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Plan of the talk

I. The early days of Riemann-Roch
• Characteristic classes of complex vector bundles

• Hirzebruch-Riemann-Roch.

Ref. F. Hirzebruch. Topological Methods in Algebraic Geometry
(German, 1956, English 1966)

II. K-theory and cycle class
• The Atiyah-Hirzebruch spectral sequence and cycle class with integral
coefficients.
• Resolutions and Chern classes of coherent sheaves

Ref. M. Atiyah, F. Hirzebruch. Analytic cycles on complex manifolds
(1962)

III. Later developments on the cycle class
• Complex cobordism ring. Kernel and cokernel of the cycle class map.

• Algebraic K-theory and the Bloch-Ogus spectral sequence



The Riemann-Roch formula for curves

• X= compact Riemann surface (= smooth projective complex curve).
E → X a holomorphic vector bundle on X.

• E the sheaf of holomorphic sections of E. Sheaf cohomology H0(X, E)=
global sections, H1(X, E) (eg. computed as Čech cohomology).

Def. (holomorphic Euler-Poincaré characteristic)
χ(X,E) := h0(X, E)− h1(X, E).

• E has a rank r and a degree degE = deg (detE) := e(detE).

• X has a genus related to the topological Euler-Poincaré characteristic:
2− 2g = χtop(X).

• Hopf formula: 2g − 2 = degKX , where KX is the canonical bundle
(dual of the tangent bundle).

Thm. (Riemann-Roch formula) χ(X,E) = degE + r(1− g)



Sketch of proof

Sketch of proof. (a) Reduction to line bundles: any E has a filtration
by subbundles Ei such that Ei/Ei+1 is a line bundle. The 3 quantities r,
χ and deg are additive under short exact sequences.

(b) Reduction to OX : L= holomorphic line bundle on X, x ∈ X. Line
bundle L(−x) whose sheaf of sections is L ⊗ Ix, with short exact
sequence 0→ L⊗ Ix → L → Cx → 0. One has
degL(−x) = deg (L)− 1, χ(X,L(−x)) = χ(X,L)− 1.
⇒ (*) χ(X,L) = χ(X,OX) + degL.

(c) Serre duality ⇒ χ(X,KX) = −χ(X,OX). Formula (*) for KX then
gives 2χ(X,OX) = −degKX hence χ(X,OX) = 1− g. qed

• Surfaces. For a holomorphic line bundle L on a projective surface X,
one “easily” gets using the Riemann-Roch formula on curves,
(∗∗) χ(X,L) = χ(X,OX) + L2−KX ·L

2 .

• Serre duality gives χ(X,OX) = χ(X,KX); already contained in (**).
• Hirzebruch uses the Hodge index theorem + topological formulae for the

signature ⇒ Noether formula χ(X,OX) = c1(X)2+c2(X)
12 .
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Chern classes of complex vector bundles (Chern, Borel, Borel-Hirzebruch)

• Chern. E= complex differentiable vector bundle on a manifold X.
C-linear Hermitian connection ∇ on E  curvature R∇ = 1

2iπ∇ ◦∇ and
real closed forms TrRk∇ of degree 2k  real cohomology classes.

• Chern classes ck(E) :=“k-th symmetric functions of the eigenvalues of
R∇”. Related to the classes above by the Newton formulas.

• L=complex line bundle on X  first Chern class c1(L) ∈ H2(X,Z).
Defined using the map H1(X, (C0)∗)→ H2(X,Z) induced by the

exponential exact sequence 0→ Z→ C0 → (C0)∗ → 1.
Thm. (Axiomatic construction/characterization of Chern classes) There
exist unique Chern classes ci(E) ∈ H2i(X,Z) for any E, X, with total
Chern class c(E) =

∑
i ci(E) satisfying the following axioms.

(i) Contravariant functoriality.
(ii) (Whitney formula) c(E ⊕ F ) = c(E) · c(F ).
(iii) c(L) = 1 + c1(L), where c1(L) is as defined above.
The proof uses the splitting principle : Given E → X, there exists a
f : Y → X such that f∗ : H∗(X,Z)→ H∗(Y,Z) is injective and f∗E is a
direct sum of line bundles.
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Chern character and Todd genus; formalism of virtual roots

• Virtual roots and symmetric functions. For any symmetric
polynomial f in k variables λ1, . . . , λk, one has a polynomial Pf in the
symmetric functions σi of λ1, . . . , λk, such that Pf (σ·) = f(λ·).

• Works as well with formal series. If f has coefficients in A, so does Pf .

• E a vector bundle of rank k on X with Chern classes ci(E) ∈ H∗(X,Q).
For any f as above  Pf (c·(E)) ∈ H∗(X,Q). The λi implicitly used in
the function f are called the virtual roots of the Chern polynomial. When
the vector bundle is a direct sum of line bundles, one can take λi = c1(Li).

• In general, the λi can be realized as cohomology classes only on a
splitting manifold Y → X for E.

• Chern character: chE =
∑

i expλi. Obviously
ch (E ⊕ F ) = chE + chF , ch (E ⊗ F ) = chE · chF .

• Todd genus. tdE =
∏
i

λi
1−exp(−λi) . Obviously

td (E ⊕ F ) = tdE · tdF .



Hirzebruch-Riemann-Roch formula

• E=complex vector bundle on X= complex manifold. TX has a complex
structure  Chern classes ci(E), cj(TX).

• Holomorphic structure on E  sheaf E of holomorphic sections,
cohomology groups H i(X, E) and holomorphic Euler-Poincaré
characteristic χ(X,E) := χ(X, E) =

∑
i(−1)ihi(X, E) (X compact).

Thm. (Hirzebruch-Riemann-Roch formula) One has
χ(X,E) =

∫
X chE · tdX =: T0(X,E).

• The χy-genus. TX is a holomorphic vector bundle, hence also
ΩX = T ∗X . Define χy(E) :=

∑
p y

pχ(X,E ⊗ Ωp
X).

• Obvious. χ(X,E) = χ0(E).

• Less obvious, due to Serre. For the trivial bundle OX , one has
χ−1(X,OX) = χtop(X).
Proof. Holomorphic de Rham complex 0→ OX → ΩX → . . .→ Ωn

X → 0.
This is a resolution of the constant sheaf C. qed

• Ty-genus Ty(X,E) : plug-in y in the formal expression for chE · tdX,
eg chy(E) =

∑
i exp(1 + y)λi.
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Strategy of the proof in the projective case

• Reduction to the line bundle case. Work on P(E) and the Hopf line
bundle H on P(E). Leray spectral sequence ⇒ χ(P(E), H) = χ(X,E).

• Reduction to the absolute case (trivial line bundle). If D ⊂ X is a
smooth hypersurface, and L = OX(−D) = ID, one has
0→ L → OX → OD → 0 so χ(X,L) = χ(X,OX)− χ(D,OD). Use also
0→ L|D → ΩX|D → ΩD → 0.

• Absolute case. Index τ(X) for X real oriented of dimension 2n:
τ(X) = 0 if n is odd, otherwise τ(X) := signature of intersection pairing
on Hn(X,R). Thom cobordism ⇒ τ(X)= polynomial in the Pontryagin
classes of X. If X is almost complex: get Chern number of X.
Hirzebruch: this is T1(X).

Thm. (Hodge index thm) If X is a complex projective manifold, one has
τ(X) =

∑
p χ(X,Ωp

X) =: χ1(X,OX). (True for X complex compact).

• ⇒ equality χ1(X,OX) = T1(X).

• Functional equation for χy-genus and Ty-genus + equality for y = 1 ⇒
χ0(X,OX) = T0(X) for X a split manifold, and finally for any X. qed
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Complex K-theory

• For a topological space X, K0(X) is the abelian group with generators
the isomorphism classes [E] of complex vector bundles E on X, and

relations [E ⊕F ] = [E] + [F ]. For pointed space (X,x), K
0
= rank 0 at x.

• Holomorphic variant. X= complex manifold. K0
an(X) is the abelian

group with generators the isomorphism classes [E] of holomorphic vector
bundles E on X, and relations [G] = [E] + [F ] whenever there exists an
exact sequence 0→ E → G→ F → 0 of holomorphic vector bundles.

• Due to the Whitney axiom, Chern classes factor through K0. The Chern
character gives a ring homomorphism to rational cohomology.

• Atiyah-Hirzebruch introduce K∗:
K1(X) := Ker (K0(X × S1)→ K0(X)) + Bott periodicity. For a pair

(X,Y ) (say of CW -complexes), let K0(X,Y ) := K
0
(X/Y ). Long exact

sequence (*)

K−1(Y )→ K0(X,Y )→ K0(X)→ K0(Y )→ K1(X,Y )→ . . .



The Atiyah-Hirzebruch spectral sequence

• X a CW-complex. Xi ⊂ X is the i-skeleton of X, union of cells of
dimension ≤ i.

• One gets a decreasing filtration of the cochain complex by subcomplexes
C∗(X,Xp) and a spectral sequence with Ep,q1 = 0 for q 6= 0,

Ep,01 = Cp(Xp/Xp−1), Ep,02 = Ep,0∞ = Hp(X,Z).

• Using (*), Atiyah and Hirzebruch construct a similar spectral sequence
for K-theory.

Thm. There exists a spectral sequence Epq2 ⇒ Kp+q(X) with Epq2 = 0 if
q is odd, Epq2 = Hp(X,Z) if q is even.

• (Formal). The differential dr vanishes for even r.
• With Q-coefficients, the differentials must vanish (compare with
cohomology).

Cor. One has Epq2 = Epq∞ if
(i) Hodd(X,Z) = 0 or
(ii) H∗(X,Z) has no torsion.
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Resolutions and characteristic classes of coherent sheaves

• Let Z ⊂ X be a closed analytic subset in a complex manifold. Coherent
sheaves IZ ⊂ OX , OZ = OX/IZ .

• In the smooth projective case: any coherent sheaf admits a (finite)
locally free resolution. Follows from (a) local statement, (b) any coherent
sheaf H admits a surjective quotient map F → H → 0 with F locally free.

• Not true in the general compact complex case:
Thm. (Voisin 2002) Take X = T very general complex torus of dimension
3, x ∈ T a point. Then Ix does not admit a locally free resolution.

• X complex compact. Atiyah-Hirzebruch use locally free resolutions of
coherent sheaves by real analytic complex vector bundles:
0→ Fn → . . .Fi . . .→ F0 → Hω → 0. Thus any coherent sheaf H has a
class in K0(X). One has c(H) =

∏
i c(Fi)εi , εi = (−1)i.

Thm. (Atiyah-Hirzebruch, Grothendieck-Riemann-Roch) Z ⊂ X closed
analytic of codimension k. OZ has a class in K0(X,X \ Z) and
(*) ck(OZ) = (−1)k−1(k − 1)![Z] in H2k(X,Z).

• Here [Z] ∈ H2k(X,Z) is the cycle class of Z.



Resolutions and characteristic classes of coherent sheaves

• Let Z ⊂ X be a closed analytic subset in a complex manifold. Coherent
sheaves IZ ⊂ OX , OZ = OX/IZ .

• In the smooth projective case: any coherent sheaf admits a (finite)
locally free resolution. Follows from (a) local statement, (b) any coherent
sheaf H admits a surjective quotient map F → H → 0 with F locally free.

• Not true in the general compact complex case:
Thm. (Voisin 2002) Take X = T very general complex torus of dimension
3, x ∈ T a point. Then Ix does not admit a locally free resolution.

• X complex compact. Atiyah-Hirzebruch use locally free resolutions of
coherent sheaves by real analytic complex vector bundles:
0→ Fn → . . .Fi . . .→ F0 → Hω → 0. Thus any coherent sheaf H has a
class in K0(X). One has c(H) =

∏
i c(Fi)εi , εi = (−1)i.

Thm. (Atiyah-Hirzebruch, Grothendieck-Riemann-Roch) Z ⊂ X closed
analytic of codimension k. OZ has a class in K0(X,X \ Z) and
(*) ck(OZ) = (−1)k−1(k − 1)![Z] in H2k(X,Z).

• Here [Z] ∈ H2k(X,Z) is the cycle class of Z.



Atiyah-Hirzebruch counterexamples to the integral Hodge conjecture

Conj. (Hodge conjecture) Let X=projective complex manifold and
α ∈ H2k(X,Q) be of Hodge type (k, k). Then α =

∑
i αi[Zi], with

αi ∈ Q, Zi ⊂ X closed of codim. k.

Rem. Equivalent formulations, using resolutions and formula (*):
α ∈ 〈ck(F)〉Q, F= coherent sheaf on X, or α ∈ 〈ck(F)〉Q, F= locally
free coherent sheaf on X.

• The three statements are wrong in the compact Kähler case (Voisin).

• Z-coefficients. Wrong (Atiyah-Hirzebruch).

Thm. (Atiyah-Hirzebruch) Let X= compact complex manifold, Z ⊂ X
closed analytic subset of codim k with class [Z] ∈ H2k(X,Z). Then [Z] is
annihilated by all the differentials dr, r ≥ 3 of the A-H spectral sequence.

• The example. 2-torsion cohomology class α of degree 4 on a smooth
projective manifold X which is not annihilated by d3 ⇒ not a cycle class.

• Construction: Serre’s trick : finite group G acting on projective space
CPN  complete intersection X ⊂ CPN on which G acts freely  X/G.
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Complex cobordism ring

• Milnor construction of MU∗(pt). 1) Generators: compact
differentiable manifolds M of dim ∗ + a virtual complex structure on TM .
2) Complex cobordism relations: N = differentiable manifold with
boundary ∂N and virtual complex structure on TN , hence virtual complex
structure on T∂N .

• Complex cobordism group MU∗(X), X=manifold: 1) Generators:
compact diff. manifolds M of dim. ∗, + diff. map f : M → X + virtual
complex structure on virtual normal bundle Nf := f∗TX − TM .
2) Complex cobordism relations: N = differentiable manifold with
boundary ∂N , F : N → X differentiable map and virtual complex
structure on NF , hence virtual complex structure on NF|∂M .
• Map o : MU∗(X)⊗MU∗(pt) Z→ H∗(X,Z), (M,f)→ f∗[M ]. Iso. ⊗Q.

Thm. (Totaro) X compact complex manifold, Z ⊂ X closed analytic
subset of codim k. Then (1) [Z] ∈ Im o.
(2) ∃ canonical lift of [ ] to refined cycle class [̃ ].

(1) Follows from Hironaka resolution of singularities. Allows to reinterpret
the Atiyah-Hirzebruch obstruction by computing in MU∗.
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Nontopological obstructions to the algebraicity of integral Hodge classes

• The Atiyah-Hirzebruch-Totaro obstruction for an integral cohomology
class α on X =complex compact manifold to be algebraic is topological.
⇒ The class α does not become a cycle class on a deformation of X.

• Kollár’s examples. Let X ⊂ Pn, n ≥ 4, be a smooth hypersurface of
degree d. Lefschetz thm on hyperplane sections ⇒ H2n−4(X,Z) = Zα,
with degα = 1. If X contains a line ∆, α = [∆].

Thm. (Kollár) If X is very general of degree pn−1, p ≥ n− 1 prime, any
curve C ⊂ X has degree divisible by p. Hence α is not algebraic.

• The proof is by specialization of X to the image of a generic map
Pn−1 → Pn given by polynomials of degree p.

• n = 4. X as above, S = surface with 0 6= β ∈ H2(S,Z) of p-torsion.  
p-torsion class γ = pr∗1α ^ pr∗2β ∈ H6(Y,Z), Y = X × S.

Thm. (Soulé-Voisin) The p-torsion class γ is not algebraic on Y for X
very general. (The prime p is arbitrarily large, the dimension is fixed.)

• The torsion class γ is algebraic on Y for special X, eg X containing a
line.
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The Bloch-Ogus spectral sequence

• Let X be a complex algebraic manifold. X(C) has two topologies, the
Euclidean and Zariski topologies  continuous map f : Xan → XZar.

• The Bloch-Ogus spectral sequence is the Leray spectral sequence of f .

• A abelian group. Hi(A) := Rif∗A, sheaf associated to presheaf
U 7→ H i(Uan, A) on XZar.

• Ep,q2 = Hp(XZar,Hq(A))⇒ Hp+q(Xan, A).

Thm. (Bloch-Ogus) (a) One has Ep,q2 = 0 for p > q.

(b) A = Z. Ek,k2 is isomorphic to Zk(X)/alg.

(c) The induced map Ek,k2 → Ek,k∞ ↪→ H2k(X,Z) is the cycle class map
[ ] : Zk(X)/alg→ H2k(X,Z).

• Group of cycles Zk(X) = {
∑

i niZi, codimZi = k}.
Def. X projective. Z, Z ′ ⊂ X are algebraically equivalent if ∃ smooth
projective curve C, a cycle Z in C ×X (flat over C) and two points t, t′

of C such that Zt −Zt′ = Z − Z ′ as cycles of X.
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The Bloch-Ogus spectral sequence, contd

• Let Griffk(X) := Ker [ ] ⊂ Zk(X)/alg. Analyzing the Bloch-Ogus
spectral sequence in degree 4, get:

Cor. (Bloch-Ogus) (k = 2) Exact sequence

H3(X,Z)→ H0(XZar,H3(Z))
d2→ Griff2(X)→ 0.

• Thm. (Griffiths) There exist smooth projective threefolds X with
Griff2(X)⊗Q 6= 0.

Cor. (Bloch-Ogus) The group H0(XZar,H3(Q))/H3(X,Q) can be
nonzero.

• Define Hk(C(X), A) := lim
→ ∅6=U⊂X, Zar. open

Hk(U,A).

Thm. (Bloch-Ogus) The space H0(X,Hk(A)) identifies with
Ker (Hk(C(X), A)

res→ ⊕D divisorH
k−1(C(D), A)).

• Whether a class with no residues comes from a class on the total space
had been asked by Atiyah and Hodge (Integrals of the second kind on an
algebraic variety. Ann. of Math. 1955) (and established in degree ≤ 2).



The Bloch-Ogus spectral sequence, contd

• Let Griffk(X) := Ker [ ] ⊂ Zk(X)/alg. Analyzing the Bloch-Ogus
spectral sequence in degree 4, get:

Cor. (Bloch-Ogus) (k = 2) Exact sequence

H3(X,Z)→ H0(XZar,H3(Z))
d2→ Griff2(X)→ 0.

• Thm. (Griffiths) There exist smooth projective threefolds X with
Griff2(X)⊗Q 6= 0.

Cor. (Bloch-Ogus) The group H0(XZar,H3(Q))/H3(X,Q) can be
nonzero.

• Define Hk(C(X), A) := lim
→ ∅6=U⊂X, Zar. open

Hk(U,A).

Thm. (Bloch-Ogus) The space H0(X,Hk(A)) identifies with
Ker (Hk(C(X), A)

res→ ⊕D divisorH
k−1(C(D), A)).

• Whether a class with no residues comes from a class on the total space
had been asked by Atiyah and Hodge (Integrals of the second kind on an
algebraic variety. Ann. of Math. 1955) (and established in degree ≤ 2).


