X has a complex structure \rightsquigarrow Chern classes $c_i(E)$, $c_j(T_X)$.

• Holomorphic structure on $E \rightsquigarrow$ sheaf \mathcal{E} of holomorphic sections, cohomology groups $H^i(X, \mathcal{E})$ and holomorphic Euler-Poincaré characteristic $\chi(X, E) := \chi(X, \mathcal{E}) = \sum_i (-1)^i h^i(X, \mathcal{E})$ (X compact).

Thm. (*Hirzebruch-Riemann-Roch formula*) One has $\chi(X, E) = \int_X \operatorname{ch} E \cdot \operatorname{td} X =: T_0(X, E).$

• The χ_y -genus. T_X is a holomorphic vector bundle, hence also $\Omega_X = T_X^*$. Define $\chi_y(E) := \sum_p y^p \chi(X, E \otimes \Omega_X^p)$.

• Obvious. $\chi(X, E) = \chi_0(E)$.

• Less obvious, due to Serre. For the trivial bundle \mathcal{O}_X , one has $\chi_{-1}(X, \mathcal{O}_X) = \chi_{top}(X)$. **Proof.** Holomorphic de Rham complex $0 \to \mathcal{O}_X \to \Omega_X \to \ldots \to \Omega_X^n \to 0$. This is a resolution of the constant sheaf \mathbb{C} . **qed**

• T_y -genus $T_y(X, E)$: plug-in y in the formal expression for $\operatorname{ch} E \cdot \operatorname{td} X$, eg $\operatorname{ch}_y(E) = \sum_i \exp(1+y)\lambda_i$.

Strategy of the proof in the projective case

• Reduction to the line bundle case. Work on $\mathbb{P}(E)$ and the Hopf line bundle H on $\mathbb{P}(E)$. Leray spectral sequence $\Rightarrow \chi(\mathbb{P}(E), H) = \chi(X, E)$.

• Reduction to the absolute case (trivial line bundle). If $D \subset X$ is a smooth hypersurface, and $\mathcal{L} = \mathcal{O}_X(-D) = \mathcal{I}_D$, one has $0 \to \mathcal{L} \to \mathcal{O}_X \to \mathcal{O}_D \to 0$ so $\chi(X, L) = \chi(X, \mathcal{O}_X) - \chi(D, \mathcal{O}_D)$. Use also $0 \to \mathcal{L}_{|D} \to \Omega_{X|D} \to \Omega_D \to 0$.

• Absolute case. Index $\tau(X)$ for X real oriented of dimension 2n: $\tau(X) = 0$ if n is odd, otherwise $\tau(X) :=$ signature of intersection pairing on $H^n(X, \mathbb{R})$. Thom cobordism $\Rightarrow \tau(X) =$ polynomial in the Pontryagin classes of X. If X is almost complex: get Chern number of X. Hirzebruch: *this is* $T_1(X)$.

Thm. (Hodge index thm) If X is a complex projective manifold, one has $\tau(X) = \sum_{p} \chi(X, \Omega_X^p) =: \chi_1(X, \mathcal{O}_X)$. (True for X complex compact).

• \Rightarrow equality $\chi_1(X, \mathcal{O}_X) = T_1(X)$.

• Functional equation for χ_y -genus and T_y -genus + equality for $y = 1 \Rightarrow \chi_0(X, \mathcal{O}_X) = T_0(X)$ for X a split manifold, and finally for any X. **qed**

Strategy of the proof in the projective case

• Reduction to the line bundle case. Work on $\mathbb{P}(E)$ and the Hopf line bundle H on $\mathbb{P}(E)$. Leray spectral sequence $\Rightarrow \chi(\mathbb{P}(E), H) = \chi(X, E)$.

• Reduction to the absolute case (trivial line bundle). If $D \subset X$ is a smooth hypersurface, and $\mathcal{L} = \mathcal{O}_X(-D) = \mathcal{I}_D$, one has $0 \to \mathcal{L} \to \mathcal{O}_X \to \mathcal{O}_D \to 0$ so $\chi(X, L) = \chi(X, \mathcal{O}_X) - \chi(D, \mathcal{O}_D)$. Use also $0 \to \mathcal{L}_{|D} \to \Omega_{X|D} \to \Omega_D \to 0$.

• Absolute case. Index $\tau(X)$ for X real oriented of dimension 2n: $\tau(X) = 0$ if n is odd, otherwise $\tau(X) :=$ signature of intersection pairing on $H^n(X, \mathbb{R})$. Thom cobordism $\Rightarrow \tau(X) =$ polynomial in the Pontryagin classes of X. If X is almost complex: get Chern number of X. Hirzebruch: *this is* $T_1(X)$.

Thm. (Hodge index thm) If X is a complex projective manifold, one has $\tau(X) = \sum_{p} \chi(X, \Omega_X^p) =: \chi_1(X, \mathcal{O}_X)$. (True for X complex compact).

- \Rightarrow equality $\chi_1(X, \mathcal{O}_X) = T_1(X)$.
- Functional equation for χ_y -genus and T_y -genus + equality for $y = 1 \Rightarrow \chi_0(X, \mathcal{O}_X) = T_0(X)$ for X a split manifold, and finally for any X. **qed**

• For a topological space X, $K^0(X)$ is the abelian group with generators the isomorphism classes [E] of complex vector bundles E on X, and relations $[E \oplus F] = [E] + [F]$. For pointed space (X, x), $\overline{K}^0 = \operatorname{rank} 0$ at x.

• Holomorphic variant. $X = \text{complex manifold. } K_{an}^0(X)$ is the abelian group with generators the isomorphism classes [E] of holomorphic vector bundles E on X, and relations [G] = [E] + [F] whenever there exists an exact sequence $0 \to E \to G \to F \to 0$ of holomorphic vector bundles.

• Due to the Whitney axiom, Chern classes factor through K^0 . The Chern character gives a ring homomorphism to **rational** cohomology.

• Atiyah-Hirzebruch introduce K^* :

 $K^1(X) := \operatorname{Ker} (K^0(X \times \mathbb{S}^1) \to K^0(X)) + \operatorname{Bott}$ periodicity. For a pair (X, Y) (say of *CW*-complexes), let $K^0(X, Y) := \overline{K}^0(X/Y)$. Long exact sequence (*)

 $K^{-1}(Y) \to K^0(X,Y) \to K^0(X) \to K^0(Y) \to K^1(X,Y) \to \dots$

• X a CW-complex. $X^i \subset X$ is the *i*-skeleton of X, union of cells of dimension $\leq i$.

• One gets a decreasing filtration of the cochain complex by subcomplexes $C^*(X, X^p)$ and a spectral sequence with $E_1^{p,q} = 0$ for $q \neq 0$, $E_1^{p,0} = C^p(X^p/X^{p-1})$, $E_2^{p,0} = E_{\infty}^{p,0} = H^p(X, \mathbb{Z})$.

• Using (*), Atiyah and Hirzebruch construct a similar spectral sequence for *K*-theory.

Thm. There exists a spectral sequence $E_2^{pq} \Rightarrow K^{p+q}(X)$ with $E_2^{pq} = 0$ if q is odd, $E_2^{pq} = H^p(X, \mathbb{Z})$ if q is even.

• (Formal). The differential d_r vanishes for even r.

• With Q-coefficients, the differentials must vanish (compare with cohomology).

Cor. One has $E_2^{pq} = E_{\infty}^{pq}$ if (i) $H^{\text{odd}}(X, \mathbb{Z}) = 0$ or (ii) $H^*(X, \mathbb{Z})$ has no torsion. • X a CW-complex. $X^i \subset X$ is the *i*-skeleton of X, union of cells of dimension $\leq i$.

• One gets a decreasing filtration of the cochain complex by subcomplexes $C^*(X, X^p)$ and a spectral sequence with $E_1^{p,q} = 0$ for $q \neq 0$, $E_1^{p,0} = C^p(X^p/X^{p-1})$, $E_2^{p,0} = E_{\infty}^{p,0} = H^p(X, \mathbb{Z})$.

• Using (*), Atiyah and Hirzebruch construct a similar spectral sequence for K-theory.

Thm. There exists a spectral sequence $E_2^{pq} \Rightarrow K^{p+q}(X)$ with $E_2^{pq} = 0$ if q is odd, $E_2^{pq} = H^p(X, \mathbb{Z})$ if q is even.

• (Formal). The differential d_r vanishes for even r.

• With \mathbb{Q} -coefficients, the differentials must vanish (compare with cohomology).

Cor. One has $E_2^{pq} = E_{\infty}^{pq}$ if (i) $H^{\text{odd}}(X, \mathbb{Z}) = 0$ or (ii) $H^*(X, \mathbb{Z})$ has no torsion. • Let $Z \subset X$ be a closed analytic subset in a complex manifold. Coherent sheaves $\mathcal{I}_Z \subset \mathcal{O}_X$, $\mathcal{O}_Z = \mathcal{O}_X/\mathcal{I}_Z$.

• In the smooth projective case: any coherent sheaf admits a (finite) locally free resolution. Follows from (a) local statement, (b) any coherent sheaf \mathcal{H} admits a surjective quotient map $\mathcal{F} \to \mathcal{H} \to 0$ with \mathcal{F} locally free.

• Not true in the general compact complex case: **Thm.** (Voisin 2002) Take X = T very general complex torus of dimension 3, $x \in T$ a point. Then \mathcal{I}_x does not admit a locally free resolution.

• X complex compact. Atiyah-Hirzebruch use locally free resolutions of coherent sheaves by **real analytic** complex vector bundles:

 $0 \to \mathcal{F}_n \to \dots \mathcal{F}_i \dots \to \mathcal{F}_0 \to \mathcal{H}_\omega \to 0$. Thus any coherent sheaf \mathcal{H} has a class in $K^0(X)$. One has $c(\mathcal{H}) = \prod_i c(\mathcal{F}_i)^{\epsilon_i}$, $\epsilon_i = (-1)^i$.

Thm. (Atiyah-Hirzebruch, Grothendieck-Riemann-Roch) $Z \subset X$ closed analytic of codimension k. \mathcal{O}_Z has a class in $K^0(X, X \setminus Z)$ and (*) $c_k(\mathcal{O}_Z) = (-1)^{k-1}(k-1)![Z]$ in $H^{2k}(X,\mathbb{Z})$. • Here $[Z] \in H^{2k}(X,\mathbb{Z})$ is the **cycle class** of Z. • Let $Z \subset X$ be a closed analytic subset in a complex manifold. Coherent sheaves $\mathcal{I}_Z \subset \mathcal{O}_X$, $\mathcal{O}_Z = \mathcal{O}_X / \mathcal{I}_Z$.

• In the smooth projective case: any coherent sheaf admits a (finite) locally free resolution. Follows from (a) local statement, (b) any coherent sheaf \mathcal{H} admits a surjective quotient map $\mathcal{F} \to \mathcal{H} \to 0$ with \mathcal{F} locally free.

• Not true in the general compact complex case: **Thm.** (Voisin 2002) Take X = T very general complex torus of dimension $3, x \in T$ a point. Then \mathcal{I}_x does not admit a locally free resolution.

• X complex compact. Atiyah-Hirzebruch use locally free resolutions of coherent sheaves by **real analytic** complex vector bundles: $0 \to \mathcal{F}_n \to \ldots \mathcal{F}_i \ldots \to \mathcal{F}_0 \to \mathcal{H}_\omega \to 0$. Thus any coherent sheaf \mathcal{H} has a class in $K^0(X)$. One has $c(\mathcal{H}) = \prod_i c(\mathcal{F}_i)^{\epsilon_i}$, $\epsilon_i = (-1)^i$.

Thm. (Atiyah-Hirzebruch, Grothendieck-Riemann-Roch) $Z \subset X$ closed analytic of codimension k. \mathcal{O}_Z has a class in $K^0(X, X \setminus Z)$ and (*) $c_k(\mathcal{O}_Z) = (-1)^{k-1}(k-1)![Z]$ in $H^{2k}(X,\mathbb{Z})$.

• Here $[Z] \in H^{2k}(X, \mathbb{Z})$ is the cycle class of Z.

Atiyah-Hirzebruch counterexamples to the integral Hodge conjecture

Conj. (Hodge conjecture) Let X=projective complex manifold and $\alpha \in H^{2k}(X, \mathbb{Q})$ be of Hodge type (k, k). Then $\alpha = \sum_i \alpha_i[Z_i]$, with $\alpha_i \in \mathbb{Q}$, $Z_i \subset X$ closed of codim. k.

Rem. Equivalent formulations, using resolutions and formula (*): $\alpha \in \langle c_k(\mathcal{F}) \rangle_{\mathbb{Q}}$, $\mathcal{F} =$ coherent sheaf on X, or $\alpha \in \langle c_k(\mathcal{F}) \rangle_{\mathbb{Q}}$, $\mathcal{F} =$ locally free coherent sheaf on X.

• The three statements are wrong in the compact Kähler case (Voisin).

• **Z-coefficients**. **Wrong** (Atiyah-Hirzebruch).

Thm. (Atiyah-Hirzebruch) Let X = compact complex manifold, $Z \subset X$ closed analytic subset of codim k with class $[Z] \in H^{2k}(X,\mathbb{Z})$. Then [Z] is annihilated by all the differentials d_r , $r \geq 3$ of the A-H spectral sequence.

• The example. 2-torsion cohomology class α of degree 4 on a smooth projective manifold X which is not annihilated by $d_3 \Rightarrow$ not a cycle class.

• **Construction**: Serre's trick : finite group G acting on projective space $\mathbb{CP}^N \rightsquigarrow$ complete intersection $X \subset \mathbb{CP}^N$ on which G acts freely $\rightsquigarrow X/G$.

Atiyah-Hirzebruch counterexamples to the integral Hodge conjecture

Conj. (Hodge conjecture) Let X=projective complex manifold and $\alpha \in H^{2k}(X, \mathbb{Q})$ be of Hodge type (k, k). Then $\alpha = \sum_i \alpha_i[Z_i]$, with $\alpha_i \in \mathbb{Q}$, $Z_i \subset X$ closed of codim. k.

Rem. Equivalent formulations, using resolutions and formula (*): $\alpha \in \langle c_k(\mathcal{F}) \rangle_{\mathbb{Q}}$, $\mathcal{F} =$ coherent sheaf on X, or $\alpha \in \langle c_k(\mathcal{F}) \rangle_{\mathbb{Q}}$, $\mathcal{F} =$ locally free coherent sheaf on X.

- The three statements are wrong in the compact Kähler case (Voisin).
- Z-coefficients. Wrong (Atiyah-Hirzebruch).

Thm. (Atiyah-Hirzebruch) Let X = compact complex manifold, $Z \subset X$ closed analytic subset of codim k with class $[Z] \in H^{2k}(X,\mathbb{Z})$. Then [Z] is annihilated by all the differentials d_r , $r \geq 3$ of the A-H spectral sequence.

• The example. 2-torsion cohomology class α of degree 4 on a smooth projective manifold X which is not annihilated by $d_3 \Rightarrow$ not a cycle class.

• **Construction**: Serre's trick : finite group G acting on projective space $\mathbb{CP}^N \rightsquigarrow$ complete intersection $X \subset \mathbb{CP}^N$ on which G acts freely $\rightsquigarrow X/G$.

Milnor construction of MU_{*}(pt). 1) Generators: compact differentiable manifolds M of dim * + a virtual complex structure on T_M.
2) Complex cobordism relations: N = differentiable manifold with boundary ∂N and virtual complex structure on T_N, hence virtual complex structure on T_{∂N}.

• Complex cobordism group $MU_*(X)$, X=manifold: 1) Generators: compact diff. manifolds M of dim. *, + diff. map $f: M \to X +$ virtual complex structure on virtual normal bundle $N_f := f^*T_X - T_M$. 2) Complex cobordism relations: N = differentiable manifold with boundary ∂N , $F: N \to X$ differentiable map and virtual complex structure on N_F , hence virtual complex structure on $N_{F|\partial M}$.

• Map $o: MU_*(X) \otimes_{MU_*(\mathrm{pt})} \mathbb{Z} \to H_*(X, \mathbb{Z}), (M, f) \to f_*[M].$ Iso. $\otimes \mathbb{Q}$.

Thm. (Totaro) X compact complex manifold, $Z \subset X$ closed analytic subset of codim k. Then (1) $[Z] \in \text{Im } o$.

(2) ∃ canonical lift of [] to refined cycle class [].

(1) Follows from Hironaka resolution of singularities. Allows to reinterpret the Atiyah-Hirzebruch obstruction by computing in MU_* .

Milnor construction of MU_{*}(pt). 1) Generators: compact differentiable manifolds M of dim * + a virtual complex structure on T_M.
2) Complex cobordism relations: N = differentiable manifold with boundary ∂N and virtual complex structure on T_N, hence virtual complex structure on T_{∂N}.

• Complex cobordism group $MU_*(X)$, X=manifold: 1) Generators: compact diff. manifolds M of dim. *, + diff. map $f: M \to X +$ virtual complex structure on virtual normal bundle $N_f := f^*T_X - T_M$. 2) Complex cobordism relations: N = differentiable manifold with boundary ∂N , $F: N \to X$ differentiable map and virtual complex structure on N_F , hence virtual complex structure on $N_{F|\partial M}$.

• Map $o: MU_*(X) \otimes_{MU_*(\mathrm{pt})} \mathbb{Z} \to H_*(X, \mathbb{Z}), (M, f) \to f_*[M].$ Iso. $\otimes \mathbb{Q}$.

Thm. (Totaro) X compact complex manifold, $Z \subset X$ closed analytic subset of codim k. Then (1) $[Z] \in \text{Im } o$. (2) \exists canonical lift of [] to refined cycle class $\tilde{[}$].

(1) Follows from Hironaka resolution of singularities. Allows to reinterpret the Atiyah-Hirzebruch obstruction by computing in MU_* .

Nontopological obstructions to the algebraicity of integral Hodge classes

• The Atiyah-Hirzebruch-Totaro obstruction for an integral cohomology class α on X =complex compact manifold to be algebraic is **topological**. \Rightarrow The class α does not become a cycle class on a deformation of X.

• Kollár's examples. Let $X \subset \mathbb{P}^n$, $n \geq 4$, be a smooth hypersurface of degree d. Lefschetz thm on hyperplane sections $\Rightarrow H^{2n-4}(X,\mathbb{Z}) = \mathbb{Z}\alpha$, with deg $\alpha = 1$. If X contains a line Δ , $\alpha = [\Delta]$.

Thm. (Kollár) If X is very general of degree p^{n-1} , $p \ge n-1$ prime, any curve $C \subset X$ has degree divisible by p. Hence α is not algebraic.

• The proof is by specialization of X to the image of a generic map $\mathbb{P}^{n-1} \to \mathbb{P}^n$ given by polynomials of degree p.

• n = 4. X as above, S =surface with $0 \neq \beta \in H^2(S, \mathbb{Z})$ of p-torsion. \rightsquigarrow p-torsion class $\gamma = \operatorname{pr}_1^* \alpha \smile \operatorname{pr}_2^* \beta \in H^6(Y, \mathbb{Z}), Y = X \times S$.

Thm. (Soulé-Voisin) The p-torsion class γ is not algebraic on Y for X very general. (The prime p is arbitrarily large, the dimension is fixed.) • The torsion class γ is algebraic on Y for special X, eg X containing a line

Nontopological obstructions to the algebraicity of integral Hodge classes

• The Atiyah-Hirzebruch-Totaro obstruction for an integral cohomology class α on X =complex compact manifold to be algebraic is **topological**. \Rightarrow The class α does not become a cycle class on a deformation of X.

• Kollár's examples. Let $X \subset \mathbb{P}^n$, $n \geq 4$, be a smooth hypersurface of degree d. Lefschetz thm on hyperplane sections $\Rightarrow H^{2n-4}(X,\mathbb{Z}) = \mathbb{Z}\alpha$, with deg $\alpha = 1$. If X contains a line Δ , $\alpha = [\Delta]$.

Thm. (Kollár) If X is very general of degree p^{n-1} , $p \ge n-1$ prime, any curve $C \subset X$ has degree divisible by p. Hence α is not algebraic.

• The proof is by specialization of X to the image of a generic map $\mathbb{P}^{n-1} \to \mathbb{P}^n$ given by polynomials of degree p.

• n = 4. X as above, S = surface with $0 \neq \beta \in H^2(S, \mathbb{Z})$ of p-torsion. \rightsquigarrow p-torsion class $\gamma = \operatorname{pr}_1^* \alpha \smile \operatorname{pr}_2^* \beta \in H^6(Y, \mathbb{Z}), Y = X \times S$.

Thm. (Soulé-Voisin) The *p*-torsion class γ is not algebraic on Y for X very general. (The prime *p* is arbitrarily large, the dimension is fixed.)

• The torsion class γ is algebraic on Y for special X, eg X containing a line.

• Let X be a complex algebraic manifold. $X(\mathbb{C})$ has two topologies, the Euclidean and Zariski topologies \rightsquigarrow continuous map $f: X_{\mathrm{an}} \to X_{\mathrm{Zar}}$.

• The Bloch-Ogus spectral sequence is the Leray spectral sequence of f.

• A abelian group. $\mathcal{H}^i(A) := R^i f_*A$, sheaf associated to presheaf $U \mapsto H^i(U_{\mathrm{an}}, A)$ on X_{Zar} .

•
$$E_2^{p,q} = H^p(X_{\operatorname{Zar}}, \mathcal{H}^q(A)) \Rightarrow H^{p+q}(X_{\operatorname{an}}, A).$$

Thm. (Bloch-Ogus) (a) One has $E_2^{p,q} = 0$ for p > q. (b) $A = \mathbb{Z}$. $E_2^{k,k}$ is isomorphic to $\mathcal{Z}^k(X)/\text{alg}$. (c) The induced map $E_2^{k,k} \to E_{\infty}^{k,k} \hookrightarrow H^{2k}(X,\mathbb{Z})$ is the cycle class map $[]: \mathcal{Z}^k(X)/\text{alg} \to H^{2k}(X,\mathbb{Z})$.

• Group of cycles $\mathcal{Z}^k(X) = \{\sum_i n_i Z_i, \operatorname{codim} Z_i = k\}.$

Def. X projective. $Z, Z' \subset X$ are algebraically equivalent if \exists smooth projective curve C, a cycle Z in $C \times X$ (flat over C) and two points t, t' of C such that $Z_t - Z_{t'} = Z - Z'$ as cycles of X.

• Let X be a complex algebraic manifold. $X(\mathbb{C})$ has two topologies, the Euclidean and Zariski topologies \rightsquigarrow continuous map $f: X_{an} \to X_{Zar}$.

• The Bloch-Ogus spectral sequence is the Leray spectral sequence of f.

• A abelian group. $\mathcal{H}^i(A) := R^i f_* A$, sheaf associated to presheaf $U \mapsto H^i(U_{\mathrm{an}}, A)$ on X_{Zar} .

•
$$E_2^{p,q} = H^p(X_{\operatorname{Zar}}, \mathcal{H}^q(A)) \Rightarrow H^{p+q}(X_{\operatorname{an}}, A).$$

Thm. (Bloch-Ogus) (a) One has $E_2^{p,q} = 0$ for p > q. (b) $A = \mathbb{Z}$. $E_2^{k,k}$ is isomorphic to $\mathcal{Z}^k(X)/\text{alg}$. (c) The induced map $E_2^{k,k} \to E_{\infty}^{k,k} \hookrightarrow H^{2k}(X,\mathbb{Z})$ is the cycle class map $[]: \mathcal{Z}^k(X)/\text{alg} \to H^{2k}(X,\mathbb{Z})$.

• Group of cycles $\mathcal{Z}^k(X) = \{\sum_i n_i Z_i, \operatorname{codim} Z_i = k\}.$ **Def.** X projective. Z, $Z' \subset X$ are algebraically equivalent if \exists smooth

projective curve C, a cycle Z in $C \times X$ (flat over C) and two points t, t' of C such that $Z_t - Z_{t'} = Z - Z'$ as cycles of X.

• Let $\operatorname{Griff}^k(X) := \operatorname{Ker}[] \subset \mathbb{Z}^k(X)/\operatorname{alg.}$ Analyzing the Bloch-Ogus spectral sequence in degree 4, get:

Cor. (Bloch-Ogus) (k = 2) Exact sequence $H^3(X, \mathbb{Z}) \to H^0(X_{\operatorname{Zar}}, \mathcal{H}^3(\mathbb{Z})) \xrightarrow{d_2} \operatorname{Griff}^2(X) \to 0.$

• Thm. (Griffiths) There exist smooth projective threefolds X with $\operatorname{Griff}^2(X) \otimes \mathbb{Q} \neq 0$.

Cor. (Bloch-Ogus) The group $H^0(X_{\text{Zar}}, \mathcal{H}^3(\mathbb{Q}))/H^3(X, \mathbb{Q})$ can be nonzero.

• Define
$$H^k(\mathbb{C}(X), A) := \lim_{\substack{\to \ \emptyset \neq U \subset X, \text{ Zar. open}}} H^k(U, A).$$

Thm. (Bloch-Ogus) The space $H^0(X, \mathcal{H}^k(A))$ identifies with $\operatorname{Ker}(H^k(\mathbb{C}(X), A) \xrightarrow{\operatorname{res}} \oplus_D \operatorname{divisor} H^{k-1}(\mathbb{C}(D), A)).$

• Whether a class with no residues comes from a class on the total space had been asked by Atiyah and Hodge (*Integrals of the second kind on an algebraic variety*. Ann. of Math. 1955) (and established in degree ≤ 2).

• Let $\operatorname{Griff}^k(X) := \operatorname{Ker}[] \subset \mathcal{Z}^k(X)/\operatorname{alg.}$ Analyzing the Bloch-Ogus spectral sequence in degree 4, get:

Cor. (Bloch-Ogus) (k = 2) Exact sequence $H^3(X, \mathbb{Z}) \to H^0(X_{\operatorname{Zar}}, \mathcal{H}^3(\mathbb{Z})) \xrightarrow{d_2} \operatorname{Griff}^2(X) \to 0.$

• Thm. (Griffiths) There exist smooth projective threefolds X with $\operatorname{Griff}^2(X) \otimes \mathbb{Q} \neq 0$.

Cor. (Bloch-Ogus) The group $H^0(X_{\text{Zar}}, \mathcal{H}^3(\mathbb{Q}))/H^3(X, \mathbb{Q})$ can be nonzero.

• Define
$$H^k(\mathbb{C}(X), A) := \lim_{\substack{\to \ \emptyset \neq U \subset X, \text{ Zar. open}}} H^k(U, A).$$

Thm. (Bloch-Ogus) The space $H^0(X, \mathcal{H}^k(A))$ identifies with $\operatorname{Ker}(H^k(\mathbb{C}(X), A) \xrightarrow{\operatorname{res}} \oplus_D \operatorname{divisor} H^{k-1}(\mathbb{C}(D), A)).$

• Whether a class with no residues comes from a class on the total space had been asked by Atiyah and Hodge (*Integrals of the second kind on an algebraic variety*. Ann. of Math. 1955) (and established in degree ≤ 2).