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Plan of the talk

• Analysis and differential geometry  Hodge and Lefschetz
decompositions.

• + Algebra  Consequences on topology.

• The importance of polarizations (signs and Hodge-Riemann relations).

• Missing. Variations of Hodge structures.



Kähler and projective complex manifolds

Complex manifold= manifold
equipped with an atlas
Ui ∼= Vi ⊂ Cn, with holomorphic
change of coordinates maps.

• The tangent space at each point is endowed with a structure de
C-vector space, hence an operator I, I2 = −Id, of almost complex
structure acting on TX,R. Newlander-Nirenberg integrability condition.

• Notion of Hermitian metric on X. In local holomorphic coordinates,
h =

∑
ij hijdzi ⊗ dzj , with imaginary part ω = 1

ι

∑
ij ωijdzi ∧ dzj ,

ωij = Imhij . This is a 2-form “of type (1, 1)”.

Definition. The Hermitian metric is Kähler if dω = 0. [ω]= Kähler class.

• On CPN : Fubini-Study Kähler metric. The Kähler class equals c1(H∗),
where H is the Hopf line bundle, hence is integral. Idem for X ⊂ CPN
complex submanifold.

• Kodaira embedding theorem. A compact Kähler manifold is projective
iff it admits a Kähler form with integral cohomology class.
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The Frölicher spectral sequence

• X complex manifold, z1, . . . zn = local holomorphic coordinates.
Holomorphic vector bundle ΩX generated over OX by dzi. Transition
matrices given by holomorphic Jacobian matrices.
• Holomorphic de Rham complex Ωk

X :=
∧k ΩX , with exterior differential

d.
Thm. (Holomorphic Poincaré lemma). The complex

OX
d→ ΩX

d→ . . .
d→ Ωn

X → 0

is exact in degrees > 0. This is a resolution of the constant sheaf C.

Corollary.Hk(X,C) = Hk(X,Ω•X).

• Filtration “bête” F pΩ•X := Ω•≥pX  Frölicher spectral sequence.
Ep,q1 ⇒ Hp+q(X,C).

• Ep,q1 = Hq(X,Ωp
X), d1 = d.

• On the abutment : “Hodge” filtration
F pHk(X,C) := Im (Hk(X,Ω•≥pX )→ Hk(X,Ω•X)), Ep,q∞ = GrpFH

k(X,C).
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Quasiprojective manifolds and logarithmic de Rham complexes

• j : U ↪→ X, U = X \ Y , with Y ⊂ X closed analytic.

• (Hironaka) By successive blow-ups of X along smooth centers supported
over Y , one can assume that Y is a normal crossing divisor: i.e. Y is
locally defined by a single holomorphic equation of the form f = z1 . . . zk
in adequate holomorphic coordinates.

• Define ΩX(log Y ) as the holomorphic vector bundle generated over OX
by dz1

z1
, . . . , dzkzk , dzk+1, . . . , dzn.

• Ωk
X(log Y ) =

∧k ΩX(log Y ), d : Ωk
X(log Y )→ Ωk+1

X (log Y ).

• Their sections (= forms with logarithmic growth) are the forms with
pole order 1 along Y , whose differential also has pole order 1 along Y .

Thm. The inclusion of the subcomplex Ω•X(log Y ) ⊂ j∗Ω•U is a
quasiisomorphism.

Corollary. Hk(U,C) = Hk(X,Ω•X(log Y )) and Frölicher spectral
sequence.

• also Hk(U,C) = Hk(U,Ω•U ) hence two Hodge filtrations on Hk(U,C).
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The Hodge decomposition theorem

• X= compact oriented Riemannian manifold.  L2-metric on forms.
(α, β)L2 =

∫
X α ∧ ∗β.

• Formal adjoint d∗ = ± ∗ d∗. Laplacian ∆d = d ◦ d∗ + d∗ ◦ d.

Harmonic forms. ∆dα = 0. X compact and α harmonic ⇒ α is closed.

Thm. (Hodge) Each de Rham cohomology class contains a unique
harmonic representative.

• Forms of type (p, q) on X =cplx mfld: α =
∑
|I|=p,|J |=q αIJdzI ∧ dzJ .

Any k-form writes uniquely as a sum
∑

p+q=k α
p,q.

Thm. (Hodge) X Kähler ⇒ ∆dα
p,q is of type (p, q).

Corollary. α harmonic, α =
∑

p,q α
p,q ⇒ each αp,q is harmonic.

Thm. (Hodge) Let Hp,q(X) := {classes of closed forms of type (p, q)}.
Then Hp,q(X) ∼= Hq(X,Ωp

X) and Hk(X,C) = ⊕p+q=kHp,q(X).

• Hodge symmetry. Hp,q(X) = Hq,p(X).

Cor. The Frölicher spectral sequence of X degenerates at E1 (E1 = E∞).

• Consequences in deformation theory. For example BTT theorem.
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The category of Hodge structures

Definition. (Hodge structure) A Hodge structure of weight k= lattice L
+ decomposition LC = ⊕p+q=kLp,q, with Lp,q = Lq,p.

• Hodge decomposition  Hodge filtration: F pLC := ⊕r≥pLr,k−r.
Conversely Lp,q = F pLC ∩ F qLC, p+ q = k.
Condition on F •: LC = F pLC ⊕ F k−p+1LC.

• Variants. (a) Rational coefficients.
(b) Effective Hodge structure : Lp,q = 0 if p < 0 or q < 0.

Definition. (L,F pLC), (L′, F pL′C) Hodge structures of weights k, k+ 2r.
A morphism of Hodge structures between them is φ : L→ L′, s.t.
φC(Lp,q) ⊂ L′p+r,q+r.

Example T = Cn/Γ ΓC � Cn with kernel Γ1,0 ⊂ ΓC is an equivalence
of categories (Complex tori )! (effective weight 1 Hodge structures).

• Complex tori up to isogeny ! Weight 1 rational Hodge structures.

Fact. The category of rational Hodge structures is not semi-simple. There
are morphisms of complex tori T � T ′ which do not split up to isogeny.
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Hodge structures from geometry; functoriality

Thm. X compact Kähler. The cohomology Hk(X,Z)/Tors carries an
effective Hodge structure of weight k.

• φ : X → Y holomorphic map, with X, Y compact Kähler.
φ∗ : Hk(Y,Z)tf → Hk(X,Z)tf is a morphism of Hodge structures.

Prop. The Gysin morphism φ∗ : Hk(X,Z)tf → Hk−2d(Y,Z)tf ,
d = dimX − dimY , is a morphism of Hodge structures.

• Explanation. (a) Via Poincaré duality, φ∗ is the transpose of φ∗.

(b) weight k Hodge structure on L! weight −k Hodge structure on L∗:
L∗−p,−q is defined as the orthogonal of ⊕(r,s)6=(p,q)L

r,s.

(c) the Hodge structure on H2n−k(X,Z)tf is dual to the Hodge structure
on Hk(X,Z)tf up to a shift of bidegree (for “type reasons”:∫
X α

p,q ∧ βp′,q′ = 0 for (p′, q′) 6= (n− p, n− q)). qed

Construction. Hodge structure on L, resp. M of weights k, resp. k′  
Weight k + k′ Hodge structure on L⊗M :

(LC ⊗MC)p,q = ⊕r+r′=p,s+s′=qLr,s ⊗ L′r
′,s′ .
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• Explanation. (a) Via Poincaré duality, φ∗ is the transpose of φ∗.

(b) weight k Hodge structure on L! weight −k Hodge structure on L∗:
L∗−p,−q is defined as the orthogonal of ⊕(r,s)6=(p,q)L

r,s.

(c) the Hodge structure on H2n−k(X,Z)tf is dual to the Hodge structure
on Hk(X,Z)tf up to a shift of bidegree (for “type reasons”:∫
X α

p,q ∧ βp′,q′ = 0 for (p′, q′) 6= (n− p, n− q)). qed

Construction. Hodge structure on L, resp. M of weights k, resp. k′  
Weight k + k′ Hodge structure on L⊗M :

(LC ⊗MC)p,q = ⊕r+r′=p,s+s′=qLr,s ⊗ L′r
′,s′ .



Functoriality and Hodge classes

Definition. (Hodge classes) A Hodge class on a weight 2k Hodge
structure L is an element of L ∩ Lk,k.

Example. Hodge classes on L∗ ⊗M , L of weight k, M of weight k + 2r,
are the morphisms of Hodge structures L→M .

Corollary. Hodge classes on a product X × Y of compact Kähler
manifolds identify with the morphisms of Hodge structures
H∗(X,Z)tf → H∗+2r(Y,Z)tf .

Example. Z ⊂ X closed analytic subset of codimension k has a class
[Z] ∈ H2k(X,Z). If X is compact Kähler, this is a Hodge class.

Conjecture. (Hodge conjecture) X smooth complex projective. Rational
Hodge classes on X are algebraic, i.e. generated by cycles classes.

Example. Künneth components of the diagonal. δk  IdHk(X,Z).

• Known in degree 2 (Lefschetz (1, 1)-thm) and 2n− 2 by hard Lefschetz.

• Wrong in the compact Kähler setting, even in a weaker form replacing
cycle classes by Chern classes of coherent sheaves (Voisin).
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Mixed Hodge structures

Definition. A rational mixed Hodge structure = a Q-vector space L with
an increasing (weight) filtration WiL and a decreasing (Hodge) filtration
F pLC, such that: the induced filtration on GrWi L defines a Hodge
structure of weight i.

Thm. (Deligne) The cohomology of quasiprojective complex varieties, or
analytic-Zariski open in compact Kähler manifolds, or relative
(co)homology of such pairs, carries functorial mixed Hodge structures.

• Smooth case: U = X \ Y
j
↪→ X, Y=normal crossing divisor. Use

Hk(U,C) = Hk(X,Ω•X(log Y )). Filtration F on Ω•X(log Y ) is the usual
one (“bête”). Filtration W on Ω•X(log Y ): up to a shift, this is given by
WiΩ

•
X(log Y ) = Ωi

X(log Y ) ∧ Ω•−iX .

• A posteriori, the induced W - filtration is defined on rational cohomology
and related to the Leray filtration of j.

• The s.s. for F degenerates at E1, the s.s. for W degenerates at E2.

• In this case, the smallest weight part of Hk(U,Q) is
Im (j∗ : Hk(X,Q)→ Hk(U,Q)) (weight k).
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Formal properties and application to the coniveau

• Morphisms of MHS: φ : L→ L′, φ(WiL) ⊂WiL
′, φC(F pLC) ⊂ F pL′C.

Thm. (Deligne) Morphisms of mixed Hodge structures are strict for both
filtrations (i.e.: F pL′C ∩ ImφC = φC(F pLC), WiL

′ ∩ Imφ = φ(WiL)).

Sketch of proof. Follows from an algebra lemma: There exists a
functorial decomposition LC = ⊕p,qLp,q for mixed Hodge structures
(L,W,F ), with F pLC = ⊕r≥p,qLr,q, WiLC = ⊕p+q≤iLp,q.
Let α ∈WiL

′ ∩ Imφ. Write α = φ(β), β =
∑

p,q β
p,q. Then φ(βp,q) = 0

for p+ q > i so α = φ(β′) with β′ =
∑

p+q≤i β
p,q ∈WiLC. qed

Definition. A class α ∈ Hk(X,Q) is of coniveau ≥ c if α|X\Y = 0 with Y
closed analytic of codim ≥ c.
If X is smooth compact, j : Y ↪→ X, equivalent condition: α = j∗β in
H2n−k(X,Q) for some β ∈ H2n−k(Y,Q).

Strictness ⇒ If X is smooth projective, j : Y ↪→ X with desingularization
j̃ : Ỹ → X, then Im j∗ = Im j̃∗ ⊂ H2n−k(X,Q).

Corollary. (Deligne) The set of cohomology classes of coniveau ≥ c is a
Hodge substructure of Hk(X,Q), of Hodge coniveau ≥ c.
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Polarizations

Thm. (Hard Lefschetz, proved by Hodge) Let X be compact Kähler of
dimension n, ω a Kähler form on X. Then ∀k ≤ n,
∪[ω]n−k := Ln−k : Hk(X,R)→ H2n−k(X,R) is an isomorphism.

• Projective case : One can take [ω] rational. Then the Lefschetz
isomorphism is an isomorphism of Hodge structures.

Coro. (Lefschetz decomp.) Hk(X,R) = ⊕k−2r≥0LrHk−2r(X,R)prim,
where Hk−2r(X,R)prim := KerLn−k+2r+1 ⊂ Hk−2r(X,R).

• Lefschetz intersection pairing on Hk: (α, β)Lef =
∫
X L

n−kα ∪ β.

hLef(α, β) := ik(α, β)Lef .

• easy: The Lefschetz decomposition is orthogonal for ( , )Lef , and the
Hodge decomposition is orthogonal for hLef . (HR1).

Thm. 2nd H-R bilinear relations: (−1)p+rhLef|LrHp−r,q−r(X,R)prim is
positive definite Hermitian (up to a global sign depending on k). (HR2).

Corollary. Let [ω] be rational. On LrHk−2r(X,Q)prim, multiply ( , )Lef by
(−1)r: one gets a polarized Hodge structure on Hk(X,Q).
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Polarizations, ctd

Thm. Let H=rational polarized Hodge structure, H ′ ⊂ H a Hodge
substructure, then H = H ′ ⊕H ′′ for some Hodge substructure H ′′ ⊂ H.
(The category of polarized Hodge structures is semisimple).

Proof. Choose a polarization ( , ) on H. First prove that ( , )|H′ is

nondegenerate using HR2, then define H ′′ = H ′⊥. H ′′ is a Hodge
substructure by HR1. qed

• Polarizations on the cohomology of smooth projective varieties are
almost motivic, but one needs the Lefschetz decomposition and the
change of signs. To make them motivic, one needs:

Lefschetz standard conjecture. X projective. There exists a
codimension k closed algebraic subset ZLef ⊂ X ×X such that
[ZLef ]

∗ : H2n−k(X,Q)→ Hk(X,Q) is the inverse (Ln−k)−1 of the
Lefschetz isomorphism.

• ([ZLef ] ∈ H2k(X ×X,Q) = cohomology class of ZLef .)

• Implied by the Hodge conjecture because (Ln−k)−1 is an iso of Hodge
structures hence produces a Hodge class on X ×X.
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(The category of polarized Hodge structures is semisimple).

Proof. Choose a polarization ( , ) on H. First prove that ( , )|H′ is

nondegenerate using HR2, then define H ′′ = H ′⊥. H ′′ is a Hodge
substructure by HR1. qed

• Polarizations on the cohomology of smooth projective varieties are
almost motivic, but one needs the Lefschetz decomposition and the
change of signs. To make them motivic, one needs:

Lefschetz standard conjecture. X projective. There exists a
codimension k closed algebraic subset ZLef ⊂ X ×X such that
[ZLef ]

∗ : H2n−k(X,Q)→ Hk(X,Q) is the inverse (Ln−k)−1 of the
Lefschetz isomorphism.

• ([ZLef ] ∈ H2k(X ×X,Q) = cohomology class of ZLef .)

• Implied by the Hodge conjecture because (Ln−k)−1 is an iso of Hodge
structures hence produces a Hodge class on X ×X.



Hodge structures on cohomology algebras and applications to topology

• A cohomology algebra = graded, graded commutative, algebra of finite
dimension over Q, with A2n = Q and Poincaré duality.

Definition. A Hodge structure on a cohomology algebra A∗, = Hodge
structure of weight k on Ak, such that Ak ⊗Al → Ak+l is a morphism of
Hodge structures.

Example. H∗(X,Q) for X compact Kähler.

Thm. (Voisin) There exist compact Kähler manifolds (dim ≥ 4) whose
cohomology algebra is not isomorphic to H∗(X,Q) for X complex
projective.

Idea of proof. (1) Construct an X such that the structure of its
cohomology algebra ⇒ the Hodge structure on H1(X,Q) (or H2(X,Q)
for simply connected examples) has endomorphisms.
(2) Certain endomorphisms on weight 1 (or weight 2) HS prevent the
existence of a polarization.

Case of dim 2 (Kodaira), dim 3 (Lin): Any compact Kähler X has small
deformations which are projective.
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Polarizations+MHS: Topology of families; global invariant cycles theorem

Thm. (Blanchard, Deligne) If f : X → Y is smooth projective, the Leray
spectral sequence of f with Q-coefficients degenerates at E2.

Proof. Relative Lefschetz operator L = c1(L)∪ acts on the whole spectral
sequence, and induces Lefschetz decomposition
Rkf∗Q = ⊕rLr(Rk−2rf∗Q)prim. Suffices to prove d2α = 0 for
α ∈ Hp(Y,Rqf∗Qprim). But Ln−q+1α = 0⇒ Ln−q+1d2α = 0. But
d2α ∈ Hp+2(Y,Rq−1f∗Q) and Ln−q+1 : Rq−1f∗Q) ∼= R2n−q+1f∗Q. qed

• Monodromy. Local system Rkf∗Q monodromy representation
ρ : π1(Y, 0)→ AutHk(X0,Q). Thus Hk(X0,Q)ρ = H0(Y,Rkf∗Q)
= Im (Hk(X,Q)→ Hk(X0,Q)) by degeneracy at E2.

Thm (Deligne) X ⊂ X smooth projective, f : X → Y as above with Y
quasi-projective. Then Hk(X0,Q)ρ = Im (Hk(X,Q)→ Hk(X0,Q)). This
is a Hodge substructure of Hk(X0,Q).

Proof. Hk(X,Q)→ Hk(X0,Q) is a morphism of mixed Hodge
structures. On the right, pure of weight k. On the left, the weight k part
is Im (Hk(X,Q)→ Hk(X,Q)). Then apply strictness. qed
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The Hodge bundles

• Algebraic de Rham complex Ω•X/C, relative version Ω•X/Y for f : X → Y
algebraic, smooth morphism.

Thm. (Serre-Grothendieck) X smooth quasiprojective over C. Then
Hk(X,Ω•X/C) ∼= Hk

B(X,C).
• So, for X projective, the Hodge filtration and Frölicher s.s. are algebraic.

• Relative version ⇒ If f : X → Y is algebraic, smooth projective, then
the Hodge bundles Hk, F pHk, Hp,q are algebraic on Y .

• Katz-Oda construction : relative holomorphic de Rham complex Ω•X/Y .

Rkf∗Ω
•
X/Y

∼= Hk := Hk ⊗OY . Hodge filtration F pHk = Rkf∗Ω
•≥p
X/Y with

fiber F pHk(Xt).

• Let L2Ω•X := f∗Ω2
Y ∧ Ω•−2X .

• Exact sequence. 0→ Ω•−1X/Y ⊗ f
∗ΩY → Ω•X/L

2Ω•X → Ω•X/Y → 0

Thm. (Katz-Oda) The Gauss-Manin connection ∇ : Hk → Hk ⊗ ΩY is
the connecting map.
Corollary. The Gauss-Manin connection is algebraic.
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