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Langlands has made many contributions to number theory, but the principal

one is probably his discovery in 196667, followed by work in subsequent
years, of the role of the dual group in the theories of automor phic forms and
L-functions. | shall try to explain what this amounted to by t racing the origins
of this development through work of Ramanujan, Hecke, Siege |, Maass, Sel-

berg, and other mathematicians of the twentieth century.
Here’s a sobering thought:

more time separates us from Langlands’ conjectures
than Langlands’ from Ramanujan’s!
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1. Sums of squares
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| begin with something elementary. Have patience.

Let
re¢(n) = the number of ways n can be expressed as a sum of ¢ integral squares.

Thus 75(4) = 4 because 4 = (£2)% + (£2)2.

Many well known mathematicians of the nineteenth century, a mong them Gauss,
Jacobi, Eisenstein, Liouville, Smith, and Minkowski found formulas for this
function, when £k is small. Gauss found one for r3, and Smith and Minkowski
shared a prize for finding 5.

Odd ¢ behave very, very differently from even ¢, and I'll assume £ even from
now on.
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To give you an idea of the flavour of the problem, consider 9.
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The reason for the apparently erratic behaviour is that ro(n) depends on the
factorization of n. For example, as Fermat knew, an odd prime  p may be ex-
pressed the sum of squares if and only if  p =4 1.

Jacobi proved that

SASVH%A M 1— M Hv

&_S\U&M%H &_S\U&M%W
rqa(n) =801(n) =8 g_:&

He later went on to find formulas for  rg and rg, which we’ll see in a moment.
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One of the basic tools in Jacobi’'s work, and in all subsequent investigations,

IS the series , .
=Y =12y

This is because

For example

So the problem can be reformulated:  How to find a formula for ¥*?
One hint as to what will be involved is the fact that 9% can be defined as a

holomorphic function on the entire upper half-plane by sett ing ¢ = e?™%. If
z = x 4+ 1y with y > 0 then

%NANV _ MzHOﬁNA\;v ®wﬁ@.38®|wﬁ3@ .

But 7¢(n) is certainly bounded by some power of n .
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By 1907, answers of some kind were known for all even ¢ < 18. The situation
was summarized by J. W. L. Glaisher, a Fellow of Trinity Colle ge, Cambridge,
who was particularly interested in numerical computation. | reproduce his no-
tation exactly:
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Here E,,, @\@ Eny Ay, (, are certain divisor sums. The functions in red all
have vanishing constant term and are normalized so that the fi rst term is
equal to 1. The terms in red are also asymptotically much smaller than t he
others. There are simple formulas for  x,,(n), not the others.
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For example, the case /¢ = 12:

O =q—12¢>+54¢° — 88¢" — 99¢° + 540¢""
— 418¢" — 648¢" + 594¢*" + 836 ¢ + 1056 ¢**
— 4104 ¢%® — 209¢° + 4104¢®" — 594 ¢°° + 4256 ¢>*
— 6480433 — 4752¢° — 298 ¢>" + 5016¢>° + 17226 ¢*
—12100¢* — 5346 ¢* — 1296 ¢*" — 9063 ¢*° — 7128 ¢}
+ 19494 ¢°3 + 29160 ¢°° — 10032¢°7 — 7668 ¢°° — 34738 ¢°!
+ 8712¢% — 22572¢% + 21812457 + 49248 ¢%° — 468724}
+ 675627 4+ 2508 ¢"° — 47520¢"" — 76912¢"° — 25191 ¢%*
+ 67716 ¢ + 32076 ¢%° + 7128¢%" + 29754 ¢%° + 36784 ¢°*
—51072¢% + 45144 ¢ — 122398¢°" — 53460¢”° + 112864t + - ..

Glaisher noticed empirically that ~ Q(mn) = Q(m)Q(n) when (m,n) = 1. This
IS best interpreted in terms of a Dirichlet series with Euler product:

MU ) = — 1+ Qp)p 5+ Qp*)p 2 + Q> )p 25 +---).

1 nS ~p

10/52



11/52

i )
r .
o \dooo
B! s ® e
S0 ‘o )
G ! \..C
° »*
I [ ] )
. /
1 / [ J °
I PYY
. \,
I / o
T 7 o
! \. o o
! Y
® \ ®
| \.0
TRES 2P
117
14
1o
1/
(log p,log 2(p))

This is a log-log plot for ¢ = 12. The divi-
sor sums in all cases are of order  p%/2-1,
here p°.

Because of the multiplicative property, the
terms €)(p) are of greatest interest.

And as | have already remarked, the ‘sup-
plementary term’ is asymptotically much
smaller than this divisor sum.
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What about larger £?

Can we find a single formula for all divisor sums?

Why sometimes none, sometimes many supplemental terms?

Can we estimate them?

To what extent does the ‘multiplicative property’ hold?

Is there anything to be said about the  p-series like ) Q(p™)p~"?
What about other quadratic forms?
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Can we bring some organization into this apparently chaotic business?

The situation doesn’'t seem very satisfactory to us, but it is definitely intrigu-
ing. Glaisher wasn’t very happy about it, either, but for rea sons different from
ours.

He commented: "The only complete and effective method of res earch in such
investigations is afforded by the processes of the theory of numbers, and any
method dependent upon elliptic functions ... Is necessarily partial and inade-
quate.”

This contrasts completely with what we now believe: In the course of the twen-
tieth century, it became clear that automorphic forms (as such functions are
called very generally) make up an an inevitable component of number theory.

Unlike Glaisher, we have probably become used to simple prob lems with in-
sanely complicated solutions.

13/52



In 1916, about ten years later, Ramanujan read Glaisher's no te (at Hardy’'s
suggestion, | imagine), and found formulas for 20, T22, T24. The case of 1oy
IS especially striking, because in this case the supplement ary series involved
a well known entity.

16 32
ﬁwﬁAsv = |®©HQ.:ASV — |®©HO.:A3\MV
33152 66536
ity G | n—1 o UYYeY 2
Ty (CL () = ST (n)/2)

where MHISVQ: =q —h (1—¢")* = (say) A.
k

When g is set to e2™*% this becomes the discriminant of elliptic function the-
ory. Following Glaisher, Ramanujan then conjectured that

T(m)T(n) = 7(mn) if (m,n)=1.
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Ramanujan also looked at the p-series and found empirically that it satisfied a
difference equation of order two. Combining these observat lons, he arrived at
the conjecture that

1
MH 3% ;—k—H|ﬂ ml_lmwﬁ 2s °
It is difficult to exaggerate how consequential this observa tion was.
He also found an simple expression for the divisor sum when ¢ =g 4. partially
answering one of our questions. | am not sure why he couldn’t d eal with the

arbitrary case (¢ =4 0.
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Even more interesting, he wrote

2* —7(p)x+p'' = (x — app"?)(x — Bpp''/?),

and then asserted that it was “highly probable" that the root S were complex
conjugates. In this case, we can set

_ ,2mib,
QB —

for some 6, in [0, w]. Equivalently, cosf, = 7(p)/2p*'/2. This conjecture is
certainly strongly suggested by the graph | showed earlier.

It iIs not clear to me that there was much excitement at the time attached to
this guess.
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Ramanujan’s paper attracted more attention than Glaisher’ S. One reason is
that the function A is a well known modular form. Hardy remarked in his

book on Ramanujan (1939), “We may seem to be straying into one of the back
waters of mathematics, but the genesis of  7(n) as a coefficient in so funda-
mental a function compels us to treat it with respect.”

Still, my impression is that even as late as 1939, as well as in 1917, these
matters were not thought to be of much significance. (Well ... hot by any En-
glish mathematician. The Germans were doing much better.)
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One thing that Ramanujan might have done, but apparently did not, was ex-
amine the statistical distribution of the angles 0, involved in the supplemen-
tary series. Here is a bar graph of the distribution for about 2500 values of
Q(p), the supplementary term for 7.

y = (2/m) sin’(6)

0 0 78
Superimposed is a conjectured asymptotic limit.
This contrasts with the case of 171g. Here the supplementary term is
Xa(p) = M 2 EZ[1] 2t
2| =p
It vanishes if p =4 3, and is uniformly distributed for p =4 1.

| see no mention of questions like this in the classical liter ature, but since
around 1965 it has become a major issue in the subject.

18/52



2. Hecke operators
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Ramanujan’s first two conjectures were proved by L. J. Mordel | (British, but
American-born) a year later.

If we set ¢ = e?™*%, the series for A becomes a modular form on the com-
plex upper half-plane H, with respect to the group  SLy(Z). (I'll explain what
this means in a moment. This had been known for a very long time .) Mordell
defined operators 7'(n) on such forms. It is easy to see that they satisfy the
multiplicative property, and Ramanujan’s conjecture redu ces to the equation
T(n)A = 7(n)-A. Mordell proved this by showing that the ratio  T'(n)A/A,
which is a holomorphic function on SL>(Z)\'H, is bounded, hence constant.

Nowadays, once the operators have been defined, the final step IS trivial, be-
cause we know the space of cusp forms (with constant term 0) to have di-
mension one. But this reasoning is anachronistic, and Morde II's proof was
rather special to the problem at hand. One notable feature is that he did not
use any relationship with sums of squares, but just well know n properties of
A,

It is important that you understand how the operator T'(n) is defined. | have

to tell you first what a modular form is.
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A lattice in C is a copy of Z? in it. It may be specified by a pair w = (w1, ws)
with z = w1 /wo of positive imaginary part. Two such pairs give rise to the
same lattice when one is the transform of the other by a matrix in SLy(Z).

A modular form of weight k£ > 1 with respectto any group I' C SLy(Z) is a
holomorphic function F' of w satisfying some mild growth condition and the

two conditions
FOw)=A"F(w) (AeC®)

Fyw)=F(w) (yel)
Effectively, it is a function on the set of I'-equivalence classes of lattices.

Restriction to points  (z, 1) identifies F with a function f on the upper half-
plane transforming in a certain way under integral fraction al linear transfor-
1 n

mations. If I' = SLo(Z) then invariance under matrices 0 1

implies that

f(z+n)= f(z) forall nin Z. This implies that

%ANV _ MNQS®§3§N .

The growth condition means that ¢, = 0 for n < 0.

The function 9¥2* is a modular form of weight % for some T of finite index in
SLs (7).
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I'll now follow Mordell, with a slight modification, in defini ng certain operators
on modular forms, which are now called Hecke operators . If M C L are two
lattices, the principal divisor theorem tells us that M = njwi + nswsy for some
basis w1, wo of L and ns|ny in N. In these circumstances, I'll write  [L : M| =

ASHVSMV.

If I is any function on the set of lattices invariant under SLo(Z), define
T F|(L) = F(M).
T(n,n) FI(L) =3 F(M)

For example, if (ny,n2) = (p,1) and L = Z? then M will have one of the
bases

(1,p), (p,x) (with 0 <x <p).

Then define the simple and normalized Hecke operators

T(n) = Mussgisév
Ti(n) 3w|H%A3

The Chinese remainder theorem implies that ~ T'(mn) = T(m)T'(n) if m, n are
relatively prime.
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The factor n*~1 is chosen so that if F is a cusp form of weight & with respect

to SLy(Z) such that Ty (n)F = t,F then

F(z1) =Y " tne™m=.

if I'is scaled so c; = 1.

What about the p-series? You can see on geometric grounds that

T(p*1) + (p+ )T (p,p)
TP, 1) +pTpP™,p) (n>2).

T(p,1)T(p, 1)
T(p, )T (p",1)

which implies

Tr(p)Tk (™) = Te(@" ™) + pTk (") (n>1).

This leads to Ramanujan’s difference equation, and hence to his Euler prod-
uct.
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Mordell's proof leaves unanswered a lot of interesting ques tions. Here is a
simple one:

Why aren’t the T'(n) called Mordell operators?

At the end of his paper Mordell remarks that Ramanujan made si milar con-
jectures for functions related to  r19(n) and r16(n). (He doesn’t seem to have
read either Glaisher or Ramanujan carefully.) He then wento n

“These results can be proved by the aid of the principles used in [his
proof of the conjecture about 7]. We should however have to consider
new invariants of a sub-group of the modular group, and it see ms hardly

worth while to go into details."

There are indeed some small technical problems involved in d efining the right
‘Hecke operators’ for congruence groups, but hardly insupe rable. (Although |
think these problems weren’'t completely understood until t he nineteen-sixties,
and primarily through work of Langlands.) Mordell, however , just didn’t under-
stand that he was standing on top of a gold mine. He seems to hav e never
again looked at problems involving modular forms, and in som e late reminis-
cences he does not refer to this paper.
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Let M (1) be the space of modular forms of weight & for I'(1), Sx(1) the sub-
space of cusp forms , with vanishing constant term. Both have finite-dimension.

The difference in dimensions is at most 1, since I'(1) has exactly one cusp.
The complement of &j, is spanned by a function called an  Eisenstein series
which was in fact first defined by Eisenstein:

1
Q\a Ahv - MEwmomh %

with series expansion

2(27i)2k

v_ Q.w\alwﬁivmwﬁis.m

Gr(z) = 2¢(2k) +

The series expansion is attributed to Eisenstein by Weil, bu t | have not been
able to locate it in his Collected Works. It is included in Hur witz' Habilitation-
schrift (1881), referred to by Mordell.

The point here is that analogues of these series are responsi ble for the ‘di-
visor sums’ occurring in the asymptotic approximations for all ro5(n). The
complexities in Glaisher’s table are largely due to the comp lexities of Bernoulli
numbers.
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3. More about GL(2)
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Erich Hecke took up the subject of quadratic forms and modula r forms around
1926, and changed completely the map of the country. Among hi S contribu-
tions was the extension to arbitrary congruence groups ['(N) of the theory
we have seen for T'(1) = SLy(Z). This was a major and thoroughgoing ac-

complishment.

e He defined Eisenstein series, therefore a basis of the comple ment of Sk (V)
in Mp(IV).

e He defined operators T'(n) for (n, N) = 1 satisfying the same relations as
those for I'(1). The operator T'(p,p) is now R, F(pw) where R, is the ac-

tion of

p 0 _
0 q AEQ|2HV

on functions fixed by T'(V).
e His student Hans Petersson defined a Euclidean norm on Sk (N), according
to which the T'(n) are self-adjoint. Thus Sy is the direct sum of eigenspaces.
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Hecke, cont’d

e He presumably knew a formula for the dimension of Si.. although | have
seen only specific cases among his papers. (It depends on the t heorem of
Riemann-Roch, and | see no reason why Hurwitz couldn’'t have d iscovered
it.)

e He defined L-functions as Euler products

1
e (Z/N)* — C*),
?i& 1 —cpp= +e(p)p*~p=2 (& (Z/N) )

found a good form of functional equation, and showed they wer e entire.

(Hardy asserts in his book that the functional equation for R amanujan’s
“must have been familiar to him, but | cannot find it anywhere i n his pa-
pers." Refers to an obscure 1928 paper by Wilkin.)

e He gave fair estimates on the magnitudes  |c,|.

e He extended earlier results on 795 to other positive definite integral quadratic
forms.
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After the war, Hecke’s student Hans Maass extended the theor vy to include
eigenfunctions of the non-Euclidean Laplacian on ['\’H. This turned out to
be a very valuable idea, and led to a fruitful generalization of the notion of au-
tomorphic (as opposed to modular ) form.

Doing this, Maass introduced spectral analysis into number theory—for ex-
ample, in analyzing the spectrum of the Laplacian on cusp for ms. This was
particularly interesting, since  SLo(Z)\’H is not compact. Most noticeable was
his theory of Eisenstein series. Here his analyis relied on d ifficult properties
of ((s) and Whittaker functions.

Apparently unsatisfied with this, he got his student Roelcke to try to prove
analytically a Plancherel theorem for arithmetic quotient S. Roelcke succeeded
only partially, and it was Selberg who finished this off. Even today, this does

not look quite trivial.

Selberg used his results to arrive at his Trace Formula, whic h enables us to
calculate eigenvalues of Hecke operators on classical modu lar forms. At this
point, Glaisher’s table became a graduate course exercise.
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The set of all lattice bases in  C is a principal homogeneous space over G =
GL2(R). Let wg be the basis (¢,1). If f is a function on this space, the func-
tion

F(g9) = f(g(wo))

is a function on G. Modular forms of weight & become functions on T'\G sat-
isfying the equation
F(g\) = A""F(g)

for
a —b

yH@ a

(a copy of C* in (), and in addition satisfying some differential equation
¢F = C'F equivalent to holomorphicity, as well as some growth condit ion.
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More generally, I'll define an automorphic form of level N to be a function of
moderate growth on I'(V)\G such that

F(g\) = F(g)x(\)

for some multiplicative character

x: C* — C*,
and which is an eigenfunction for the same differential oper ator ¢. The Hecke
operators act also on this space, and I'll assume as well that F'is an eigen-

function. This means that for each prime  p not dividing IV there exists ¢, and
e such that

T(p)F =c,F, T(p,p)F =e(p)x(p)F .
The subspace of cusp forms is that of  F' rapidly decreasing at infinity.

This includes both Hecke’s and Maass’ cases. For a given N, x, and eigen-
value C' of €, the space of automorphic forms has finite dimension.
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We can now define

1
pIN1—cpp=® +e(p)x(p)p=2

L(s,F) =]

and wonder about its analytic properties. In fact, as long as F'is a cusp form
and after throwing in some extra factors for ~ p|IV, it becomes entire, and satis-
fies a relatively simple functional equation (Hecke, Maass)
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4. The L-group
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Suppose F'to be a cusp form of type N, x, {cp,e(p)|(p,N) = 1}, and C.
Following Ramnujan, factor

2? — o +e(P)x(p) = (x — ap)(z — Bp).

The pair («ay,3,) determines a conjugacy class

ap, 0

.Qﬁ — O Q@

in QHLM Aﬁv

In this way, an automorphic form is characterized by the infin ite family of con-
jugacy classes {g,} for (p, N) = 1. Now we can always change F' harmlessly
to some det” “(g)F(g) so as to arrange |x| = 1. With this normalization, it

IS tempting to speculate that the conjugacy class gp 1s always unitary. This

is the generalization of Ramanujan’s conjecture about |7(p)| to arbitrary auto-
morphic forms on GLs.
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One of Langlands’ ideas is that the set of conjugacy classes {g,} in GL2(C)
IS a very strong characteristic of the automorphic form. Fur thermore, a sim-
ilar construction works for arbitrary reductive groups. On e can, for example,
define the notion of an automorphic formon  GL,,(Z)\GL,, (R), define a poly-
nomial algebra of Hecke operators for each  p, and specify for all but a finite
number of p a conjugacy class g, in GL,,(C) associated to the form. Some-
thing like this seems to have been first done by Tamagawa, alth ough not in
this terminology.
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If o is the standard complex representation of GL5(C), its symmetric pow-
ers o, = S™(o) are also irreducible, and this gives us an embedding Om
of GL2(C) into GL,,,+1(C). The set {g,} gives rise also to the set {o,,,(gp)}-
One example of Langlands’ functoriality conjecture is that there should ex-

ist an automorphic form on  GL,,, 11 corresponding to it. (This has apparently
been verified for classical modular forms just within the pas t few weeks.)

One consequence in turn would be that

1
rh@ det AN — QG@vﬁlmv

¢

Is an entire function with functional equation, and a yet fur ther consequence
would be a verification of the conjectured statistical distr ibution of the g, for
most classical modular forms.

This argument is reminiscent of one by Serre, closely relate d to work by Tate
and Mumford, concerning the statistical distribution of Fr obenius automor-
phisms of /¢-adic cohomology.
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The exceptions are interesting.

Any quadratic field extension K /Q determines an integral quadratic form of
dimension two. Theta functions determine a certain subspac e of automorphic
forms, defined by Hecke when K is imaginary, by Maass when it is real.

For example, the supplementary form x4 mentioned earlier comes from  Q(1/—1).
Explicitly

. = 4
xa(n) = 4 MUNmNEQ_N_MHsN.

By quadratic reciprocity, the associated L-function is

1
—r 1 —w* Np—s’

in which the product is over prime ideals  p = (w) of Z|i].

The conjugacy classes determined by this form lie in the grou P
x 0 0 =
0 x|’ [*x 0

This is Langlands’ L-group for the algebraic torus determined by the alge-
braic torus K *.

37/52



There is a more famous example.

Any two-dimensional representation 7 of the rational Galois group gives the
set of 7(F,) in GL2(C). Artin has conjectured that the associated ~ L-function
IS entire and satisfies a good functional equation. Langland s has pointed out
that this happens if and only if the set is that of some {gp}. This was shown
to be true in many cases, by Deligne and Serre, and then Joe Buh ler. Lang-
lands showed it was so for solvable Galois extensions.

This represents a kind of non-abelian reciprocity. Along si milar lines, the L-
functions associated to modular forms were shown by Eichler and Shimura to
be the Hasse-Weil (-functions of modular varieties.
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For reductive groups G other than GL,,, and in dealing with groups defined

over arbitrary number fields, there are unavoidable technic al difficulties. To
every one of these Langlands has associated a complex group L@, which in
general will be an extension of a connected reductive group b y something
related to Galois groups. The connected group is that whose r oot system is
the dual of the one defining G. For example, the dual of Sp(2n)is SO(2n+1).

Loosely speaking, every automorphic form on ["\G(R) determines a family of
conjugacy classes {g,}, now in L@G. Proper L-functions are of the form

1
:@mm det(f — m(gp)p~*)

where 7 is a finite-dimensional representation of L@G. These are expected to
have good properties. A homomorphism of L-groups should give rise to an
embedding of automorphic forms.

The form x4 Iis an example. In this case, the algebraic group H is the multi-
plicative group of @7\||C considered as a group defined over Q. The group
L H is the extension of C* by the Galois group. This is consistent with what |
said about the distribution of the  x4(p).
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In general an automorphic form determines not only a set {gp}, but also for
every completion of (Q arepresentation of G(Q,). Langlands’ proposal was
that these also are characterized in terms of @, and to classify such rep-
resentations, relating them to the local Galois group. This allowed him, for
example, to make Hecke’s functional equation more explicit

In general, certain subtle phenomena have made this proposa | a bit compli-
cated. This involves Langlands’ notion of endoscopy, conce rning which work
of Ng6 Bao Chauwon him a Fields Medal.
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5. Unfinished business
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What about Ramanujan’s conjecture on the size of 7(p)? Arthur has proposed

a set of unitary representations of local groups among which the ones oc-
curring in automorphic forms have to occur. There are a numbe r of unsolved
problems involved in this, and the global version, at least f or those forms that
are not motivic (related to algebraic geometry), seems comp letely out of sight.
It is not at all apparent how to verify functoriality in gener al, or the expected
properties of arbitrary automorphic L-functions. About the year 2000 Lang-
lands introduced a number of suggestions that tried to config ure the Selberg
trace formula suitably. So far, this has produced some strik iIng results, and

it seems likely to many of us that the trace formula must be inv olved in any

attack on the problems. But there are few precise results.
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Finally, | return to the opening of this talk. We have seen one case of how
theta functions match with Langlands’ conjectures, and | mi ght have men-
tioned the case of 14 to account for another. But is there a general explana-
tion in Langlands’s terms about how theta functions and quad ratic forms give
rise to automorphic forms? What is known is largely due to Ste phen Rallis,
who applied classical results of Martin Eichler and Carl Lud wig Siegel as well
as more recent work of Andr €& Weil. But this work seems to me somewhat in-
complete.
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6. Appendix: Mordell’'s subsequent fame
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Mordell became famous in the nineteen twenties when he prove d his half of
the Mordell-Welil theorem.

And then, unfortunately, again in the mid nineteen sixties. Serge Lang wrote

a book Diophantine geometry about diophantine approximations, largely char-
acterized by its use of algebraic geometry. Mordell wrote a r eview for the Bul-
letin of the AMS, which panned it. Many of his criticisms were quite legiti-

mate, since in truth Lang (who wrote faster than normal peopl e can read) had
been rather sloppy. But he also railed a bit about modern tool S in number
theory, and thereby caused some controversy.

What really blew things up was that Carl Ludwig Siegel wrote a letter of sup-
port to Mordell which—in modern terminology—went viral. | b ring this up be-
cause it was an hysterical amplification of Glaisher’'s lamen t:

“The whole style of the author contradicts the sense for simp licity and
honesty which we admire in the works of the masters in number t heory."
“| see a pig broken into a beautiful garden and rooting up all fl owers and
trees.”

“These people remind me of the impudent behaviour of the nati onal so-
cialists "
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