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Plan of the talk

e Analysis and differential geometry ~~ Hodge and Lefschetz
decompositions.

e + Algebra ~~ Consequences on topology.
e The importance of polarizations (signs and Hodge-Riemann relations).

e Missing. Variations of Hodge structures.



Kahler and projective complex manifolds

Complex manifold= manifold %
equipped with an atlas

. . ¢
U; 2 V; C C", with holomorphic ¥ Je

. B
change of coordinates maps. G/ m
e The tangent space at each point is endowed with a structure de
C-vector space, hence an operator I, 12 = —Id, of almost complex
structure acting on T'x g. Newlander-Nirenberg integrability condition.

e Notion of Hermitian metric on X. In local holomorphic coordinates,
h = Zij hijdz; ® dz;, with imaginary part w = %ZU wijdz; N dz;,
wij = Imh;;. This is a 2-form “of type (1,1)".
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change of coordinates maps. G/ m
e The tangent space at each point is endowed with a structure de
C-vector space, hence an operator I, 12 = —Id, of almost complex
structure acting on T'x g. Newlander-Nirenberg integrability condition.

e Notion of Hermitian metric on X. In local holomorphic coordinates,
h = Zij hijdz; ® dz;, with imaginary part w = %ZU wijdz; N dz;,
wij = Imh;;. This is a 2-form “of type (1,1)".

Definition. The Hermitian metric is Kahler if dw = 0. |[w]= Kahler class.

e On CP": Fubini-Study Kahler metric. The Kahler class equals c1(H*),
where H is the Hopf line bundle, hence is integral. |dem for X ¢ CPV
complex submanifold.

e Kodaira embedding theorem. A compact Kahler manifold is projective
iff it admits a Kahler form with integral cohomology class.



The Frolicher spectral sequence

e X complex manifold, z1,... z, = local holomorphic coordinates.
Holomorphic vector bundle Q2 x generated over Ox by dz;. Transition
matrices given by holomorphic Jacobian matrices.

e Holomorphic de Rham complex Q% := /\k Qx, with exterior differential
d

Thm. (Holomorphic Poincaré lemma). The complex
ox 3oy 4. 5ar o

is exact in degrees > 0. This is a resolution of the constant sheaf C.

Corollary. (X, C) = H*(X, Q%).



The Frolicher spectral sequence

e X complex manifold, z1,... z, = local holomorphic coordinates.
Holomorphic vector bundle Q2 x generated over Ox by dz;. Transition
matrices given by holomorphic Jacobian matrices.

e Holomorphic de Rham complex Q% := /\k Qx, with exterior differential
d.

Thm. (Holomorphic Poincaré lemma). The complex

ox 3oy 4. 5ar o
is exact in degrees > 0. This is a resolution of the constant sheaf C.
Corollary. (X, C) = H*(X, Q%).

e Filtration “béte” FPQS := Q;?p ~ Frolicher spectral sequence.
EPY = HPV(X, C).

o EM = HI(X,0%), d =d.

e On the abutment : “Hodge” filtration
FPHY(X,C) := Im (H*(X, Q%) — HF(X,0%)), B! = Grb H* (X, C).



Quasiprojective manifolds and logarithmic de Rham complexes

e j:U— X, U=X\Y,withY C X closed analytic.

e (Hironaka) By successive blow-ups of X along smooth centers supported
over Y, one can assume that Y is a normal crossing divisor: i.e. Y is
locally defined by a single holomorphic equation of the form f =21... 2
in adequate holomorphic coordinates.

e Define 2x(logY) as the holomorphic vector bundle generated over Ox

dz dz,
by 711,...,7:, dZk41, ..., dzp.

o Ok (logY) = A" Qx(logY), d: Ok (logY) — Q5 (log V).

e Their sections (= forms with logarithmic growth) are the forms with
pole order 1 along Y, whose differential also has pole order 1 along Y.
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e j:U— X, U=X\Y,withY C X closed analytic.

e (Hironaka) By successive blow-ups of X along smooth centers supported
over Y, one can assume that Y is a normal crossing divisor: i.e. Y is
locally defined by a single holomorphic equation of the form f =21... 2
in adequate holomorphic coordinates.

e Define 2x(logY) as the holomorphic vector bundle generated over Ox

dz dz,
by 711,...,7:, dZk41, ..., dzp.

o Ok (logY) = A" Qx(logY), d: Ok (logY) — Q5 (log V).

e Their sections (= forms with logarithmic growth) are the forms with
pole order 1 along Y, whose differential also has pole order 1 along Y.

Thm. The inclusion of the subcomplex Q% (logY’) C 5., is a
quasiisomorphism.

Corollary. H*(U,C) = H*(X, Q% (logY)) and Frélicher spectral
sequence.
e also H*(U,C) = H*(U, ;) hence two Hodge filtrations on H*(U, C).



The Hodge decomposition theorem

e X= compact oriented Riemannian manifold. ~» L2-metric on forms.
(o, B) 2 :fXa/\*ﬁ

e Formal adjoint d* = 4 % d*. Laplacian Ay =dod* +d*od.
Harmonic forms. Aja = 0. X compact and a harmonic = « is closed.

Thm. (Hodge) Each de Rham cohomology class contains a unique
harmonic representative.



The Hodge decomposition theorem

e X= compact oriented Riemannian manifold. ~» L2-metric on forms.
(a,B) 2 = fX a A *f3.

e Formal adjoint d* = 4 % d*. Laplacian Ay =dod* +d*od.
Harmonic forms. Aja = 0. X compact and a harmonic = « is closed.

Thm. (Hodge) Each de Rham cohomology class contains a unique
harmonic representative.

e Forms of type (p,q) on X =cplx mfld: o = Z\IIZP,IJIZQ aryjdzr Ndzg.
Any k-form writes uniquely as a sum Zp+q:k aPq,

Thm. (Hodge) X Kahler = AgaP? is of type (p, q).

Corollary. o harmonic, =3 aP? = each a7 is harmonic.

Thm. (Hodge) Let HP%(X) := {classes of closed forms of type (p,q)}.
Then HP4(X) = HY(X, 0% ) and H*(X,C) = ®pyqr HP1(X).

e Hodge symmetry. HP4(X) = H?P(X).

Cor. The Frélicher spectral sequence of X degenerates at E1 (E1 = Ew).

e Consequences in deformation theory. For example BTT theorem.



The category of Hodge structures

Definition. (Hodge structure) A Hodge structure of weight k= lattice L
+ decomposition L¢ = @©pqq=rLP?, with Lrd = L9P.

e Hodge decomposition ~~ Hodge filtration: FPL¢ := @rszr’k_T-
Conversely 1.9 = FPLc N F9L¢, p+q = k.

Condition on F*: L¢c = FPLc @ Fk—PH1 L.

e Variants. (a) Rational coefficients.

(b) Effective Hodge structure : LP? =0if p <0 or ¢ <O0.



The category of Hodge structures

Definition. (Hodge structure) A Hodge structure of weight k= lattice L
+ decomposition L¢ = @©pqq=rLP9, with L9 = LTP.

e Hodge decomposition ~~ Hodge filtration: FPL¢ := @rszr’k_T.
Conversely LP1 = FPLc N F9Llc, p+ q = k.
Condition on F*: L¢c = FPL¢c @ Fk—pH [,

e Variants. (a) Rational coefficients.
(b) Effective Hodge structure : LP? =0if p <0 or ¢ <O0.

Definition. (L, F”L¢), (L', FPL{.) Hodge structures of weights k, k + 2r.
A morphism of Hodge structures between them is ¢ : L — L/, s.t.
¢C(Lp7q) C L/p-i-nq-&-r'

Example 7 = C"/T" ~» I'c — C" with kernel 'Y C I'¢ is an equivalence
of categories (Complex tori )«~ (effective weight 1 Hodge structures).

e Complex tori up to isogeny «~ Weight 1 rational Hodge structures.

Fact. The category of rational Hodge structures is not semi-simple. There
are morphisms of complex tori T — T" which do not split up to isogeny.



Hodge structures from geometry; functoriality

Thm. X compact Kihler. The cohomology H*(X,7)/Tors carries an
effective Hodge structure of weight k.

e ¢ : X — Y holomorphic map, with X, Y compact Kahler.
¢* : H*(Y,Z)is — H*(X,Z)y is a morphism of Hodge structures.

Prop. The Gysin morphism ¢, : H*(X,Z); — H*24(Y, Z)s,
d=dim X —dimY, is a morphism of Hodge structures.
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¢* : H*(Y,Z)is — H*(X,Z)y is a morphism of Hodge structures.

Prop. The Gysin morphism ¢, : H*(X,Z); — H*24(Y, Z)s,
d=dim X —dimY, is a morphism of Hodge structures.
e Explanation. (a) Via Poincaré duality, ¢. is the transpose of ¢*.

(b) weight k& Hodge structure on L «~ weight —k Hodge structure on L*:
L*P~% is defined as the orthogonal of @ ;. ¢)+(pq)L"°

(c) the Hodge structure on H?"~*(X,Z);; is dual to the Hodge structure
on H¥(X,Z) up to a shift of bidegree (for “type reasons":

[y P4 AP =0 for (p,q) # (n—p,n—q)). qed



Hodge structures from geometry; functoriality

Thm. X compact Kihler. The cohomology H*(X,7)/Tors carries an
effective Hodge structure of weight k.

e ¢ : X — Y holomorphic map, with X, Y compact Kahler.
¢* : H*(Y,Z)is — H*(X,Z)y is a morphism of Hodge structures.

Prop. The Gysin morphism ¢, : H*(X,Z); — H*24(Y, Z)s,
d=dim X —dimY, is a morphism of Hodge structures.
e Explanation. (a) Via Poincaré duality, ¢. is the transpose of ¢*.

(b) weight k& Hodge structure on L «~ weight —k Hodge structure on L*:
L*P~% is defined as the orthogonal of @ ;. ¢)+(pq)L"°

(c) the Hodge structure on H?"~*(X,Z);; is dual to the Hodge structure
on H¥(X,Z) up to a shift of bidegree (for “type reasons":

[y P4 AP =0 for (p,q) # (n—p,n—q)). qed

Construction. Hodge structure on L, resp. M of weights k, resp. k' ~
Weight k + &’ Hodge structure on L ® M :

(Le ® Me)P9 = @rypip st simgl™ @ s



Functoriality and Hodge classes

Definition. (Hodge classes) A Hodge class on a weight 2k Hodge
structure L is an element of L N L**.

Example. Hodge classes on L* ® M, L of weight k, M of weight k + 2r,
are the morphisms of Hodge structures L — M.

Corollary. Hodge classes on a product X xY of compact Kahler
manifolds identify with the morphisms of Hodge structures
H*(X,Z) — H*T (Y, Z)y.

Example. Z C X closed analytic subset of codimension k has a class
[Z] € H*(X,7Z). If X is compact Kihler, this is a Hodge class.



Functoriality and Hodge classes

Definition. (Hodge classes) A Hodge class on a weight 2k Hodge
structure L is an element of L N L**.

Example. Hodge classes on L* ® M, L of weight k, M of weight k& + 2r,
are the morphisms of Hodge structures L — M.

Corollary. Hodge classes on a product X xY of compact Kahler
manifolds identify with the morphisms of Hodge structures
H*(X,Z) — H*T (Y, Z)y.

Example. Z C X closed analytic subset of codimension k has a class
[Z] € H?*(X,7Z). If X is compact Kahler, this is a Hodge class.

Conjecture. (Hodge conjecture) X smooth complex projective. Rational
Hodge classes on X are algebraic, i.e. generated by cycles classes.

Example. Kiinneth components of the diagonal. o; ~ Idp(x 7).
e Known in degree 2 (Lefschetz (1,1)-thm) and 2n — 2 by hard Lefschetz.

e Wrong in the compact Kahler setting, even in a weaker form replacing
cycle classes by Chern classes of coherent sheaves (Voisin).



Mixed Hodge structures

Definition. A rational mixed Hodge structure = a (Q-vector space L with
an increasing (weight) filtration W;L and a decreasing (Hodge) filtration
FPLc, such that: the induced filtration on Gryv L defines a Hodge
structure of weight 1.

Thm. (Deligne) The cohomology of quasiprojective complex varieties, or
analytic-Zariski open in compact Kahler manifolds, or relative
(co)homology of such pairs, carries functorial mixed Hodge structures.



Mixed Hodge structures

Definition. A rational mixed Hodge structure = a (Q-vector space L with
an increasing (weight) filtration W;L and a decreasing (Hodge) filtration
FPLc, such that: the induced filtration on Gryv L defines a Hodge
structure of weight 1.

Thm. (Deligne) The cohomology of quasiprojective complex varieties, or
analytic-Zariski open in compact Kahler manifolds, or relative
(co)homology of such pairs, carries functorial mixed Hodge structures.

e Smooth case: U = X \Y <y X, Y=normal crossing divisor. Use
H*(U,C) = H*(X, Q% (logY)). Filtration F' on Q% (logY") is the usual
one (“béte"). Filtration W on Q% (logY'): up to a shift, this is given by
WiQ% (logY) = Q4 (log V) A Q% "

e A posteriori, the induced W- filtration is defined on rational cohomology
and related to the Leray filtration of j.

e The s.s. for F' degenerates at Fy, the s.s. for W degenerates at F».

e In this case, the smallest weight part of H*(U,Q) is
Im (5* : H*(X,Q) — H¥(U,Q)) (weight k).



Formal properties and application to the coniveau

e Morphisms of MHS: ¢ : L — L', ¢(W;L) C W;L', ¢c(FPLc) C FPL.

Thm. (Deligne) Morphisms of mixed Hodge structures are strict for both
filtrations (i.e.: FPLy NIm ¢ = ¢c(FPLc), WiL' NIm ¢ = ¢(W;L)).

Sketch of proof. Follows from an algebra lemma: There exists a
functorial decomposition L¢c = @y, oLP9 for mixed Hodge structures
(L,W,F), with FPLc = ®y>p L™, WiLc = ®prq<ilP.

Let a € W;L'NIm¢. Write a = ¢(8), 8=>_,,8"% Then ¢(79) =0
for p+q>isoa=¢(f)with ' =3, .,/ € WLc. qed



Formal properties and application to the coniveau

e Morphisms of MHS: ¢ : L — L', ¢(W;L) C W;L', ¢c(FPLc) C FPL.

Thm. (Deligne) Morphisms of mixed Hodge structures are strict for both
filtrations (i.e.: FPLy NIm ¢ = ¢c(FPLc), WiL' NIm ¢ = ¢(W;L)).

Sketch of proof. Follows from an algebra lemma: There exists a
functorial decomposition L¢c = @y, oLP9 for mixed Hodge structures
(L,W,F), with FPLc = ®y>p L™, WiLc = ®prq<ilP.

Let a € W;L'NIm¢. Write a = ¢(8), 8=>_,,8"% Then ¢(79) =0
for p+q>isoa=¢(f)with ' =3, .,/ € WLc. qed

Definition. A class o € H*(X,Q) is of coniveau > ¢ ifax\y =0 withY
closed analytic of codim > c.

If X is smooth compact, j:Y — X, equivalent condition: o = j,03 in
HQn—k(X7 Q) for some 3 € H2n—k(Y7 Q)

§tri5tness = If X is smooth projective, j : Y — X with desingularization
j:Y = X, then Im j, = Imj, C Hop (X, Q).

Corollary. (Deligne) The set of cohomology classes of coniveau > ¢ is a
Hodge substructure of H*(X,Q), of Hodge coniveau > c.



Polarizations

Thm. (Hard Lefschetz, proved by Hodge) Let X be compact Kahler of
dimension n, w a Kahler form on X. Then Vk < n,
Ulw]"=* := L"=* . H*(X,R) — H?*~*(X,R) is an isomorphism.

¢ Projective case : One can take [w] rational. Then the Lefschetz
isomorphism is an isomorphism of Hodge structures.

Coro. (Lefschetz decomp.) H*(X,R) = @_9,50L" H* 2" (X, R) prim,
where HF=2" (X, R) prim := Ker LPk+2r+1 ¢ [fh=2r( X R).



Polarizations

Thm. (Hard Lefschetz, proved by Hodge) Let X be compact Kahler of
dimension n, w a Kahler form on X. Then Vk < n,
Ulw]"=* := L"=* . H*(X,R) — H?*~*(X,R) is an isomorphism.

¢ Projective case : One can take [w] rational. Then the Lefschetz
isomorphism is an isomorphism of Hodge structures.

Coro. (Lefschetz decomp.) H*(X,R) = @_9,50L" H* 2" (X, R) prim,
where HF=2" (X, R) prim := Ker LPk+2r+1 ¢ [fh=2r( X R).

o Lefschetz intersection pairing on H*: (c, B)Ler = fX L ko Up.
hLef(aa /8) = ik(av /B)Lef-

e easy: The Lefschetz decomposition is orthogonal for (, )Let, and the
Hodge decomposition is orthogonal for hyes. (HR1).

Thm. 2nd H-R bilinear relations: (—1)P"" Ryt 1r tro—ra—r (X R)prim
positive definite Hermitian (up to a global sign depending on k). (HR2).

Corollary. Let [w] be rational. On L™ H*=2"(X, Q) prim, multiply (, et by
(—1)": one gets a polarized Hodge structure on H*(X,Q).



Polarizations, ctd

Thm. Let H=rational polarized Hodge structure, H' C H a Hodge

substructure, then H = H' & H" for some Hodge substructure H" C H.
(The category of polarized Hodge structures is semisimple).

Proof. Choose a polarization (, ) on H. First prove that (, ) g is

nondegenerate using HR2, then define H” = H'*. H” is a Hodge
substructure by HR1. ged



Polarizations, ctd

Thm. Let H=rational polarized Hodge structure, H' C H a Hodge
substructure, then H = H' & H" for some Hodge substructure H" C H.
(The category of polarized Hodge structures is semisimple).

Proof. Choose a polarization (, ) on H. First prove that (, ) g is

nondegenerate using HR2, then define H” = H'*. H" is a Hodge
substructure by HR1. ged

e Polarizations on the cohomology of smooth projective varieties are
almost motivic, but one needs the Lefschetz decomposition and the
change of signs. To make them motivic, one needs:

Lefschetz standard conjecture. X projective. There exists a
codimension k closed algebraic subset Zyos C X x X such that
[Zret]* : H>"F(X,Q) — H*(X,Q) is the inverse (L™ *)~1 of the
Lefschetz isomorphism.

o ([Zret] € H*(X x X,Q) = cohomology class of Zy.s.)

e Implied by the Hodge conjecture because (L"¥)~! is an iso of Hodge
structures hence produces a Hodge class on X x X.



Hodge structures on cohomology algebras and applications to topology

e A cohomology algebra = graded, graded commutative, algebra of finite
dimension over Q, with A?" = Q and Poincaré duality.

Definition. A Hodge structure on a cohomology algebra A*, = Hodge

structure of weight k on AF, such that A* @ A' — A**! js a morphism of
Hodge structures.

Example. H*(X,Q) for X compact Kahler.



Hodge structures on cohomology algebras and applications to topology

e A cohomology algebra = graded, graded commutative, algebra of finite
dimension over Q, with A?" = Q and Poincaré duality.

Definition. A Hodge structure on a cohomology algebra A*, = Hodge
structure of weight k on AF, such that A* @ A' — A**! js a morphism of
Hodge structures.

Example. H*(X,Q) for X compact Kahler.

Thm. (Voisin) There exist compact Kihler manifolds (dim > 4) whose
cohomology algebra is not isomorphic to H*(X,Q) for X complex
projective.

Idea of proof. (1) Construct an X such that the structure of its
cohomology algebra = the Hodge structure on H!(X,Q) (or H*(X,Q)
for simply connected examples) has endomorphisms.

(2) Certain endomorphisms on weight 1 (or weight 2) HS prevent the
existence of a polarization.

Case of dim2 (Kodaira), dim 3 (Lin): Any compact Kahler X has small
deformations which are projective.



Polarizations-+-MHS: Topology of families; global invariant cycles theorem

Thm. (Blanchard, Deligne) If f : X — Y is smooth projective, the Leray
spectral sequence of f with Q-coefficients degenerates at Fs.

Proof. Relative Lefschetz operator L = ¢1(£)U acts on the whole spectral
sequence, and induces Lefschetz decomposition

RFf,Q = @TLT(Rk_QTf*Q)prim. Suffices to prove doav = 0 for

a € HP(Y, R1f,Qprim). But L9 la = 0= L" 9" ldya = 0. But

doc € HPY2(Y, RI71f,Q) and L"~9%!: RI71£,Q) = R 91 £,Q. qed

e Monodromy. Local system R*f,Q ~~ monodromy representation
p:m(Y,0) = Aut H*(Xo,Q). Thus H*(Xo,Q)? = H(Y, R*f.Q)
= Im (H*(X,Q) — H*(Xy,Q)) by degeneracy at E.



Polarizations-+-MHS: Topology of families; global invariant cycles theorem

Thm. (Blanchard, Deligne) If f : X — Y is smooth projective, the Leray
spectral sequence of f with Q-coefficients degenerates at Fs.

Proof. Relative Lefschetz operator L = ¢1(£)U acts on the whole spectral
sequence, and induces Lefschetz decomposition

RFf,Q = @TLT(Rk_QTf*Q)prim. Suffices to prove doav = 0 for

a € HP(Y, R1f,Qprim). But L9 la = 0= L" 9" ldya = 0. But

doc € HPY2(Y, RI71f,Q) and L"~9%!: RI71£,Q) = R 91 £,Q. qed

e Monodromy. Local system R*f,Q ~~ monodromy representation
p:m(Y,0) = Aut H*(Xo,Q). Thus H*(Xo,Q)? = H(Y, R*f.Q)
= Im (H*(X,Q) — H*(Xy,Q)) by degeneracy at E.

Thm (Deligne) X C X smooth projective, f : X — Y as above with Y’
quasi-projective. Then H*(Xy,Q)? = Im (H*(X,Q) — H*(X,,Q)). This
is a Hodge substructure of H*(Xy, Q).

Proof. H*(X,Q) — H*(X(,Q) is a morphism of mixed Hodge
structures. On the right, pure of weight k. On the left, the weight &k part
is Im (H*(X,Q) — H*(X,Q)). Then apply strictness. qed



The Hodge bundles

e Algebraic de Rham complex Q;(/C, relative version Q}/Y for f: X =»Y
algebraic, smooth morphism.

Thm. (Serre-Grothendieck) X smooth quasiprojective over C. Then
H* (X, Q% /C) = HE(X, C).
e So, for X projective, the Hodge filtration and Frolicher s.s. are algebraic.



The Hodge bundles

e Algebraic de Rham complex Q;(/C, relative version Q}/Y for f: X =»Y
algebraic, smooth morphism.

Thm. (Serre-Grothendieck) X smooth quasiprojective over C. Then

H* (X, Q% /C) = HE(X, C).

e So, for X projective, the Hodge filtration and Frolicher s.s. are algebraic.
e Relative version = If f : X — Y is algebraic, smooth projective, then
the Hodge bundles H*, FPH"* HP4 are algebraic on Y.

e Katz-Oda construction : relative holomorphic de Rham complex Qk/y.
RF[,Q% )y = HF := H" ® Oy. Hodge filtration FPH* = R* f*Q;E/’Y with
fiber FPH*(X;).

o Let L2Q% = f*Q2 A QY2

¢ Exact sequence. 0 — QB(_A/ ® [*Qy — Q% /L2Q% — Q% )y =0

Thm. (Katz-Oda) The Gauss-Manin connection V : HF — H* @ Qy is
the connecting map.
Corollary. The Gauss-Manin connection is algebraic.



