
O
n

the
origins

ofLanglands’conjectures

by
B

illC
asselm

an

T
his

talk
can

be
found

at

h
t
t
p
:
/
/
w
w
w
.
m
a
t
h
.
u
b
c
.
c
a
/~
c
a
s
s
/
h
a
r
v
a
r
d
/
h
a
r
v
a
r
d
-
2
0
2
0
.
p
d
f

4:02
p.m

.
S

eptem
ber

24,
2020
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Langlands
has

m
ade

m
any

contributions
to

num
ber

theory,
but

the
principal

one
is

probably
his

discovery
in

1966–67,
follow

ed
by

w
ork

in
subsequent

years,
of

the
role

of
the

dualgroup
in

the
theories

of
autom

or
phic

form
s

and
L-functions.

I
shalltry

to
explain

w
hat

this
am

ounted
to

by
t

racing
the

origins
of

this
developm

ent
through

w
ork

of
R

am
anujan,

H
ecke,

S
iege

l,
M

aass,
S

el-
berg,

and
other

m
athem

aticians
of

the
tw

entieth
century.

H
ere’s

a
so
b
erin

g
th
o
u
g
h
t:

m
o
re

tim
e
sep

arates
u
s
fro

m
L
an

g
lan

d
s’

co
n
jectu

res
th
an

L
an

g
lan

d
s’

fro
m

R
am

an
u
jan

’s!
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1.
S

um
s

of
squares
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I
begin

w
ith

som
ething

elem
entary.

H
av

e
p
atien

ce.

Let

r
ℓ (n

)
=

the
num

ber
of

w
ays

n
can

be
expressed

as
a

sum
of

ℓ
integralsquares.

T
hus

r
2 (4

)
=

4
because

4
=

(±
2
)
2

+
(±

2
)
2.

M
any

w
ellknow

n
m

athem
aticians

of
the

nineteenth
century,

a
m

ong
them

G
auss,

Jacobi,
E

isenstein,
Liouville,

S
m

ith,
and

M
inkow

skifound
form

ulas
for

this
function,

w
hen

k
is

sm
all.

G
auss

found
one

for
r
3 ,

and
S

m
ith

and
M

inkow
ski

shared
a

prize
for

finding
r
5 .

O
dd

ℓ
behave

very,
very

differently
from

even
ℓ,

and
I’llassum

e
ℓ

even
from

now
on.
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To
give

you
an

idea
of

the
flavour

of
the

problem
,

consider
r
2 .

5
1
5

2
5

3
5

4
5

5
5

6
5

7
5

0
4

8
1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0
0
1
0
4

4 8

1
2

1
6

n

r
2
(
n
)
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T
he

reason
for

the
apparently

erratic
behaviour

is
that

r
2 (n

)
depends

on
the

factorization
of

n
.

F
or

exam
ple,

as
F

erm
at

knew
,

an
odd

prim
e

p
m

ay
be

ex-
pressed

the
sum

of
squares

if
and

only
if

p
≡

4
1.

Jacobiproved
that

r
2 (n

)
=

4
(

∑

d
|n

,d
≡

4
1

1−
∑

d
|n

,d
≡

4
3

1
)

r
4 (n

)
=

8
σ

1 (n
)
=

8
∑

d
|n

d

H
e

later
w

ent
on

to
find

form
ulas

for
r
6

and
r
8 ,

w
hich

w
e’llsee

in
a

m
om

ent.
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O
ne

of
the

basic
tools

in
Jacobi’s

w
ork,

and
in

allsubsequent
investigations,

is
the

series
ϑ

=
∑

Z
q

n
2

=
1

+
2
∑

1 q
n

2

.

T
his

is
because

ϑ
ℓ
=

∑

n
=

0 r
ℓ (n

)q
n

.

F
or

exam
ple

ϑ
2

=
∑

m
,n

q
m

2
+

n
2

.

S
o

the
problem

can
be

reform
ulated:

H
o
w

to
fi
n
d
a
fo
rm

u
la

fo
r

ϑ
ℓ?

O
ne

hint
as

to
w

hat
w

illbe
involved

is
the

fact
that

ϑ
ℓ

can
be

defined
as

a
holom

orphic
function

on
the

entire
upper

half-plane
by

sett
ing

q
=

e
2
π

iz.
If

z
=

x
+

iy
w

ith
y

>
0

then

ϑ
ℓ(z

)
=

∑

n
=

0 r
ℓ (n

)e
2
π

in
x
e
−

2
π

n
y
.

B
ut

r
ℓ (n

)
is

certainly
bounded

by
som

e
pow

er
of

n
...
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B
y

1907,
answ

ers
of

som
e

kind
w

ere
know

n
for

alleven
ℓ≤

1
8.

T
he

situation
w

as
sum

m
arized

by
J.

W
.

L.
G

laisher,
a

F
ellow

of
Trinity

C
olle

ge,
C

am
bridge,

w
ho

w
as

particularly
interested

in
num

ericalcom
putation.

I
reproduce

his
no-

tation
exactly:

r
2 (n

)
=

4
E

0 (n
)

r
4 (n

)
=

(−
1
)
n
−

18
ξ
1 (n

)

r
6 (n

)
=

4
(E

′2 (n
)−

E
2 (n

)
)

r
8 (n

)
=

(−
1
)
n
−

11
6
ζ
3 (n

)

r
1
0 (n

)
=

(4
/
5
)
(E

4 (n
)
+

1
6
E

′4 (n
)
+

8
χ

4 (n
)
)

r
1
2 (n

)
=

{

−
8
ξ
5 (n

)
if

n
even

8
(∆

5 (n
)
+

2
Ω

(n
)
)

otherw
ise.

r
1
4 (n

)
=

(4
/
6
1
)
(6

4
E

′6 (n
)−

E
6 (n

)
+

3
6
4
W

(n
)
)

r
1
6 (n

)
=

(−
1
)
n
−

1(3
2
/
1
7
)
(ζ

7 (n
)
+

1
6
Θ

(n
)
)

r
1
8 (n

)
=

(4
/
1
8
0
0
5
)
(1

3
E

8 (n
)
+

3
3
2
8
E

′8 (n
)

+
9
7
5
0
4
χ

8 (n
)−

6
1
2
0
0
G

(n
)−

6
1
2
0
G

(2
n
)
)

H
ere

E
n

,
E

′n
,
ξ
n

,
∆

n
,
ζ
n

are
certain

divisor
sum

s.
T

he
functions

in
red

all
have

vanishing
constant

term
and

are
norm

alized
so

that
the

fi
rst

term
is

equalto
1.

T
he

term
s

in
red

are
also

asym
ptotically

m
uch

sm
aller

than
t

he
others.

T
here

are
sim

ple
form

ulas
for

χ
m

(n
),

not
the

others.
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F
or

exam
ple,

the
case

ℓ
=

1
2:

Ω
=

q−
1
2
q
3
+

5
4
q
5−

8
8
q
7−

9
9
q
9
+

5
4
0
q
1
1

−
4
1
8
q
1
3−

6
4
8
q
1
5

+
5
9
4
q
1
7
+

8
3
6
q
1
9
+

1
0
5
6
q
2
1

−
4
1
0
4
q
2
3−

2
0
9
q
2
5
+

4
1
0
4
q
2
7−

5
9
4
q
2
9
+

4
2
5
6
q
3
1

−
6
4
8
0
q
3
3−

4
7
5
2
q
3
5−

2
9
8
q
3
7
+

5
0
1
6
q
3
9
+

1
7
2
2
6
q
4
1

−
1
2
1
0
0
q
4
3−

5
3
4
6
q
4
5−

1
2
9
6
q
4
7−

9
0
6
3
q
4
9−

7
1
2
8
q
5
1

+
1
9
4
9
4
q
5
3
+

2
9
1
6
0
q
5
5−

1
0
0
3
2
q
5
7−

7
6
6
8
q
5
9−

3
4
7
3
8
q
6
1

+
8
7
1
2
q
6
3−

2
2
5
7
2
q
6
5
+

2
1
8
1
2
q
6
7
+

4
9
2
4
8
q
6
9−

4
6
8
7
2
q
7
1

+
6
7
5
6
2
q
7
3
+

2
5
0
8
q
7
5−

4
7
5
2
0
q
7
7−

7
6
9
1
2
q
7
9−

2
5
1
9
1
q
8
1

+
6
7
7
1
6
q
8
3
+

3
2
0
7
6
q
8
5
+

7
1
2
8
q
8
7
+

2
9
7
5
4
q
8
9
+

3
6
7
8
4
q
9
1

−
5
1
0
7
2
q
9
3
+

4
5
1
4
4
q
9
5−

1
2
2
3
9
8
q
9
7−

5
3
4
6
0
q
9
9
+

1
1
2
8
6
q
1
0
1±

···

G
laisher

noticed
em

pirically
that

Ω
(m

n
)

=
Ω

(m
)Ω

(n
)

w
hen

(m
,n

)
=

1.
T

his
is

best
interpreted

in
term

s
of

a
D

irichlet
series

w
ith

E
uler

product:

∑

1

Ω
(n

)

n
s

=
∏

p (1
+

Ω
(p

)p
−

s
+

Ω
(p

2)p
−

2
s
+

Ω
(p

3)p
−

3
s
+

···
)
.
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(lo
g

p
,
lo

g
Ω

(
p
))

divisor sum
T

his
is

a
log-log

plot
for

ℓ
=

1
2.

T
he

divi-
sor

sum
s

in
allcases

are
of

order
p

ℓ/
2
−

1,
here

p
5.

B
ecause

of
the

m
ultiplicative

property,
the

term
s

Ω
(p

)
are

of
greatest

interest.

A
nd

as
I

have
already

rem
arked,

the
‘sup-

plem
entary

term
’is

asym
ptotically

m
uch

sm
aller

than
this

divisor
sum

.
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r
2 (n

)
=

4
E

0 (n
)

r
4 (n

)
=

(−
1
)
n
−

18
ξ
1 (n

)

r
6 (n

)
=

4
(E

′2 (n
)−

E
2 (n

)
)

r
8 (n

)
=

(−
1
)
n
−

11
6
ζ
3 (n

)

r
1
0 (n

)
=

(4
/
5
)
(E

4 (n
)
+

1
6
E

′4 (n
)
+

8
χ

4 (n
)
)

r
1
2 (n

)
=

{

−
8
ξ
5 (n

)
if

n
even

8
(∆

5 (n
)
+

2
Ω

(n
)
)

otherw
ise.

r
1
4 (n

)
=

(4
/
6
1
)
(6

4
E

′6 (n
)−

E
6 (n

)
+

3
6
4
W

(n
)
)

r
1
6 (n

)
=

(−
1
)
n
−

1(3
2
/
1
7
)
(ζ

7 (n
)
+

1
6
Θ

(n
)
)

r
1
8 (n

)
=

(4
/
1
8
0
0
5
)
(1

3
E

8 (n
)
+

3
3
2
8
E

′8 (n
)

+
9
7
5
0
4
χ

8 (n
)−

6
1
2
0
0
G

(n
)−

6
1
2
0
G

(2
n
)
)

•
W

hat
about

larger
ℓ?

•
C

an
w

e
find

a
single

form
ula

for
alldivisor

sum
s?

•
W

hy
som

etim
es

none,
som

etim
es

m
any

supplem
entalterm

s?
•

C
an

w
e

estim
ate

them
?

•
To

w
hat

extent
does

the
‘m

ultiplicative
property’hold?

•
Is

there
anything

to
be

said
about

the
p-series

like
∑

n
Ω

(p
n
)p

−
n

s?
•

W
hat

about
other

quadratic
form

s?
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C
an

w
e
b
rin

g
so
m
e
o
rg
an

izatio
n
in
to

th
is

ap
p
aren

tly
ch

ao
tic

b
u
sin

ess?

T
he

situation
doesn’t

seem
very

satisfactory
to

us,
but

it
is

definitely
intrigu-

ing.
G

laisher
w

asn’t
very

happy
about

it,
either,

but
for

rea
sons

different
from

ours.

H
e

com
m

ented:
"T

he
only

com
plete

and
effective

m
ethod

of
res

earch
in

such
investigations

is
afforded

by
the

processes
of

the
theory

of
num

bers,
and

any
m

ethod
dependent

upon
elliptic

functions
...

is
necessarily

partialand
inade-

quate."

T
his

contrasts
com

pletely
w

ith
w

hat
w

e
now

believe:
In

th
e
co
u
rse

o
f
th
e
tw

en


tieth
cen

tu
ry,

it
b
ecam

e
clear

th
at

au
to
m
o
rp
h
ic

fo
rm

s
(as

su
ch

fu
n
ctio

n
s
are

called
v
ery

g
en

erally
)
m
ak

e
u
p
an

an
in
ev

itab
le

co
m
p
o
n
en

t
o
f
n
u
m
b
er

th
eo

ry.

U
nlike

G
laisher,

w
e

have
probably

becom
e

used
to

sim
ple

prob
lem

s
w

ith
in-

sanely
com

plicated
solutions.

13/52



In
1916,

about
ten

years
later,

R
am

anujan
read

G
laisher’s

no
te

(at
H

ardy’s
suggestion,

I
im

agine),
and

found
form

ulas
for

r
2
0 ,

r
2
2 ,

r
2
4 .

T
he

case
of

r
2
4

is
especially

striking,
because

in
this

case
the

supplem
ent

ary
series

involved
a

w
ellknow

n
entity.

r
2
4 (n

)
=

(

1
6

6
9
1
σ

1
1 (n

)−
3
2

6
9
1
σ

1
1 (n

/
2
)

)

+

(

3
3
1
5
2

6
9
1

(−
1
)
n
−

1τ
(n

)−
6
6
5
3
6

6
9
1

τ
(n

/
2
)

)

w
here

∑

1 τ
(n

)q
n

=
q

∏

k

(1−
q

ℓ)
2
4

=
(say)

∆
.

W
hen

q
is

set
to

e
2
π

iz
this

becom
es

the
discrim

inant
of

elliptic
function

the-
ory.

F
ollow

ing
G

laisher,
R

am
anujan

then
conjectured

that

τ
(m

)τ
(n

)
=

τ
(m

n
)

if
(m

,n
)

=
1
.
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R
am

anujan
also

looked
at

the
p-series

and
found

em
pirically

that
it

satisfied
a

difference
equation

of
order

tw
o.

C
om

bining
these

observat
ions,

he
arrived

at
the

conjecture
that

∑

1

τ
(n

)

n
s

=
∏

1

1−
τ
(p

)p
−

s
+

p
1
1
−

2
s

.

It
is

difficult
to

exaggerate
how

consequentialthis
observa

tion
w

as.

H
e

also
found

an
sim

ple
expression

for
the

divisor
sum

w
hen

ℓ≡
8

4.
partially

answ
ering

one
of

our
questions.

I
am

not
sure

w
hy

he
couldn’t

d
ealw

ith
the

arbitrary
case

ℓ≡
4

0.
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E
ven

m
ore

interesting,
he

w
rote

x
2−

τ
(p

)x
+

p
1
1

=
(x

−
α

p p
1
1
/
2)(x

−
β

p p
1
1
/
2)

,

and
then

asserted
that

it
w

as
“highly

probable"
that

the
root

s
w

ere
com

plex
conjugates.

In
this

case,
w

e
can

setα
p

=
e
2
π

iθ
p

for
som

e
θ

p
in

[0
,π

].
E

quivalently,
co

s
θ

p
=

τ
(p

)/
2
p
1
1
/
2.

T
his

conjecture
is

certainly
strongly

suggested
by

the
graph

I
show

ed
earlier.

It
is

not
clear

to
m

e
that

there
w

as
m

uch
excitem

ent
at

the
tim

e
attached

to
this

guess.
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R
am

anujan’s
paper

attracted
m

ore
attention

than
G

laisher’
s.

O
ne

reason
is

that
the

function
∆

is
a

w
ellknow

n
m

odular
form

.
H

ardy
rem

arked
in

his
book

on
R

am
anujan

(1939),
“W

e
m

ay
seem

to
be

straying
into

one
of

the
back

w
aters

of
m

athem
atics,

but
the

genesis
of

τ
(n

)
as

a
coefficient

in
so

funda-
m

entala
function

com
pels

us
to

treat
it

w
ith

respect."

S
till,

m
y

im
pression

is
that

even
as

late
as

1939,
as

w
ellas

in
1917,

these
m

atters
w

ere
not

thought
to

be
of

m
uch

significance.
(W

ell
...

not
by

any
E

n-
glish

m
athem

atician.
T

he
G

erm
ans

w
ere

doing
m

uch
better.)
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O
ne

thing
that

R
am

anujan
m

ight
have

done,
but

apparently
did

not,
w

as
ex-

am
ine

the
statisticaldistribution

of
the

angles
θ

p
involved

in
the

supplem
en-

tary
series.

H
ere

is
a

bar
graph

of
the

distribution
for

about
2
5
0
0

values
of

Ω
(p

),
the

supplem
entary

term
for

r
1
2 .

0
π

θ

y
=

(2/π
)
sin

2(θ)

S
uperim

posed
is

a
conjectured

asym
ptotic

lim
it.

T
his

contrasts
w

ith
the

case
of

r
1
0 .

H
ere

the
supplem

entary
term

is

χ
4 (p

)
=

∑

z
∈

Z
[i]

|z
|
2
=

p

z
4

It
vanishes

if
p
≡

4
3,

and
is

uniform
ly

distributed
for

p
≡

4
1.

I
see

no
m

ention
of

questions
like

this
in

the
classicalliter

ature,
but

since
around

1965
it

has
becom

e
a

m
ajor

issue
in

the
subject.
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2.
H

ecke
operators
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R
am

anujan’s
first

tw
o

conjectures
w

ere
proved

by
L.

J.
M

ordel
l(B

ritish,
but

A
m

erican-born)
a

year
later.

If
w

e
set

q
=

e
2
π

iz,
the

series
for

∆
becom

es
a

m
odular

form
on

the
com

-
plex

upper
half-plane

H
,

w
ith

respect
to

the
group

S
L

2 (Z
).

(I’llexplain
w

hat
this

m
eans

in
a

m
om

ent.
T

his
had

been
know

n
for

a
very

long
tim

e
.)

M
ordell

defined
operators

T
(n

)
on

such
form

s.
It

is
easy

to
see

that
they

satisfy
the

m
ultiplicative

property,
and

R
am

anujan’s
conjecture

redu
ces

to
the

equation
T

(n
)∆

=
τ
(n

)·∆
.

M
ordellproved

this
by

show
ing

that
the

ratio
T

(n
)∆

/
∆

,
w

hich
is

a
holom

orphic
function

on
S
L

2 (Z
)\H

,
is

bounded,
hence

constant.

N
ow

adays,
once

the
operators

have
been

defined,
the

finalstep
is

trivial,
be-

cause
w

e
know

the
space

of
cusp

form
s

(w
ith

constant
term

0)
to

have
di-

m
ension

one.
B

ut
this

reasoning
is

anachronistic,
and

M
orde

ll’s
proof

w
as

rather
specialto

the
problem

at
hand.

O
ne

notable
feature

is
that

he
did

not
use

any
relationship

w
ith

sum
s

of
squares,

but
just

w
ellknow

n
properties

of
∆

.

It
is

im
portant

that
you

understand
how

the
operator

T
(n

)
is

defined.
I

have
to

tellyou
first

w
hat

a
m

odular
form

is.
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A
lattice

in
C

is
a

copy
of

Z
2

in
it.

It
m

ay
be

specified
by

a
pair

ω
=

(ω
1 ,ω

2 )
w

ith
z

=
ω

1 /
ω

2
of

positive
im

aginary
part.

Tw
o

such
pairs

give
rise

to
the

sam
e

lattice
w

hen
one

is
the

transform
of

the
other

by
a

m
atrix

in
S
L

2 (Z
).

A
m

odular
form

of
w

eight
k
≥

1
w

ith
respect

to
any

group
Γ

⊆
S
L

2 (Z
)

is
a

holom
orphic

function
F

of
ω

satisfying
som

e
m

ild
grow

th
condition

and
the

tw
o

conditions
F

(λ
ω
)

=
λ
−

kF
(ω

)
(λ

∈
C

×
)

F
(γ

ω
)
=

F
(ω

)
(γ

∈
Γ
)

E
ffectively,

it
is

a
function

on
the

set
of

Γ
-equivalence

classes
of

lattices.

R
estriction

to
points

(z
,1

)
identifies

F
w

ith
a

function
f

on
the

upper
half-

plane
transform

ing
in

a
certain

w
ay

under
integralfraction

allinear
transfor-

m
ations.

If
Γ

=
S
L

2 (Z
)

then
invariance

under
m

atrices

[

1
n

0
1

]

im
plies

that

f
(z

+
n
)
=

f
(z

)
for

all
n

in
Z

.
T

his
im

plies
that

f
(z

)
=

∑

Z
c
n
e
2
π

in
z
.

T
he

grow
th

condition
m

eans
that

c
n

=
0

for
n

<
0.

T
he

function
ϑ

2
k

is
a

m
odular

form
of

w
eight

k
for

som
e

Γ
of

finite
index

in
S
L

2 (Z
).
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I’llnow
follow

M
ordell,

w
ith

a
slight

m
odification,

in
defini

ng
certain

operators
on

m
odular

form
s,

w
hich

are
now

called
H

ecke
operators

.
If

M
⊆

L
are

tw
o

lattices,
the

principaldivisor
theorem

tells
us

that
M

=
n

1 ω
1

+
n

2 ω
2

for
som

e
basis

ω
1 ,

ω
2

of
L

and
n

2 |n
1

in
N

.
In

these
circum

stances,
I’llw

rite
[L

:
M

]
=

(n
1 ,n

2 ).

If
F

is
any

function
on

the
set

of
lattices

invariant
under

S
L

2 (Z
),

define

[T
(n

1 ,n
2 )F

](L
)

=
∑

[L
:M

]=
(n

1
,n

2
) F

(M
)
.

F
or

exam
ple,

if
(n

1 ,n
2 )

=
(p

,1
)

and
L

=
Z

2
then

M
w

illhave
one

of
the

bases
(1

,p
),

(p
,x

)
(w

ith
0
≤

x
<

p
)
.

T
hen

define
the

sim
ple

and
norm

alized
H

ecke
operators

T
(n

)
=

∑

n
1
n

2
=

n
T

(n
1 ,n

2 )

T
k (n

)
=

n
k
−

1
T

(n
)

T
he

C
hinese

rem
ainder

theorem
im

plies
that

T
(m

n
)

=
T

(m
)T

(n
)

if
m

,
n

are
relatively

prim
e.
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T
he

factor
n

k
−

1
is

chosen
so

that
if

F
is

a
cusp

form
of

w
eight

k
w

ith
respect

to
S
L

2 (Z
)

such
that

T
k (n

)F
=

t
n
F

then

F
(z

,1
)

=
∑

∞1
t
n
e
2
π

in
z
.

if
F

is
scaled

so
c
1

=
1.

W
hat

about
the

p-series?
You

can
see

on
geom

etric
grounds

that

T
(p

,1
)T

(p
,1

)
=

T
(p

2,1
)
+

(p
+

1
)T

(p
,p

)

T
(p

,1
)T

(p
n
,1

)
=

T
(p

n
+

1,1
)
+

p
T

(p
n
,p

)
(n

≥
2
)
.

w
hich

im
plies

T
k (p

)T
k
(p

n
)
=

T
k (p

n
+

1)
+

p
T

k
(p

n
−

1)
(n

≥
1
)
.

T
his

leads
to

R
am

anujan’s
difference

equation,
and

hence
to

his
E

uler
prod-

uct.
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M
ordell’s

proof
leaves

unansw
ered

a
lot

of
interesting

ques
tions.

H
ere

is
a

sim
ple

one:

W
h
y
aren

’t
th
e

T
(n

)
called

M
o
rd
ell

o
p
erato

rs?

A
t

the
end

of
his

paper
M

ordellrem
arks

that
R

am
anujan

m
ade

si
m

ilar
con-

jectures
for

functions
related

to
r
1
0 (n

)
and

r
1
6 (n

).
(H

e
doesn’t

seem
to

have
read

either
G

laisher
or

R
am

anujan
carefully.)

H
e

then
w

ent
o

n

“T
hese

results
can

be
proved

by
the

aid
of

the
principles

used
in

[h
is

p
ro
o
f
o
f
th
e
co
n
jectu

re
ab

o
u
t
τ
].

W
e

should
how

ever
have

to
consider

new
invariants

of
a

sub-group
of

the
m

odular
group,

and
it

see
m

s
hardly

w
orth

w
hile

to
go

into
details."

T
here

are
indeed

som
e

sm
alltechnicalproblem

s
involved

in
d

efining
the

right
‘H

ecke
operators’for

congruence
groups,

but
hardly

insupe
rable.

(A
lthough

I
think

these
problem

s
w

eren’t
com

pletely
understood

untilt
he

nineteen-sixties,
and

prim
arily

through
w

ork
of

Langlands.)
M

ordell,
how

ever
,

just
didn’t

under-
stand

that
he

w
as

standing
on

top
of

a
gold

m
ine.

H
e

seem
s

to
hav

e
never

again
looked

at
problem

s
involving

m
odular

form
s,

and
in

som
e

late
rem

inis-
cences

he
does

not
refer

to
this

paper.
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LetM
k (1

)
be

the
space

of
m

odular
form

s
of

w
eight

k
for

Γ
(1

),S
k (1

)
the

sub-
space

of
cusp

form
s

,
w

ith
vanishing

constant
term

.
B

oth
have

finite-dim
ension.

T
he

difference
in

dim
ensions

is
at

m
ost

1,
since

Γ
(1

)
has

exactly
one

cusp.
T

he
com

plem
ent

of
S

k
is

spanned
by

a
function

called
an

E
isenstein

series
,

w
hich

w
as

in
fact

first
defined

by
E

isenstein:

G
k (L

)
=

∑

ω
6=

0
∈

L

1

ω
2
k

w
ith

series
expansion

G
k (z

)
=

2
ζ
(2

k
)
+

2
(2

π
i)

2
k

(2
k
−

1
)!

∑

1 σ
2
k
−

1 (n
)e

2
π

n
iz

T
he

series
expansion

is
attributed

to
E

isenstein
by

W
eil,

bu
t

I
have

not
been

able
to

locate
it

in
his

C
ollected

W
orks.

It
is

included
in

H
ur

w
itz’H

abilitation-
schrift

(1881),
referred

to
by

M
ordell.

T
he

point
here

is
that

analogues
of

these
series

are
responsi

ble
for

the
‘di-

visor
sum

s’occurring
in

the
asym

ptotic
approxim

ations
for

all
r
2
k (n

).
T

he
com

plexities
in

G
laisher’s

table
are

largely
due

to
the

com
p

lexities
of

B
ernoulli

num
bers.
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3.
M

ore
about

G
L(2)
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E
rich

H
ecke

took
up

the
subject

of
quadratic

form
s

and
m

odula
r

form
s

around
1926,

and
changed

com
pletely

the
m

ap
of

the
country.

A
m

ong
hi

s
contribu-

tions
w

as
the

extension
to

arbitrary
congruence

groups
Γ
(N

)
of

the
theory

w
e

have
seen

for
Γ
(1

)
=

S
L

2 (Z
).

T
his

w
as

a
m

ajor
and

thoroughgoing
ac-

com
plishm

ent.

•
H

e
defined

E
isenstein

series,
therefore

a
basis

of
the

com
ple

m
ent

of
S

k (N
)

in
M

k (N
).

•
H

e
defined

operators
T

(n
)

for
(n

,N
)

=
1

satisfying
the

sam
e

relations
as

those
for

Γ
(1

).
T

he
operator

T
(p

,p
)

is
now

R
p
F

(p
ω
)

w
here

R
p

is
the

ac-
tion

of
[

p
0

0
q

]

(p
q
≡

N
1
)

on
functions

fixed
by

Γ
(N

).
•

H
is

student
H

ans
P

etersson
defined

a
E

uclidean
norm

on
S

k (N
),

according
to

w
hich

the
T

(n
)

are
self-adjoint.

T
hus

S
k

is
the

direct
sum

of
eigenspaces.
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H
eck

e,
co
n
t’d

•
H

e
presum

ably
knew

a
form

ula
for

the
dim

ension
of

S
k .

although
I

have
seen

only
specific

cases
am

ong
his

papers.
(It

depends
on

the
t

heorem
of

R
iem

ann-R
och,

and
I

see
no

reason
w

hy
H

urw
itz

couldn’t
have

d
iscovered

it.)
•

H
e

defined
L

-functions
as

E
uler

products

∏

(p
,N

)=
1

1

1−
c
p p

−
s
+

ε(p
)p

k
−

1p
−

2
s

(ε:(Z
/N

)
×
→

C
×

)
,

found
a

good
form

of
functionalequation,

and
show

ed
they

w
er

e
entire.

(H
ardy

asserts
in

his
book

that
the

functionalequation
for

R
am

anujan’s
“m

ust
have

been
fam

iliar
to

him
,

but
I

cannot
find

it
anyw

here
i

n
his

pa-
pers."

R
efers

to
an

obscure
1928

paper
by

W
ilkin.)

•
H

e
gave

fair
estim

ates
on

the
m

agnitudes
|c

p |.
•

H
e

extended
earlier

results
on

r
2
k

to
other

positive
definite

integralquadratic
form

s.
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A
fter

the
w

ar,
H

ecke’s
student

H
ans

M
aass

extended
the

theor
y

to
include

eigenfunctions
of

the
non-E

uclidean
Laplacian

on
Γ\H

.
T

his
turned

out
to

be
a

very
valuable

idea,
and

led
to

a
fruitfulgeneralization

of
the

notion
of

au-
tom

orphic
(as

opposed
to

m
odular

)
form

.

D
oing

this,
M

aass
introduced

spectralanalysis
into

num
ber

theory—
for

ex-
am

ple,
in

analyzing
the

spectrum
of

the
Laplacian

on
cusp

for
m

s.
T

his
w

as
particularly

interesting,
since

S
L

2 (Z
)\H

is
not

com
pact.

M
ost

noticeable
w

as
his

theory
of

E
isenstein

series.
H

ere
his

analyis
relied

on
d

ifficult
properties

of
ζ
(s)

and
W

hittaker
functions.

A
pparently

unsatisfied
w

ith
this,

he
got

his
student

R
oelcke

to
try

to
prove

analytically
a

P
lanchereltheorem

for
arithm

etic
quotient

s.
R

oelcke
succeeded

only
partially,

and
it

w
as

S
elberg

w
ho

finished
this

off.
E

ven
today,

this
does

not
look

quite
trivial.

S
elberg

used
his

results
to

arrive
at

his
Trace

F
orm

ula,
w

hic
h

enables
us

to
calculate

eigenvalues
of

H
ecke

operators
on

classicalm
odu

lar
form

s.
A

t
this

point,
G

laisher’s
table

becam
e

a
graduate

course
exercise.
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T
he

set
of

alllattice
bases

in
C

is
a

principalhom
ogeneous

space
over

G
=

G
L

2 (R
).

Let
ω

0
be

the
basis

(i,1
).

If
f

is
a

function
on

this
space,

the
func-

tion
F

(g
)
=

f
(g

(ω
0 ))

is
a

function
on

G
.

M
odular

form
s

of
w

eight
k

becom
e

functions
on

Γ\
G

sat-
isfying

the
equation

F
(g

λ
)

=
λ
−

kF
(g

)

for

λ
=

[

a
−

b
b

a

]

(a
copy

of
C

×
in

G
),

and
in

addition
satisfying

som
e

differentialequation
C
F

=
C

F
equivalent

to
holom

orphicity,
as

w
ellas

som
e

grow
th

condit
ion.
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M
ore

generally,
I’lldefine

an
autom

orphic
form

of
level

N
to

be
a

function
of

m
oderate

grow
th

on
Γ
(N

)\
G

such
that

F
(g

λ
)

=
F

(g
)χ

(λ
)

for
som

e
m

ultiplicative
character

χ
:

C
×
→

C
×

,

and
w

hich
is

an
eigenfunction

for
the

sam
e

differentialoper
ator

C
.

T
he

H
ecke

operators
act

also
on

this
space,

and
I’llassum

e
as

w
ellthat

F
is

an
eigen-

function.
T

his
m

eans
that

for
each

prim
e

p
not

dividing
N

there
exists

c
p

and
ε

such
that

T
(p

)F
=

c
p F

,
T

(p
,p

)F
=

ε(p
)χ

(p
)F

.

T
he

subspace
of

cusp
form

s
is

that
of

F
rapidly

decreasing
at

infinity.

T
his

includes
both

H
ecke’s

and
M

aass’cases.
F

or
a

given
N

,
χ

,
and

eigen-
value

C
of

C
,

the
space

of
autom

orphic
form

s
has

finite
dim

ension.
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W
e

can
now

defineL
(s,F

)
=

∏

p6|N

1

1−
c
p p

−
s
+

ε(p
)χ

(p
)p

−
2
s

.

and
w

onder
about

its
analytic

properties.
In

fact,
as

long
as

F
is

a
cusp

form
and

after
throw

ing
in

som
e

extra
factors

for
p|N

,
it

becom
es

entire,
and

satis-
fies

a
relatively

sim
ple

functionalequation
(H

ecke,
M

aass)
.
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4.
T

he
L

-group
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S
uppose

F
to

be
a

cusp
form

of
type

N
,
χ

,{
c
p ,ε(p

)|(p
,N

)
=

1},
and

C
.

F
ollow

ing
R

am
nujan,

factor

x
2−

c
p x

+
ε(p

)χ
(p

)
=

(x
−

α
p )(x

−
β

p )
.

T
he

pair
(α

p ,β
p )

determ
ines

a
conjugacy

class

g
p

=

[

α
p

0
0

β
p

]

in
G

L
2 (C

).

In
this

w
ay,

an
autom

orphic
form

is
characterized

by
the

infin
ite

fam
ily

of
con-

jugacy
classes

{
g

p }
for

(p
,N

)
=

1.
N

ow
w

e
can

alw
ays

change
F

harm
lessly

to
som

e
d
et

−
σ
(g

)F
(g

)
so

as
to

arrange
|χ|

=
1.

W
ith

this
norm

alization,
it

is
tem

pting
to

speculate
that

the
conjugacy

class
g

p
is

alw
ays

unitary.
T

his
is

the
generalization

of
R

am
anujan’s

conjecture
about

|τ
(p

)|
to

arbitrary
auto-

m
orphic

form
s

on
G

L
2 .
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O
ne

of
Langlands’ideas

is
that

the
set

of
conjugacy

classes
{
g

p }
in

G
L

2 (C
)

is
a

very
strong

characteristic
of

the
autom

orphic
form

.
F

ur
therm

ore,
a

sim
-

ilar
construction

w
orks

for
arbitrary

reductive
groups.

O
n

e
can,

for
exam

ple,
define

the
notion

of
an

autom
orphic

form
on

G
L

n
(Z

)\
G

L
n
(R

),
define

a
poly-

nom
ialalgebra

of
H

ecke
operators

for
each

p,
and

specify
for

allbut
a

finite
num

ber
of

p
a

conjugacy
class

g
p

in
G

L
n
(C

)
associated

to
the

form
.

S
om

e-
thing

like
this

seem
s

to
have

been
first

done
by

Tam
agaw

a,
alth

ough
not

in
this

term
inology.
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If
σ

is
the

standard
com

plex
representation

of
G

L
2 (C

),
its

sym
m

etric
pow

-
ers

σ
m

=
S

m
(σ

)
are

also
irreducible,

and
this

gives
us

an
em

bedding
σ

m

of
G

L
2 (C

)
into

G
L

m
+

1 (C
).

T
he

set{
g

p }
gives

rise
also

to
the

set
{
σ

m
(g

p )}.
O

ne
exam

ple
of

Langlands’
functoriality

conjecture
is

that
there

should
ex-

ist
an

autom
orphic

form
on

G
L

m
+

1
corresponding

to
it.

(T
his

has
apparently

been
verified

for
classicalm

odular
form

s
just

w
ithin

the
pas

t
few

w
eeks.)

O
ne

consequence
in

turn
w

ould
be

that

∏

p

1

d
et

(I−
σ
(g

p )p
−

s
)

is
an

entire
function

w
ith

functionalequation,
and

a
yet

fur
ther

consequence
w

ould
be

a
verification

of
the

conjectured
statisticaldistr

ibution
of

the
g

p
for

m
ost

classicalm
odular

form
s.

T
his

argum
ent

is
rem

iniscent
of

one
by

S
erre,

closely
relate

d
to

w
ork

by
Tate

and
M

um
ford,

concerning
the

statisticaldistribution
of

F
r

obenius
autom

or-
phism

s
of

ℓ-adic
cohom

ology.
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T
he

exceptions
are

interesting.

A
ny

quadratic
field

extension
K

/
Q

determ
ines

an
integralquadratic

form
of

dim
ension

tw
o.

T
heta

functions
determ

ine
a

certain
subspac

e
of

autom
orphic

form
s,

defined
by

H
ecke

w
hen

K
is

im
aginary,

by
M

aass
w

hen
it

is
real.

F
or

exam
ple,

the
supplem

entary
form

χ
4

m
entioned

earlier
com

es
from

Q
( √

−
1
).

E
xplicitly

χ
4 (n

)
=

(

14

)

∑

z
∈

Z
[i],|z

|
2
=

n
z
4
.

B
y

quadratic
reciprocity,

the
associated

L
-function

is

∏

p

1

1−
̟

4·N
p
−

s
,

in
w

hich
the

product
is

over
prim

e
ideals

p
=

(̟
)

of
Z
[i].

T
he

conjugacy
classes

determ
ined

by
this

form
lie

in
the

grou
p

[∗
0

0
∗

]

,

[

0
∗

∗
0

]

.

T
his

is
Langlands’

L
-group

for
the

algebraic
torus

determ
ined

by
the

alge-
braic

torus
K

×
.
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T
here

is
a

m
ore

fam
ous

exam
ple.

A
ny

tw
o-dim

ensionalrepresentation
π

of
the

rationalG
alois

group
gives

the
set

of
π
(F

p )
in

G
L

2 (C
).

A
rtin

has
conjectured

that
the

associated
L

-function
is

entire
and

satisfies
a

good
functionalequation.

Langland
s

has
pointed

out
that

this
happens

if
and

only
if

the
set

is
that

of
som

e
{
g

p }.
T

his
w

as
show

n
to

be
true

in
m

any
cases,

by
D

eligne
and

S
erre,

and
then

Joe
B

uh
ler.

Lang-
lands

show
ed

it
w

as
so

for
solvable

G
alois

extensions.

T
his

represents
a

kind
of

non-abelian
reciprocity.

A
long

si
m

ilar
lines,

the
L

-
functions

associated
to

m
odular

form
s

w
ere

show
n

by
E

ichler
and

S
him

ura
to

be
the

H
asse-W

eil
ζ-functions

of
m

odular
varieties.
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F
or

reductive
groups

G
other

than
G

L
n

,
and

in
dealing

w
ith

groups
defined

over
arbitrary

num
ber

fields,
there

are
unavoidable

technic
aldifficulties.

To
every

one
of

these
Langlands

has
associated

a
com

plex
group

L
G

,
w

hich
in

generalw
illbe

an
extension

of
a

connected
reductive

group
b

y
som

ething
related

to
G

alois
groups.

T
he

connected
group

is
that

w
hose

r
oot

system
is

the
dualof

the
one

defining
G

.
F

or
exam

ple,
the

dualof
S
p
(2n

)
is

S
O

(2
n

+
1
).

Loosely
speaking,

every
autom

orphic
form

on
Γ\

G
(R

)
determ

ines
a

fam
ily

of
conjugacy

classes
{
g

p },
now

in
L
G

.
P

roper
L

-functions
are

of
the

form

∏

p
/∈
S

1

d
et(I−

π
(g

p )p
−

s)
,

w
here

π
is

a
finite-dim

ensionalrepresentation
of

L
G

.
T

hese
are

expected
to

have
good

properties.
A

hom
om

orphism
of

L
-groups

should
give

rise
to

an
em

bedding
of

autom
orphic

form
s.

T
he

form
χ

4
is

an
exam

ple.
In

this
case,

the
algebraic

group
H

is
the

m
ulti-

plicative
group

of
Q

( √
−

1),
considered

as
a

group
defined

over
Q

.
T

he
group

L
H

is
the

extension
of

C
×

by
the

G
alois

group.
T

his
is

consistent
w

ith
w

hat
I

said
about

the
distribution

of
the

χ
4 (p

).
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In
generalan

autom
orphic

form
determ

ines
not

only
a

set
{
g

p },
but

also
for

every
com

pletion
of

Q
arepresentation

of
G

(Q
v ).

Langlands’proposalw
as

that
these

also
are

characterized
in

term
s

of
L
G

,
and

to
classify

such
rep-

resentations,
relating

them
to

the
localG

alois
group.

T
his

allow
ed

him
,

for
exam

ple,
to

m
ake

H
ecke’s

functionalequation
m

ore
explicit

.

In
general,

certain
subtle

phenom
ena

have
m

ade
this

proposa
la

bit
com

pli-
cated.

T
his

involves
Langlands’notion

of
endoscopy,

conce
rning

w
hich

w
ork

of
N

g
ô

B
ao

C
h

âuw
on

him
a

F
ields

M
edal.
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5.
U

nfinished
business
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W
hat

about
R

am
anujan’s

conjecture
on

the
size

of
τ
(p

)?
A

rthur
has

proposed
a

set
of

unitary
representations

of
localgroups

am
ong

w
hich

the
ones

oc-
curring

in
autom

orphic
form

s
have

to
occur.

T
here

are
a

num
be

r
of

unsolved
problem

s
involved

in
this,

and
the

globalversion,
at

least
f

or
those

form
s

that
are

not
m

otivic
(related

to
algebraic

geom
etry),

seem
s

com
p

letely
out

of
sight.

It
is

not
at

allapparent
how

to
verify

functoriality
in

gener
al,

or
the

expected
properties

of
arbitrary

autom
orphic

L
-functions.

A
bout

the
year

2000
Lang-

lands
introduced

a
num

ber
of

suggestions
that

tried
to

config
ure

the
S

elberg
trace

form
ula

suitably.
S

o
far,

this
has

produced
som

e
strik

ing
results,

and
it

seem
s

likely
to

m
any

of
us

that
the

trace
form

ula
m

ust
be

inv
olved

in
any

attack
on

the
problem

s.
B

ut
there

are
few

precise
results.

42/52



F
inally,

I
return

to
the

opening
of

this
talk.

W
e

have
seen

one
case

of
how

theta
functions

m
atch

w
ith

Langlands’conjectures,
and

I
m

i
ght

have
m

en-
tioned

the
case

of
r
4

to
account

for
another.

B
ut

is
there

a
generalexplana-

tion
in

Langlands’s
term

s
about

how
theta

functions
and

quad
ratic

form
s

give
rise

to
autom

orphic
form

s?
W

hat
is

know
n

is
largely

due
to

S
te

phen
R

allis,
w

ho
applied

classicalresults
of

M
artin

E
ichler

and
C

arlLud
w

ig
S

iegelas
w

ell
as

m
ore

recent
w

ork
of

A
ndr

é
W

eil.
B

ut
this

w
ork

seem
s

to
m

e
som

ew
hat

in-
com

plete.

43/52



6.
A

ppendix:
M

ordell’s
subsequent

fam
e

44/52



M
ordellbecam

e
fam

ous
in

the
nineteen

tw
enties

w
hen

he
prove

d
his

half
of

the
M

ordell-W
eiltheorem

.

A
nd

then,
unfortunately,

again
in

the
m

id
nineteen

sixties.
S

erge
Lang

w
rote

a
book

D
iophantine

geom
etry

about
diophantine

approxim
ations,

largely
char-

acterized
by

its
use

of
algebraic

geom
etry.

M
ordellw

rote
a

r
eview

for
the

B
u
l

letin
o
f
th
e
A
M
S,

w
hich

panned
it.

M
any

of
his

criticism
s

w
ere

quite
legiti-

m
ate,

since
in

truth
Lang

(w
ho

w
rote

faster
than

norm
alpeopl

e
can

read)
had

been
rather

sloppy.
B

ut
he

also
railed

a
bit

about
m

odern
tool

s
in

num
ber

theory,
and

thereby
caused

som
e

controversy.

W
hat

really
blew

things
up

w
as

that
C

arlLudw
ig

S
iegelw

rote
a

letter
of

sup-
port

to
M

ordellw
hich—

in
m

odern
term

inology—
w

ent
viral.

I
b

ring
this

up
be-

cause
it

w
as

an
hystericalam

plification
of

G
laisher’s

lam
en

t:

“T
he

w
hole

style
of

the
author

contradicts
the

sense
for

sim
p

licity
and

honesty
w

hich
w

e
adm

ire
in

the
w

orks
of

the
m

asters
in

num
ber

t
heory."

“I
see

a
pig

broken
into

a
beautifulgarden

and
rooting

up
allfl

ow
ers

and
trees."

“T
hese

people
rem

ind
m

e
of

the
im

pudent
behaviour

of
the

nati
onalso-

cialists
...

"
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7.
R

eferences
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19th
century

•
G

.
E

isenstein,
‘

G
enaue

U
ntersuchung

der
unendlichen

D
oppelprodukte,

aus
w

elchen
die

elliptischen
F

unktionen
als

Q
uotienten

zus
am

m
engesetzt

sind,
und

der
m

it
ihnen

zusam
m

enh
ängenden

D
oppelreihen

’,
C
relle

Jo
u
rn
al

35
(1847),

153–274.

•
A

dolf
H

urw
itz,

‘
G

rundlagen
einer

independenten
T

heorie
der

elliptischen
M

odulfunctionen
und

T
heorie

der
M

ultiplicatorgleichunge
n

erster
S

tufe
’,
M
ath


em

atisch
e
A
n
n
alen

18
(1881),

528–592.

•
A

ndré
W

eil,
E

lliptic
functions

according
to

E
isenstein

and
K

ronecker
,

S
pringer,

1976.
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E
arly

20th
century

•
J.

W
.

G
laisher,

‘
O

n
the

num
bers

of
representations

of
a

num
ber

as
a

sum
of

2
r

squares,
w

here
2
r

does
not

exceed
1
8.’,

P
ro
ceed

in
g
s
o
f
th
e
L
o
n
d
o
n
M
ath

e
m
atical

S
o
ciety

2
(5)

(1907),
479-490.

•
S

rinivasa
R

am
anujan,

‘
O

n
certain

arithm
eticalfunctions

’,
T
ran

sactio
n
s
o
f
th
e

C
am

b
rid

g
e
P
h
ilo

so
p
h
ical

S
o
ciety

X
X

II
(1916).

•
Louis

JoelM
ordell,

‘
O

n
M

r.
R

am
anujan’s

em
piricalexpansions

of
m

odular
functions

’.
P
ro
ceed

in
g
s
o
f
th
e
C
am

b
rid

g
e
P
h
ilo

so
p
h
ical

S
o
ciety

19
(1917),

117–
124.

•
G

eoffrey
H

.
H

ardy,
R

am
anujan

,
C

am
bridge,

1940
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M
id

20th
century

•
C

arlLudw
ig

S
iegel,

Lectures
on

the
analytic

theory
of

quadratic
form

s
,
M
ath


em

atisch
es

In
stitu

t
d
er

U
n
iv
ersität

G
ö
ttin

g
en

,
1934/1995.

•
E

rich
H

ecke,
‘

Ü
ber

die
M

odulfunktionen
und

die
D

irichletschen
R

eihen
m

it
E

ulerschen
P

roduktentw
icklung

II
’,
M
ath

em
atisch

e
A
n
n
alen

114
(1937),

316–
351.

•
H

ans
M

aass,
‘Ü

ber
eine

neue
A

rt
von

nichtanalytischen
autom

orphen
F

unk-
tionen

und
die

B
estim

m
ung

D
irichletscher

R
eihen

durch
F

unk
tionalgleichun-

gen
’,
M
ath

em
atisch

e
A
n
n
alen

121
(1949),

141–183.

•
Louis

J.
M

ordell,
‘

R
em

iniscences
’,

h
t
t
p
s
:
/
/
m
a
t
h
s
h
i
s
t
o
r
y
.
s
t
-
a
n
d
r
e
w
s
.
a
c
.
u
k
/
E
x
t
r
a
s
/
M
o
r
d
e
l
l
r
e
m
i
n
i
s
c
e
n
c
e
s
/

•
R

obert
R

ankin,
‘

O
n

the
representation

of
a

num
ber

as
the

sum
of

any
num

-
ber

of
squares,

and
in

particular
of

tw
enty

’,
A
cta

A
rith

m
etica

V
II

(1962),
401–

407.
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1960s

•
IsraelM

.
G

elfand,
‘

A
utom

orphic
functions

and
theory

of
representations

’,
pp.

74–85
in

the
P

roceedings
of

the
IC

M
,

S
tockholm

,
1962.

•
—

—
—

-,
M

.
L.

G
raev,

and
Ilya

P
iatetskii-S

hapiro,
‘

R
epresentations

of
adele

groups
’,
D
o
k
lad

y
A
k
ad

em
ia

N
au

k
S
S
S
R

156
(1964),

487–490.

•
R

oger
G

odem
ent,

‘
Les

fonctions
ζ

des
alg

èbres
sim

ple
II

’,
S
em

in
aire

B
o
u
r

b
ak

i,
expos

é
176,

1959.

•
Ichiro

S
atake,

‘
T

heory
of

sphericalfunctions
on

reductive
groups

over
p-

adic
fields

’,
P
u
b
licatio

n
s
M
ath

ém
atiq

u
es

d
e
l’IH

E
S

18
(1963),

5–70.

•
Jean-P

ierre
S

erre,
‘

Lettre
à

A
rm

and
B

orel
’,

pp.
10–18

in
F

robenius
distri-

butions:
Lang-Trotter

and
S

ato-Tate
conjectures

,
in

the
series

C
o
n
tem

p
o
rary

M
ath

em
atics

663,
A

m
erican

M
athem

aticalS
ociety,

2016.

•
T

suneo
Tam

agaw
a,

‘
O

n
S

elberg’s
trace

form
ula

’,
Jo
u
rn
al

o
f
th
e
F
acu

lty
o
f

S
cien

ce
o
f
th
e
U
n
iv
ersity

o
f
T
o
k
y
o

8
(1963),

363–386.

•
—

—
—

-,
‘ O

n
the

ζ-function
of

a
division

algebra
’,
A
n
n
als

o
f
M
ath

em
atics

77
(1960),

387–405.

•
John

Tate,
‘A

lgebraic
cycles

and
poles

of
zeta

functions
’,

pp.
93-110

in
A

rith-
m

eticalalgebraic
geom

etry
,

edited
by

O
.

F.
G

.
S

chilling,
H

arper
&

R
ow

,
1965

50/52



Langlands’w
ork

•
Jam

es
G

.
A

rthur,
notes

on
Langlands’w

ork,
com

m
issioned

by
t

he
A

bel
P

rize
com

m
ittee.

To
appear

soon.

•
R

oger
G

odem
ent,

‘
F

orm
es

autom
orphes

et
produits

E
uleriennes

’,
S
em

in
aire

B
o
u
rb
ak

i ,
expos

é
349,

1968/69.

•
R

obert
P.

Langlands,
‘

E
isenstein

series
’,

pp.
235–252

in
[B

orel-M
ostow

:1966].

•
—

—
—

-,
‘F

unktorialit
ät

in
der

T
heorie

der
autom

orphen
F

orm
en:

Ihre
E

nt-
deckung

und
ihre

Z
iele

’,
available

at

h
t
t
p
s
:
/
/
p
u
b
l
i
c
a
t
i
o
n
s
.
i
a
s
.
e
d
u
/
r
p
l
/
p
a
p
e
r
/
4
5
1

•
S

tephen
R

allis,
‘

Langlands
functoriality

and
the

W
eilrepresentation

’,
A
m
eri

can
Jo
u
rn
al

o
f
M
ath

em
atics

104
(1982),

469–515.
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V
ery

recent
w

ork

•
Tom

B
arnet-Lam

b,
D

avid
G

eraghty,
M

ichaelH
arris,

and
R

icha
rd

Taylor,
‘

A
fam

ily
of

C
alabi-Yau

varieties
and

potentialautom
orphy

II
’,
P
u
b
licatio

n
s
o
f
th
e

R
esearch

In
stitu

te
fo
r
M
ath

em
atical

S
cien

ces
(K

y
o
to
)

47
(2011),

29–98.

•
Jam

es
N

ew
ton

and
Jack

A
.

T
horne,

‘
S

ym
m

etric
pow

er
functoriality

for
holo-

m
orphic

m
odular

form
s,

II
’,
a
r
X
i
v
:
2
0
0
9
.
0
7
1
8
0.
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