

$3 / 52$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\mathrm{N}} \\
& \mathbf{N}
\end{aligned}
$$

'U0 MOU

Many well known mathematicians of the nineteenth century, among them Gauss,
Jacobi, Eisenstein, Liouville, Smith, and Minkowski found formulas for this
function, when k is small. Gauss found one for r_{3}, and Smith and Minkowski

๒甲
-әэиә!̣ее әлен "Клеұиәшәә би!чъәшоs чұ!м u!бәq I

For example
One of the basic
tools

$$
z=x+i y \text { with } y>0 \text { then }
$$

 This is because

in Jacobi's work, and in all subsequent investigations,

smaller than this divisor sum.
And as I have already remarked, the 'sup-
plementary term' is asymptotically much

${ }^{-9} d$ อләप
This is a log-log plot for $\ell=12$. The divi-
sor sums in all cases are of order $p^{\ell / 2-1}$,

ZG/\&1
 quate."

ours.
The situation doesn't seem very satisfactory to us, but it is definitely intrigu-
ing. Glaisher wasn't very happy about it, either, but for reasons different from
Can we bring some organization into this apparently chaotic business?

-К!!иә имоия Іәм е
'Guruns fixpodso s!

15/52

16/52

ZS/LL

ZS/8L
 моч puełsıəpun noर ןечł ұueן, $\cdot \nabla$

Nowadays, once the operators have been defined, the final step is trivial, be-
cause we know the space of cusp forms (with constant term 0) to have di-
mension one. But this reasoning is anachronistic, and Mordell's proof was
rather special to the problem at hand. One notable feature is that he did not
use any relationship with sums of squares, but just well known properties of
which is a holomorphic function on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$, is bounded, hence constant. $T(n) \Delta=\tau(n) \cdot \Delta$. Mordell proved this by showing that the ratio $T(n) \Delta / \Delta$, multiplicative property, and Ramanujan's conjecture reduces to the equation defined operators $T(n)$ on such forms. It is easy to see that they satisfy the this means in a moment. plex upper half-plane \mathcal{H}, with respect to the group SL_{2}

Ramanujan's first two conjectures were proved by L. J. Mordell (British, but

$$
\mathrm{SL}_{2}(\mathbb{Z})
$$

two conditions

with $z=\omega_{1} / \omega_{2}$ of positive

ZG/ZZ
relatively prime.

ZG/\&乙

There are indeed some small technical problems involved in defining the right
'Hecke operators' for congruence groups, but hardly insuperable. (Although I
think these problems weren't completely understood until the nineteen-sixties,
and primarily through work of Langlands.) Mordell, however, just didn't under-
stand that he was standing on top of a gold mine. He seems to have never
again looked at problems involving modular forms, and in some late reminis-
worth while to go into details."
new invariants of a sub-group of the modular group, and it seems hardly proof of the conjecture about $\tau]$. We should however have to consider

read either Glaisher or Ramanujan carefully.) He then went on jectures for functions related to $r_{10}(n)$ and $r_{16}(n)$. (He doesn't seem to have At the end of his paper Mordell remarks that Ramanujan made similar con-
Mordell's proof leaves unanswered a lot of interesting questions. Here is a
simple one:

$$
W h y \text { aren't the } T(n) \text { called Mordell operators? }
$$

Mordell's proof leaves unanswered a lot of interesting questions. Here is a
numbers.

uO!suedxə Sə!ıəs ЧЏ!М

ZG/9Z

$(\mathrm{I} \quad N \equiv b d) \quad\left[\begin{array}{ll} b & 0 \\ 0 & d \end{array}\right]$ $\cdot(N)$ 】 $\kappa \mathbf{q}$ pex!! suo!̣ount uo !0 uo! $\cdot(N)^{\mathscr{y}} \mathcal{W} \mathbf{u}$ 'ұuәшчs!\|du 	

э!ңедреnb ןе』Бәృи! ә!!и!ృәр әл!!! -ed s!ч u! әдәчмイue !! pu! s, ue!nuemey rof uo!!enbə 'әд!ұиә әдәм Кәчұ рәмочs$'(\times \mathbb{D} \leftarrow \times(N / \mathbb{Z}): 3)$			

[^0]

of $\zeta(s)$ and Whittaker functions.
his theory of Eisenstein series. Here his analyis relied on difficult properties particularly interesting, since $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$ is not compact. Most noticeable was ample, in

 be a very valuable idea, and led to a fruitful generalization of the notion of aueigenfunctions of the non-Euclidean Laplacian on $\Gamma \backslash \mathcal{H}$. This turned out to

Z9/0ع

40!

ләџэелецо әл!ןеэ!ןd!ן|nu əسos лоң
moderate growth on $\Gamma(N) \backslash G$ such that More generally, l'll define an automorphic form of level N to be a function of

әи!!әр мои иеэ әМ

ZG/tع

The pair $\left(\alpha_{p}, \beta_{p}\right)$ determines a conjugacy class

Suppose F to be a cusp form of type $N, \chi,\left\{c_{p}, \varepsilon(p) \mid(p, N)=1\right\}$, and C.
Following Ramnujan, factor

35/52

-Кбоן0w0ч0 э!pe- 10 sws!чd әцł Бu!uдәэиоэ 'pıołunw pue јuวos!u!ued s! juәun6ı s!u! of one by Serre, closely related to work by Tate
statistical distribution of Frobenius automor'suגOł גeןnpow ןeэ!sseןo łSOW
 is an entire function with functional equation, and a yet further consequence

¡ецұ әq p|nom uanł u! əэuənbəsuos əuо

 spueןbueר to əןduexə əио
 S.ə

$37 / 52$
braic torus K^{\times}.

$$
\chi_{4}(n)=\left(\frac{1}{4}\right) \sum_{z \in \mathbb{Z}[i],|z|^{2}=n} z^{4} .
$$

By quadratic reciprocity, the associated L-function is
Explicitly
For example, the supplementary form χ_{4} mentioned earlier comes from $\mathbb{Q}($
 dimension two. Theta functions determine a certain

to be true in many cases, by Deligne and Serre, and then Joe Buhler. Lang-
 is entire and satisfies a good functional equation. Langlands has pointed out set of $\pi\left(\mathfrak{F}_{p}\right)$ in $\mathrm{GL}_{2}(\mathbb{C})$. Artin has conjectured that the associated L-function Any t

conjugacy classes $\left\{g_{p}\right\}$, now in ${ }^{L} G$. Proper L-functions are of the form

In general, certain subtle phenomena have made this proposal a bit compli-
cated. This involves Langlands' notion of endoscopy, concerning which work
of Ngô Bảo Châuwon him a Fields Medal.

every completion of \mathbb{Q} arepresentation of $G\left(\mathbb{Q}_{v}\right)$

|

$$
\begin{aligned}
& \text { • }
\end{aligned}
$$

43/52
әృәןdu0ァ

 -иәш әлеч ұчб!ш \| pue 'sәлn эә!	

乙S／カヤ
əueł łuənbəsqns s،\｜əрıоW ：x！puədd \forall＇9

theory, and thereby caused some controversy.

Mordell became famous in the nineteen twenties when he proved his half of

ZG/Lt

 .77
－J．W．Glaisher，＇On the numbers of representations of a number as a sum of
$2 r$ squares，where $2 r$ does not exceed 18．＇，Proceedings of the London Mathe－
matical Society 2 （5）（1907），479－490．
－Srinivasa Ramanujan，＇On certain arithmetical functions＇，Transactions of the
Cambridge Philosophical Society XXII（1916）．
－Louis Joel Mordell，＇On Mr．Ramanujan＇s empirical expansions of modular
functions＇．Proceedings of the Cambridge Philosophical Society 19 （1917），117－
Кınұиәэ чıод Кィィеョ

Kınłuәэ чเ0Z P!N

 Mathematics 663, American Mathematical Society, 2016.

- Jean-Pierre Serre, 'Lettre à Armand Borel', pp. 10-18 in Frobenius distri-
butions: Lang-Trotter and Sato-Tate conjectures, in the series Contemporary

 baki, exposé 176, 1959.
- Roger Godement, 'Les fonctions ζ des algèbres simple II', Seminaire Bour-

[^0]: р,ұиоэ ’әәәәН

