Hodge structures and the topology of algebraic varieties

Claire Voisin

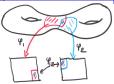
CNRS, Institut de mathématiques de Jussieu

CMSA Harvard, 30 September 2020

- \bullet Analysis and differential geometry \rightsquigarrow Hodge and Lefschetz decompositions.
- + Algebra \rightsquigarrow Consequences on topology.
- The importance of polarizations (signs and Hodge-Riemann relations).
- Missing. Variations of Hodge structures.

Kähler and projective complex manifolds

Complex manifold= manifold equipped with an atlas $U_i \cong V_i \subset \mathbb{C}^n$, with holomorphic change of coordinates maps.



• The tangent space at each point is endowed with a structure de \mathbb{C} -vector space, hence an operator I, $I^2 = -Id$, of **almost complex** structure acting on $T_{X,\mathbb{R}}$. Newlander-Nirenberg integrability condition.

• Notion of Hermitian metric on X. In local holomorphic coordinates, $h = \sum_{ij} h_{ij} dz_i \otimes d\overline{z}_j$, with imaginary part $\omega = \frac{1}{\iota} \sum_{ij} \omega_{ij} dz_i \wedge d\overline{z}_j$, $\omega_{ij} = \operatorname{Im} h_{ij}$. This is a 2-form "of type (1, 1)".

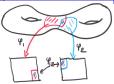
Definition. The Hermitian metric is Kähler if $d\omega = 0$. $[\omega] = K$ ähler class.

• On \mathbb{CP}^N : Fubini-Study Kähler metric. The Kähler class equals $c_1(\mathcal{H}^*)$, where \mathcal{H} is the Hopf line bundle, hence is integral. Idem for $X \subset \mathbb{CP}^N$ complex submanifold.

• Kodaira embedding theorem. A compact Kähler manifold is projective iff it admits a Kähler form with integral cohomology class.

Kähler and projective complex manifolds

Complex manifold= manifold equipped with an atlas $U_i \cong V_i \subset \mathbb{C}^n$, with holomorphic change of coordinates maps.



• The tangent space at each point is endowed with a structure de \mathbb{C} -vector space, hence an operator I, $I^2 = -Id$, of **almost complex** structure acting on $T_{X,\mathbb{R}}$. Newlander-Nirenberg integrability condition.

• Notion of Hermitian metric on X. In local holomorphic coordinates, $h = \sum_{ij} h_{ij} dz_i \otimes d\overline{z}_j$, with imaginary part $\omega = \frac{1}{\iota} \sum_{ij} \omega_{ij} dz_i \wedge d\overline{z}_j$, $\omega_{ij} = \operatorname{Im} h_{ij}$. This is a 2-form "of type (1, 1)".

Definition. The Hermitian metric is Kähler if $d\omega = 0$. $[\omega] = K$ ähler class.

- On \mathbb{CP}^N : Fubini-Study Kähler metric. The Kähler class equals $c_1(\mathcal{H}^*)$, where \mathcal{H} is the Hopf line bundle, hence is integral. Idem for $X \subset \mathbb{CP}^N$ complex submanifold.
- Kodaira embedding theorem. A compact Kähler manifold is projective iff it admits a Kähler form with integral cohomology class.

• X complex manifold, $z_1, \ldots z_n = \text{local holomorphic coordinates.}$ Holomorphic vector bundle Ω_X generated over \mathcal{O}_X by dz_i . Transition matrices given by holomorphic Jacobian matrices.

• Holomorphic de Rham complex $\Omega_X^k := \bigwedge^k \Omega_X$, with exterior differential d.

Thm. (Holomorphic Poincaré lemma). The complex

$$\mathcal{O}_X \xrightarrow{d} \Omega_X \xrightarrow{d} \dots \xrightarrow{d} \Omega_X^n \to 0$$

is exact in degrees > 0. This is a resolution of the constant sheaf \mathbb{C} . Corollary. $H^k(X, \mathbb{C}) = \mathbb{H}^k(X, \Omega^{\bullet}_X)$.

• Filtration "bête" $F^p\Omega^{\bullet}_X := \Omega^{\bullet \ge p}_X \rightsquigarrow$ Frölicher spectral sequence. $E_1^{p,q} \Rightarrow H^{p+q}(X, \mathbb{C}).$

•
$$E_1^{p,q} = H^q(X, \Omega_X^p), \ d_1 = d.$$

• On the abutment : **"Hodge" filtration** $F^pH^k(X,\mathbb{C}) := \operatorname{Im}\left(\mathbb{H}^k(X,\Omega_X^{\bullet\geq p}) \to \mathbb{H}^k(X,\Omega_X^{\bullet})\right), \ E_{\infty}^{p,q} = Gr_F^pH^k(X,\mathbb{C}).$ • X complex manifold, $z_1, \ldots z_n = \text{local holomorphic coordinates.}$ Holomorphic vector bundle Ω_X generated over \mathcal{O}_X by dz_i . Transition matrices given by holomorphic Jacobian matrices.

• Holomorphic de Rham complex $\Omega_X^k := \bigwedge^k \Omega_X$, with exterior differential d.

Thm. (Holomorphic Poincaré lemma). The complex

$$\mathcal{O}_X \xrightarrow{d} \Omega_X \xrightarrow{d} \dots \xrightarrow{d} \Omega_X^n \to 0$$

is exact in degrees > 0. This is a resolution of the constant sheaf \mathbb{C} . Corollary. $H^k(X, \mathbb{C}) = \mathbb{H}^k(X, \Omega^{\bullet}_X)$.

• Filtration "bête" $F^p\Omega^{\bullet}_X := \Omega^{\bullet \geq p}_X \rightsquigarrow$ Frölicher spectral sequence. $E_1^{p,q} \Rightarrow H^{p+q}(X, \mathbb{C}).$

•
$$E_1^{p,q} = H^q(X, \Omega_X^p), \ d_1 = d.$$

• On the abutment : "Hodge" filtration $F^{p}H^{k}(X, \mathbb{C}) := \operatorname{Im} (\mathbb{H}^{k}(X, \Omega_{X}^{\bullet \geq p}) \to \mathbb{H}^{k}(X, \Omega_{X}^{\bullet})), E_{\infty}^{p,q} = Gr_{F}^{p}H^{k}(X, \mathbb{C}).$ Quasiprojective manifolds and logarithmic de Rham complexes

• $j: U \hookrightarrow X$, $U = X \setminus Y$, with $Y \subset X$ closed analytic.

• (Hironaka) By successive blow-ups of X along smooth centers supported over Y, one can assume that Y is a normal crossing divisor: i.e. Y is locally defined by a single holomorphic equation of the form $f = z_1 \dots z_k$ in adequate holomorphic coordinates.

- Define $\Omega_X(\log Y)$ as the holomorphic vector bundle generated over \mathcal{O}_X by $\frac{dz_1}{z_1}, \ldots, \frac{dz_k}{z_k}, dz_{k+1}, \ldots, dz_n$.
- $\Omega^k_X(\log Y) = \bigwedge^k \Omega_X(\log Y), \ d: \Omega^k_X(\log Y) \to \Omega^{k+1}_X(\log Y).$

• Their sections (= forms with logarithmic growth) are the forms with pole order 1 along Y, whose differential also has pole order 1 along Y.

Thm. The inclusion of the subcomplex $\Omega^{\bullet}_X(\log Y) \subset j_*\Omega^{\bullet}_U$ is a quasiisomorphism.

Corollary. $H^k(U, \mathbb{C}) = \mathbb{H}^k(X, \Omega^{\bullet}_X(\log Y))$ and Frölicher spectral sequence.

• also $H^k(U, \mathbb{C}) = \mathbb{H}^k(U, \Omega^{\bullet}_U)$ hence two Hodge filtrations on $H^k(U, \mathbb{C})$.

Quasiprojective manifolds and logarithmic de Rham complexes

• $j: U \hookrightarrow X$, $U = X \setminus Y$, with $Y \subset X$ closed analytic.

• (Hironaka) By successive blow-ups of X along smooth centers supported over Y, one can assume that Y is a normal crossing divisor: i.e. Y is locally defined by a single holomorphic equation of the form $f = z_1 \dots z_k$ in adequate holomorphic coordinates.

- Define $\Omega_X(\log Y)$ as the holomorphic vector bundle generated over \mathcal{O}_X by $\frac{dz_1}{z_1}, \ldots, \frac{dz_k}{z_k}, dz_{k+1}, \ldots, dz_n$.
- $\Omega^k_X(\log Y) = \bigwedge^k \Omega_X(\log Y), \ d: \Omega^k_X(\log Y) \to \Omega^{k+1}_X(\log Y).$

• Their sections (= forms with logarithmic growth) are the forms with pole order 1 along Y, whose differential also has pole order 1 along Y.

Thm. The inclusion of the subcomplex $\Omega^{\bullet}_X(\log Y) \subset j_*\Omega^{\bullet}_U$ is a quasiisomorphism.

Corollary. $H^k(U, \mathbb{C}) = \mathbb{H}^k(X, \Omega^{\bullet}_X(\log Y))$ and Frölicher spectral sequence.

• also $H^k(U,\mathbb{C}) = \mathbb{H}^k(U,\Omega^{\bullet}_U)$ hence two Hodge filtrations on $H^k(U,\mathbb{C})$.

The Hodge decomposition theorem

• X = compact oriented Riemannian manifold. $\rightsquigarrow L^2$ -metric on forms. $(\alpha, \beta)_{L^2} = \int_X \alpha \wedge *\beta.$

• Formal adjoint $d^* = \pm * d*$. Laplacian $\Delta_d = d \circ d^* + d^* \circ d$.

Harmonic forms. $\Delta_d \alpha = 0$. X compact and α harmonic $\Rightarrow \alpha$ is closed.

Thm. (Hodge) *Each de Rham cohomology class contains a unique harmonic representative.*

• Forms of type (p,q) on $X = \operatorname{cplx} \operatorname{mfld}$: $\alpha = \sum_{|I|=p,|J|=q} \alpha_{IJ} dz_I \wedge d\overline{z}_J$. Any k-form writes uniquely as a sum $\sum_{p+q=k} \alpha^{p,q}$.

Thm. (Hodge) X Kähler $\Rightarrow \Delta_d \alpha^{p,q}$ is of type (p,q).

Corollary. α harmonic, $\alpha = \sum_{p,q} \alpha^{p,q} \Rightarrow$ each $\alpha^{p,q}$ is harmonic.

Thm. (Hodge) Let $H^{p,q}(X) := \{$ classes of closed forms of type $(p,q)\}$. Then $H^{p,q}(X) \cong H^q(X, \Omega^p_X)$ and $H^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X)$. • Hodge symmetry. $\overline{H^{p,q}(X)} = H^{q,p}(X)$.

Cor. The Frölicher spectral sequence of X degenerates at E_1 ($E_1 = E_{\infty}$).

• Consequences in deformation theory. For example BTT theorem.

The Hodge decomposition theorem

• X = compact oriented Riemannian manifold. $\rightsquigarrow L^2$ -metric on forms. $(\alpha, \beta)_{L^2} = \int_X \alpha \wedge *\beta.$

• Formal adjoint $d^* = \pm * d^*$. Laplacian $\Delta_d = d \circ d^* + d^* \circ d$.

Harmonic forms. $\Delta_d \alpha = 0$. X compact and α harmonic $\Rightarrow \alpha$ is closed.

Thm. (Hodge) *Each de Rham cohomology class contains a unique harmonic representative.*

• Forms of type (p,q) on $X = \operatorname{cplx} \operatorname{mfld}$: $\alpha = \sum_{|I|=p,|J|=q} \alpha_{IJ} dz_I \wedge d\overline{z}_J$. Any k-form writes uniquely as a sum $\sum_{p+q=k} \alpha^{p,q}$.

Thm. (Hodge) X Kähler $\Rightarrow \Delta_d \alpha^{p,q}$ is of type (p,q).

Corollary. α harmonic, $\alpha = \sum_{p,q} \alpha^{p,q} \Rightarrow$ each $\alpha^{p,q}$ is harmonic.

Thm. (Hodge) Let $H^{p,q}(X) := \{$ classes of closed forms of type $(p,q)\}$. Then $H^{p,q}(X) \cong H^q(X, \Omega^p_X)$ and $H^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X)$.

• Hodge symmetry. $\overline{H^{p,q}(X)} = H^{q,p}(X).$

Cor. The Frölicher spectral sequence of X degenerates at E_1 ($E_1 = E_{\infty}$).

• Consequences in deformation theory. For example BTT theorem.

The category of Hodge structures

Definition. (Hodge structure) A Hodge structure of weight k =lattice L + decomposition $L_{\mathbb{C}} = \bigoplus_{p+q=k} L^{p,q}$, with $\overline{L^{p,q}} = L^{q,p}$.

• Hodge decomposition \rightsquigarrow Hodge filtration: $F^p L_{\mathbb{C}} := \bigoplus_{r \ge p} L^{r,k-r}$. Conversely $L^{p,q} = F^p L_{\mathbb{C}} \cap \overline{F^q L_{\mathbb{C}}}, \ \underline{p+q} = k$. Condition on F^{\bullet} : $L_{\mathbb{C}} = F^p L_{\mathbb{C}} \oplus \overline{F^{k-p+1} L_{\mathbb{C}}}$.

Variants. (a) Rational coefficients.
(b) Effective Hodge structure : L^{p,q} = 0 if p < 0 or q < 0.

Definition. $(L, F^p L_{\mathbb{C}}), (L', F^p L'_{\mathbb{C}})$ Hodge structures of weights k, k + 2r. A morphism of Hodge structures between them is $\phi : L \to L'$, s.t. $\phi_{\mathbb{C}}(L^{p,q}) \subset L'^{p+r,q+r}$.

Example $T = \mathbb{C}^n / \Gamma \rightsquigarrow \Gamma_{\mathbb{C}} \twoheadrightarrow \mathbb{C}^n$ with kernel $\Gamma^{1,0} \subset \Gamma_{\mathbb{C}}$ is an equivalence of categories (Complex tori) \iff (effective weight 1 Hodge structures).

Complex tori up to isogeny +++> Weight 1 rational Hodge structures.

Fact. The category of **rational** Hodge structures is not semi-simple. There are morphisms of complex tori $T \rightarrow T'$ which do not split up to isogeny.

Definition. (Hodge structure) A Hodge structure of weight k =lattice L + decomposition $L_{\mathbb{C}} = \bigoplus_{p+q=k} L^{p,q}$, with $\overline{L^{p,q}} = L^{q,p}$.

• Hodge decomposition \rightsquigarrow Hodge filtration: $F^p L_{\mathbb{C}} := \bigoplus_{r \ge p} L^{r,k-r}$. Conversely $L^{p,q} = F^p L_{\mathbb{C}} \cap \overline{F^q L_{\mathbb{C}}}, \ \underline{p+q} = k$. Condition on F^{\bullet} : $L_{\mathbb{C}} = F^p L_{\mathbb{C}} \oplus \overline{F^{k-p+1} L_{\mathbb{C}}}$.

Variants. (a) Rational coefficients.
(b) Effective Hodge structure : L^{p,q} = 0 if p < 0 or q < 0.

Definition. $(L, F^pL_{\mathbb{C}}), (L', F^pL'_{\mathbb{C}})$ Hodge structures of weights k, k + 2r. A morphism of Hodge structures between them is $\phi : L \to L'$, s.t. $\phi_{\mathbb{C}}(L^{p,q}) \subset L'^{p+r,q+r}$.

Example $T = \mathbb{C}^n / \Gamma \rightsquigarrow \Gamma_{\mathbb{C}} \twoheadrightarrow \mathbb{C}^n$ with kernel $\Gamma^{1,0} \subset \Gamma_{\mathbb{C}}$ is an equivalence of categories (Complex tori) \longleftrightarrow (effective weight 1 Hodge structures).

• Complex tori up to isogeny +---> Weight 1 rational Hodge structures.

Fact. The category of **rational** Hodge structures is not semi-simple. There are morphisms of complex tori $T \rightarrow T'$ which do not split up to isogeny.

Hodge structures from geometry; functoriality

Thm. X compact Kähler. The cohomology $H^k(X, \mathbb{Z})/\text{Tors}$ carries an effective Hodge structure of weight k.

• $\phi: X \to Y$ holomorphic map, with X, Y compact Kähler. $\phi^*: H^k(Y, \mathbb{Z})_{\mathrm{tf}} \to H^k(X, \mathbb{Z})_{\mathrm{tf}}$ is a morphism of Hodge structures.

Prop. The Gysin morphism $\phi_* : H^k(X, \mathbb{Z})_{tf} \to H^{k-2d}(Y, \mathbb{Z})_{tf}$, $d = \dim X - \dim Y$, is a morphism of Hodge structures.

• **Explanation.** (a) Via Poincaré duality, ϕ_* is the transpose of ϕ^* .

(b) weight k Hodge structure on $L \iff$ weight -k Hodge structure on L^* : $L^{*-p,-q}$ is defined as the orthogonal of $\bigoplus_{(r,s)\neq (p,q)} L^{r,s}$.

(c) the Hodge structure on $H^{2n-k}(X,\mathbb{Z})_{tf}$ is dual to the Hodge structure on $H^k(X,\mathbb{Z})_{tf}$ up to a shift of bidegree (for "type reasons": $\int_X \alpha^{p,q} \wedge \beta^{p',q'} = 0$ for $(p',q') \neq (n-p,n-q)$). **qed**

Construction. Hodge structure on L, resp. M of weights k, resp. $k' \rightsquigarrow$ Weight k + k' Hodge structure on $L \otimes M$:

$$(L_{\mathbb{C}} \otimes M_{\mathbb{C}})^{p,q} = \oplus_{r+r'=p,s+s'=q} L^{r,s} \otimes L'^{r',s'}.$$

Thm. X compact Kähler. The cohomology $H^k(X, \mathbb{Z})/\text{Tors}$ carries an effective Hodge structure of weight k.

• $\phi: X \to Y$ holomorphic map, with X, Y compact Kähler. $\phi^*: H^k(Y, \mathbb{Z})_{\mathrm{tf}} \to H^k(X, \mathbb{Z})_{\mathrm{tf}}$ is a morphism of Hodge structures.

Prop. The Gysin morphism $\phi_* : H^k(X, \mathbb{Z})_{tf} \to H^{k-2d}(Y, \mathbb{Z})_{tf}$, $d = \dim X - \dim Y$, is a morphism of Hodge structures.

• Explanation. (a) Via Poincaré duality, ϕ_* is the transpose of ϕ^* .

(b) weight k Hodge structure on $L \iff$ weight -k Hodge structure on L^* : $L^{*-p,-q}$ is defined as the orthogonal of $\bigoplus_{(r,s)\neq (p,q)} L^{r,s}$.

(c) the Hodge structure on $H^{2n-k}(X,\mathbb{Z})_{\mathrm{tf}}$ is dual to the Hodge structure on $H^k(X,\mathbb{Z})_{\mathrm{tf}}$ up to a shift of bidegree (for "type reasons": $\int_X \alpha^{p,q} \wedge \beta^{p',q'} = 0$ for $(p',q') \neq (n-p,n-q)$). **qed**

Construction. Hodge structure on L, resp. M of weights k, resp. $k' \rightsquigarrow$ Weight k + k' Hodge structure on $L \otimes M$:

$$(L_{\mathbb{C}} \otimes M_{\mathbb{C}})^{p,q} = \bigoplus_{r+r'=p,s+s'=q} L^{r,s} \otimes L'^{r',s'}.$$

Thm. X compact Kähler. The cohomology $H^k(X, \mathbb{Z})/\text{Tors}$ carries an effective Hodge structure of weight k.

• $\phi: X \to Y$ holomorphic map, with X, Y compact Kähler. $\phi^*: H^k(Y, \mathbb{Z})_{\mathrm{tf}} \to H^k(X, \mathbb{Z})_{\mathrm{tf}}$ is a morphism of Hodge structures.

Prop. The Gysin morphism $\phi_* : H^k(X, \mathbb{Z})_{tf} \to H^{k-2d}(Y, \mathbb{Z})_{tf}$, $d = \dim X - \dim Y$, is a morphism of Hodge structures.

• Explanation. (a) Via Poincaré duality, ϕ_* is the transpose of ϕ^* .

(b) weight k Hodge structure on $L \iff$ weight -k Hodge structure on L^* : $L^{*-p,-q}$ is defined as the orthogonal of $\bigoplus_{(r,s)\neq (p,q)} L^{r,s}$.

(c) the Hodge structure on $H^{2n-k}(X,\mathbb{Z})_{\mathrm{tf}}$ is dual to the Hodge structure on $H^k(X,\mathbb{Z})_{\mathrm{tf}}$ up to a shift of bidegree (for "type reasons": $\int_X \alpha^{p,q} \wedge \beta^{p',q'} = 0$ for $(p',q') \neq (n-p,n-q)$). **qed**

Construction. Hodge structure on L, resp. M of weights k, resp. $k' \rightsquigarrow$ Weight k + k' Hodge structure on $L \otimes M$:

$$(L_{\mathbb{C}} \otimes M_{\mathbb{C}})^{p,q} = \bigoplus_{r+r'=p,s+s'=q} L^{r,s} \otimes L'^{r',s'}.$$

Definition. (Hodge classes) A Hodge class on a weight 2k Hodge structure L is an element of $L \cap L^{k,k}$.

Example. Hodge classes on $L^* \otimes M$, L of weight k, M of weight k + 2r, are the morphisms of Hodge structures $L \to M$.

Corollary. Hodge classes on a product $X \times Y$ of compact Kähler manifolds identify with the morphisms of Hodge structures $H^*(X,\mathbb{Z})_{\mathrm{tf}} \to H^{*+2r}(Y,\mathbb{Z})_{\mathrm{tf}}.$

Example. $Z \subset X$ closed analytic subset of codimension k has a class $[Z] \in H^{2k}(X, \mathbb{Z})$. If X is compact Kähler, this is a Hodge class.

Conjecture. (Hodge conjecture) X smooth complex projective. **Rational** Hodge classes on X are **algebraic**, *i.e.* generated by cycles classes.

Example. Künneth components of the diagonal. $\delta_k \rightsquigarrow Id_{H^k(X,\mathbb{Z})}$.

• Known in degree 2 (Lefschetz (1,1)-thm) and 2n-2 by hard Lefschetz.

• Wrong in the compact Kähler setting, even in a weaker form replacing cycle classes by Chern classes of coherent sheaves (Voisin).

Definition. (Hodge classes) A Hodge class on a weight 2k Hodge structure L is an element of $L \cap L^{k,k}$.

Example. Hodge classes on $L^* \otimes M$, L of weight k, M of weight k + 2r, are the morphisms of Hodge structures $L \to M$.

Corollary. Hodge classes on a product $X \times Y$ of compact Kähler manifolds identify with the morphisms of Hodge structures $H^*(X,\mathbb{Z})_{\mathrm{tf}} \to H^{*+2r}(Y,\mathbb{Z})_{\mathrm{tf}}.$

Example. $Z \subset X$ closed analytic subset of codimension k has a class $[Z] \in H^{2k}(X, \mathbb{Z})$. If X is compact Kähler, this is a Hodge class.

Conjecture. (Hodge conjecture) X smooth complex projective. **Rational** Hodge classes on X are algebraic, *i.e.* generated by cycles classes.

Example. Künneth components of the diagonal. $\delta_k \rightsquigarrow Id_{H^k(X,\mathbb{Z})}$.

- Known in degree 2 (Lefschetz (1,1)-thm) and 2n-2 by hard Lefschetz.
- Wrong in the compact Kähler setting, even in a weaker form replacing cycle classes by Chern classes of coherent sheaves (Voisin).

Mixed Hodge structures

Definition. A rational mixed Hodge structure = a \mathbb{Q} -vector space L with an increasing (weight) filtration W_iL and a decreasing (Hodge) filtration $F^pL_{\mathbb{C}}$, such that: the induced filtration on Gr_i^WL defines a Hodge structure of weight i.

Thm. (Deligne) The cohomology of quasiprojective complex varieties, or analytic-Zariski open in compact Kähler manifolds, or relative (co)homology of such pairs, carries functorial mixed Hodge structures.

• Smooth case: $U = X \setminus Y \xrightarrow{\mathcal{I}} X$, Y =normal crossing divisor. Use $H^k(U, \mathbb{C}) = \mathbb{H}^k(X, \Omega^{\bullet}_X(\log Y))$. Filtration F on $\Omega^{\bullet}_X(\log Y)$ is the usual one ("bête"). Filtration W on $\Omega^{\bullet}_X(\log Y)$: up to a shift, this is given by $W_i \Omega^{\bullet}_X(\log Y) = \Omega^i_X(\log Y) \wedge \Omega^{\bullet-i}_X$.

• A posteriori, the induced W- filtration is defined on rational cohomology and related to the Leray filtration of j.

• The s.s. for F degenerates at E_1 , the s.s. for W degenerates at E_2 .

• In this case, the smallest weight part of $H^k(U, \mathbb{Q})$ is $\operatorname{Im}(j^* : H^k(X, \mathbb{Q}) \to H^k(U, \mathbb{Q}))$ (weight k).

Mixed Hodge structures

Definition. A rational mixed Hodge structure = a \mathbb{Q} -vector space L with an increasing (weight) filtration W_iL and a decreasing (Hodge) filtration $F^pL_{\mathbb{C}}$, such that: the induced filtration on Gr_i^WL defines a Hodge structure of weight i.

Thm. (Deligne) The cohomology of quasiprojective complex varieties, or analytic-Zariski open in compact Kähler manifolds, or relative (co)homology of such pairs, carries functorial mixed Hodge structures.

• Smooth case: $U = X \setminus Y \xrightarrow{j} X$, Y =normal crossing divisor. Use $H^k(U, \mathbb{C}) = \mathbb{H}^k(X, \Omega^{\bullet}_X(\log Y))$. Filtration F on $\Omega^{\bullet}_X(\log Y)$ is the usual one ("bête"). Filtration W on $\Omega^{\bullet}_X(\log Y)$: up to a shift, this is given by $W_i \Omega^{\bullet}_X(\log Y) = \Omega^i_X(\log Y) \wedge \Omega^{\bullet-i}_X$.

• A posteriori, the induced W- filtration is defined on rational cohomology and related to the Leray filtration of j.

• The s.s. for F degenerates at E_1 , the s.s. for W degenerates at E_2 .

• In this case, the smallest weight part of $H^k(U, \mathbb{Q})$ is $\operatorname{Im}(j^*: H^k(X, \mathbb{Q}) \to H^k(U, \mathbb{Q}))$ (weight k).

• Morphisms of MHS: $\phi: L \to L'$, $\phi(W_iL) \subset W_iL'$, $\phi_{\mathbb{C}}(F^pL_{\mathbb{C}}) \subset F^pL'_{\mathbb{C}}$.

Thm. (Deligne) Morphisms of mixed Hodge structures are strict for both filtrations (i.e.: $F^pL'_{\mathbb{C}} \cap \operatorname{Im} \phi_{\mathbb{C}} = \phi_{\mathbb{C}}(F^pL_{\mathbb{C}}), W_iL' \cap \operatorname{Im} \phi = \phi(W_iL)$).

Sketch of proof. Follows from an algebra lemma: There exists a functorial decomposition $L_{\mathbb{C}} = \bigoplus_{p,q} L^{p,q}$ for mixed Hodge structures (L, W, F), with $F^p L_{\mathbb{C}} = \bigoplus_{r \ge p,q} L^{r,q}$, $W_i L_{\mathbb{C}} = \bigoplus_{p+q \le i} L^{p,q}$. Let $\alpha \in W_i L' \cap \operatorname{Im} \phi$. Write $\alpha = \phi(\beta)$, $\beta = \sum_{p,q} \beta^{p,q}$. Then $\phi(\beta^{p,q}) = 0$ for p+q > i so $\alpha = \phi(\beta')$ with $\beta' = \sum_{p+q \le i} \beta^{p,q} \in W_i L_{\mathbb{C}}$. **qed**

Definition. A class $\alpha \in H^k(X, \mathbb{Q})$ is of coniveau $\geq c$ if $\alpha_{|X \setminus Y} = 0$ with Y closed analytic of codim $\geq c$.

If X is smooth compact, $j: Y \hookrightarrow X$, equivalent condition: $\alpha = j_*\beta$ in $H_{2n-k}(X, \mathbb{Q})$ for some $\beta \in H_{2n-k}(Y, \mathbb{Q})$.

Strictness \Rightarrow If X is smooth projective, $j : Y \hookrightarrow X$ with desingularization $\tilde{j} : \tilde{Y} \to X$, then $\operatorname{Im} j_* = \operatorname{Im} \tilde{j}_* \subset H_{2n-k}(X, \mathbb{Q})$.

Corollary. (Deligne) The set of cohomology classes of coniveau $\geq c$ is a Hodge substructure of $H^k(X, \mathbb{Q})$, of Hodge coniveau $\geq c$.

• Morphisms of MHS: $\phi: L \to L'$, $\phi(W_iL) \subset W_iL'$, $\phi_{\mathbb{C}}(F^pL_{\mathbb{C}}) \subset F^pL'_{\mathbb{C}}$.

Thm. (Deligne) Morphisms of mixed Hodge structures are strict for both filtrations (i.e.: $F^pL'_{\mathbb{C}} \cap \operatorname{Im} \phi_{\mathbb{C}} = \phi_{\mathbb{C}}(F^pL_{\mathbb{C}}), W_iL' \cap \operatorname{Im} \phi = \phi(W_iL)$).

Sketch of proof. Follows from an algebra lemma: There exists a functorial decomposition $L_{\mathbb{C}} = \bigoplus_{p,q} L^{p,q}$ for mixed Hodge structures (L, W, F), with $F^p L_{\mathbb{C}} = \bigoplus_{r \ge p,q} L^{r,q}$, $W_i L_{\mathbb{C}} = \bigoplus_{p+q \le i} L^{p,q}$. Let $\alpha \in W_i L' \cap \operatorname{Im} \phi$. Write $\alpha = \phi(\beta)$, $\beta = \sum_{p,q} \beta^{p,q}$. Then $\phi(\beta^{p,q}) = 0$ for p+q > i so $\alpha = \phi(\beta')$ with $\beta' = \sum_{p+q \le i} \beta^{p,q} \in W_i L_{\mathbb{C}}$. qed

Definition. A class $\alpha \in H^k(X, \mathbb{Q})$ is of coniveau $\geq c$ if $\alpha_{|X \setminus Y} = 0$ with Y closed analytic of codim $\geq c$.

If X is smooth compact, $j: Y \hookrightarrow X$, equivalent condition: $\alpha = j_*\beta$ in $H_{2n-k}(X, \mathbb{Q})$ for some $\beta \in H_{2n-k}(Y, \mathbb{Q})$.

Strictness \Rightarrow If X is smooth projective, $j: Y \hookrightarrow X$ with desingularization $\tilde{j}: \tilde{Y} \to X$, then $\operatorname{Im} j_* = \operatorname{Im} \tilde{j}_* \subset H_{2n-k}(X, \mathbb{Q})$.

Corollary. (Deligne) The set of cohomology classes of coniveau $\geq c$ is a Hodge substructure of $H^k(X, \mathbb{Q})$, of Hodge coniveau $\geq c$.

Polarizations

Thm. (Hard Lefschetz, proved by Hodge) Let X be compact Kähler of dimension n, ω a Kähler form on X. Then $\forall k \leq n$, $\cup [\omega]^{n-k} := L^{n-k} : H^k(X, \mathbb{R}) \to H^{2n-k}(X, \mathbb{R})$ is an isomorphism.

• **Projective case** : One can take $[\omega]$ rational. Then the Lefschetz isomorphism is an isomorphism of Hodge structures.

Coro. (Lefschetz decomp.) $H^k(X, \mathbb{R}) = \bigoplus_{k-2r \ge 0} L^r H^{k-2r}(X, \mathbb{R})_{\text{prim}}$, where $H^{k-2r}(X, \mathbb{R})_{\text{prim}} := \text{Ker } L^{n-k+2r+1} \subset H^{k-2r}(X, \mathbb{R})$.

• Lefschetz intersection pairing on H^k : $(\alpha, \beta)_{\text{Lef}} = \int_X L^{n-k} \alpha \cup \beta$. $h_{\text{Lef}}(\alpha, \beta) := i^k (\alpha, \overline{\beta})_{\text{Lef}}$.

• easy: The Lefschetz decomposition is orthogonal for $(,)_{Lef}$, and the Hodge decomposition is orthogonal for h_{Lef} . (HR1).

Thm. 2nd H-R bilinear relations: $(-1)^{p+r}h_{\text{Lef}|L^rH^{p-r,q-r}(X,\mathbb{R})_{\text{prim}}}$ is positive definite Hermitian (up to a global sign depending on k). (HR2).

Corollary. Let $[\omega]$ be rational. On $L^r H^{k-2r}(X, \mathbb{Q})_{\text{prim}}$, multiply $(,)_{\text{Lef}}$ by $(-1)^r$: one gets a **polarized Hodge structure** on $H^k(X, \mathbb{Q})$.

Polarizations

Thm. (Hard Lefschetz, proved by Hodge) Let X be compact Kähler of dimension n, ω a Kähler form on X. Then $\forall k \leq n$, $\cup [\omega]^{n-k} := L^{n-k} : H^k(X, \mathbb{R}) \to H^{2n-k}(X, \mathbb{R})$ is an isomorphism.

• **Projective case** : One can take $[\omega]$ rational. Then the Lefschetz isomorphism is an isomorphism of Hodge structures.

Coro. (Lefschetz decomp.) $H^k(X, \mathbb{R}) = \bigoplus_{k-2r \ge 0} L^r H^{k-2r}(X, \mathbb{R})_{\text{prim}}$, where $H^{k-2r}(X, \mathbb{R})_{\text{prim}} := \text{Ker } L^{n-k+2r+1} \subset H^{k-2r}(X, \mathbb{R})$.

• Lefschetz intersection pairing on H^k : $(\alpha, \beta)_{\text{Lef}} = \int_X L^{n-k} \alpha \cup \beta$. $h_{\text{Lef}}(\alpha, \beta) := i^k (\alpha, \overline{\beta})_{\text{Lef}}$.

• easy: The Lefschetz decomposition is orthogonal for $(,)_{Lef}$, and the Hodge decomposition is orthogonal for h_{Lef} . (HR1).

Thm. 2nd H-R bilinear relations: $(-1)^{p+r}h_{\text{Lef}|L^rH^{p-r,q-r}(X,\mathbb{R})_{\text{prim}}}$ is positive definite Hermitian (up to a global sign depending on k). (HR2).

Corollary. Let $[\omega]$ be rational. On $L^r H^{k-2r}(X, \mathbb{Q})_{\text{prim}}$, multiply $(,)_{\text{Lef}}$ by $(-1)^r$: one gets a **polarized Hodge structure** on $H^k(X, \mathbb{Q})$.

Polarizations, ctd

Thm. Let H=rational polarized Hodge structure, $H' \subset H$ a Hodge substructure, then $H = H' \oplus H''$ for some Hodge substructure $H'' \subset H$. (The category of polarized Hodge structures is semisimple).

Proof. Choose a polarization (,) on H. First prove that $(,)_{|H'}$ is nondegenerate using HR2, then define $H'' = H'^{\perp}$. H'' is a Hodge substructure by HR1. **qed**

• Polarizations on the cohomology of smooth projective varieties are almost motivic, but one needs the Lefschetz decomposition and the change of signs. To make them **motivic**, one needs:

Lefschetz standard conjecture. X projective. There exists a codimension k closed algebraic subset $Z_{\text{Lef}} \subset X \times X$ such that $[Z_{\text{Lef}}]^* : H^{2n-k}(X, \mathbb{Q}) \to H^k(X, \mathbb{Q})$ is the inverse $(L^{n-k})^{-1}$ of the Lefschetz isomorphism.

• $([Z_{Lef}] \in H^{2k}(X \times X, \mathbb{Q}) = \text{cohomology class of } Z_{Lef}.)$

• Implied by the Hodge conjecture because $(L^{n-k})^{-1}$ is an iso of Hodge structures hence produces a Hodge class on $X \times X$.

Polarizations, ctd

Thm. Let H=rational polarized Hodge structure, $H' \subset H$ a Hodge substructure, then $H = H' \oplus H''$ for some Hodge substructure $H'' \subset H$. (The category of polarized Hodge structures is semisimple).

Proof. Choose a polarization (,) on H. First prove that $(,)_{|H'}$ is nondegenerate using HR2, then define $H'' = H'^{\perp}$. H'' is a Hodge substructure by HR1. **qed**

• Polarizations on the cohomology of smooth projective varieties are almost motivic, but one needs the Lefschetz decomposition and the change of signs. To make them **motivic**, one needs:

Lefschetz standard conjecture. X projective. There exists a codimension k closed algebraic subset $Z_{\text{Lef}} \subset X \times X$ such that $[Z_{\text{Lef}}]^* : H^{2n-k}(X, \mathbb{Q}) \to H^k(X, \mathbb{Q})$ is the inverse $(L^{n-k})^{-1}$ of the Lefschetz isomorphism.

• $([Z_{Lef}] \in H^{2k}(X \times X, \mathbb{Q}) = \text{cohomology class of } Z_{Lef}.)$

• Implied by the Hodge conjecture because $(L^{n-k})^{-1}$ is an iso of Hodge structures hence produces a Hodge class on $X \times X$.

Hodge structures on cohomology algebras and applications to topology

• A cohomology algebra = graded, graded commutative, algebra of finite dimension over \mathbb{Q} , with $A^{2n} = \mathbb{Q}$ and Poincaré duality.

Definition. A Hodge structure on a cohomology algebra A^* , = Hodge structure of weight k on A^k , such that $A^k \otimes A^l \to A^{k+l}$ is a morphism of Hodge structures.

Example. $H^*(X, \mathbb{Q})$ for X compact Kähler.

Thm. (Voisin) There exist compact Kähler manifolds (dim ≥ 4) whose cohomology algebra is not isomorphic to $H^*(X, \mathbb{Q})$ for X complex projective.

Idea of proof. (1) Construct an X such that the structure of its cohomology algebra \Rightarrow the Hodge structure on $H^1(X, \mathbb{Q})$ (or $H^2(X, \mathbb{Q})$ for simply connected examples) has endomorphisms. (2) Certain endomorphisms on weight 1 (or weight 2) HS prevent the existence of a polarization.

Case of dim 2 (Kodaira), dim 3 (Lin): Any compact Kähler X has small deformations which are projective.

Hodge structures on cohomology algebras and applications to topology

• A cohomology algebra = graded, graded commutative, algebra of finite dimension over \mathbb{Q} , with $A^{2n} = \mathbb{Q}$ and Poincaré duality.

Definition. A Hodge structure on a cohomology algebra A^* , = Hodge structure of weight k on A^k , such that $A^k \otimes A^l \to A^{k+l}$ is a morphism of Hodge structures.

Example. $H^*(X, \mathbb{Q})$ for X compact Kähler.

Thm. (Voisin) There exist compact Kähler manifolds (dim ≥ 4) whose cohomology algebra is not isomorphic to $H^*(X, \mathbb{Q})$ for X complex projective.

Idea of proof. (1) Construct an X such that the structure of its cohomology algebra \Rightarrow the Hodge structure on $H^1(X, \mathbb{Q})$ (or $H^2(X, \mathbb{Q})$ for simply connected examples) has endomorphisms. (2) Certain endomorphisms on weight 1 (or weight 2) HS prevent the existence of a polarization.

Case of dim 2 (Kodaira), dim 3 (Lin): Any compact Kähler X has small deformations which are projective.

Polarizations+MHS: Topology of families; global invariant cycles theorem

Thm. (Blanchard, Deligne) If $f : X \to Y$ is smooth projective, the Leray spectral sequence of f with \mathbb{Q} -coefficients degenerates at E_2 .

Proof. Relative Lefschetz operator $L = c_1(\mathcal{L}) \cup$ acts on the whole spectral sequence, and induces Lefschetz decomposition $R^k f_* \mathbb{Q} = \bigoplus_r L^r (R^{k-2r} f_* \mathbb{Q})_{\text{prim}}$. Suffices to prove $d_2 \alpha = 0$ for $\alpha \in H^p(Y, R^q f_* \mathbb{Q}_{\text{prim}})$. But $L^{n-q+1} \alpha = 0 \Rightarrow L^{n-q+1} d_2 \alpha = 0$. But $d_2 \alpha \in H^{p+2}(Y, R^{q-1} f_* \mathbb{Q})$ and $L^{n-q+1} : R^{q-1} f_* \mathbb{Q}) \cong R^{2n-q+1} f_* \mathbb{Q}$. qed

• Monodromy. Local system $R^k f_* \mathbb{Q} \rightsquigarrow$ monodromy representation $\rho : \pi_1(Y, 0) \rightarrow \operatorname{Aut} H^k(X_0, \mathbb{Q})$. Thus $H^k(X_0, \mathbb{Q})^{\rho} = H^0(Y, R^k f_* \mathbb{Q})$ $= \operatorname{Im} (H^k(X, \mathbb{Q}) \rightarrow H^k(X_0, \mathbb{Q}))$ by degeneracy at E_2 .

Thm (Deligne) $X \subset \overline{X}$ smooth projective, $f : X \to Y$ as above with Y quasi-projective. Then $H^k(X_0, \mathbb{Q})^{\rho} = \text{Im} (H^k(\overline{X}, \mathbb{Q}) \to H^k(X_0, \mathbb{Q}))$. This is a Hodge substructure of $H^k(X_0, \mathbb{Q})$.

Proof. $H^k(X, \mathbb{Q}) \to H^k(X_0, \mathbb{Q})$ is a morphism of mixed Hodge structures. On the right, pure of weight k. On the left, the weight k part is $\mathrm{Im}\,(H^k(\overline{X}, \mathbb{Q}) \to H^k(X, \mathbb{Q}))$. Then apply strictness. **qed**

Polarizations+MHS: Topology of families; global invariant cycles theorem

Thm. (Blanchard, Deligne) If $f : X \to Y$ is smooth projective, the Leray spectral sequence of f with \mathbb{Q} -coefficients degenerates at E_2 .

Proof. Relative Lefschetz operator $L = c_1(\mathcal{L}) \cup$ acts on the whole spectral sequence, and induces Lefschetz decomposition $R^k f_* \mathbb{Q} = \bigoplus_r L^r (R^{k-2r} f_* \mathbb{Q})_{\text{prim}}$. Suffices to prove $d_2 \alpha = 0$ for $\alpha \in H^p(Y, R^q f_* \mathbb{Q}_{\text{prim}})$. But $L^{n-q+1} \alpha = 0 \Rightarrow L^{n-q+1} d_2 \alpha = 0$. But $d_2 \alpha \in H^{p+2}(Y, R^{q-1} f_* \mathbb{Q})$ and $L^{n-q+1} : R^{q-1} f_* \mathbb{Q}) \cong R^{2n-q+1} f_* \mathbb{Q}$. qed

• Monodromy. Local system $R^k f_* \mathbb{Q} \rightsquigarrow$ monodromy representation $\rho : \pi_1(Y, 0) \rightarrow \operatorname{Aut} H^k(X_0, \mathbb{Q})$. Thus $H^k(X_0, \mathbb{Q})^{\rho} = H^0(Y, R^k f_* \mathbb{Q})$ $= \operatorname{Im} (H^k(X, \mathbb{Q}) \rightarrow H^k(X_0, \mathbb{Q}))$ by degeneracy at E_2 .

Thm (Deligne) $X \subset \overline{X}$ smooth projective, $f : X \to Y$ as above with Y quasi-projective. Then $H^k(X_0, \mathbb{Q})^{\rho} = \text{Im} (H^k(\overline{X}, \mathbb{Q}) \to H^k(X_0, \mathbb{Q}))$. This is a Hodge substructure of $H^k(X_0, \mathbb{Q})$.

Proof. $H^k(X, \mathbb{Q}) \to H^k(X_0, \mathbb{Q})$ is a morphism of mixed Hodge structures. On the right, pure of weight k. On the left, the weight k part is $\mathrm{Im}\,(H^k(\overline{X}, \mathbb{Q}) \to H^k(X, \mathbb{Q}))$. Then apply strictness. **qed**

The Hodge bundles

• Algebraic de Rham complex $\Omega^{\bullet}_{X/\mathbb{C}}$, relative version $\Omega^{\bullet}_{X/Y}$ for $f: X \to Y$ algebraic, smooth morphism.

Thm. (Serre-Grothendieck) X smooth quasiprojective over \mathbb{C} . Then $\mathbb{H}^k(X, \Omega^{\bullet}_X/\mathbb{C}) \cong H^k_B(X, \mathbb{C}).$

 \bullet So, for X projective, the Hodge filtration and Frölicher s.s. are algebraic.

• Relative version \Rightarrow If $f: X \to Y$ is algebraic, smooth projective, then the Hodge bundles \mathcal{H}^k , $F^p\mathcal{H}^k$, $\mathcal{H}^{p,q}$ are algebraic on Y.

• Katz-Oda construction : relative holomorphic de Rham complex $\Omega^{\bullet}_{X/Y}$. $R^k f_* \Omega^{\bullet}_{X/Y} \cong \mathcal{H}^k := H^k \otimes \mathcal{O}_Y$. Hodge filtration $F^p \mathcal{H}^k = R^k f_* \Omega^{\bullet \geq p}_{X/Y}$ with fiber $F^p H^k(X_t)$.

- Let $L^2\Omega^{\bullet}_X := f^*\Omega^2_Y \wedge \Omega^{\bullet-2}_X.$
- Exact sequence. $0 \to \Omega^{\bullet-1}_{X/Y} \otimes f^* \Omega_Y \to \Omega^{\bullet}_X / L^2 \Omega^{\bullet}_X \to \Omega^{\bullet}_{X/Y} \to 0$

Thm. (Katz-Oda) The Gauss-Manin connection $\nabla : \mathcal{H}^k \to \mathcal{H}^k \otimes \Omega_Y$ is the connecting map. **Corollary.** The Gauss-Manin connection is algebraic.

The Hodge bundles

• Algebraic de Rham complex $\Omega^{\bullet}_{X/\mathbb{C}}$, relative version $\Omega^{\bullet}_{X/Y}$ for $f: X \to Y$ algebraic, smooth morphism.

Thm. (Serre-Grothendieck) X smooth quasiprojective over \mathbb{C} . Then $\mathbb{H}^k(X, \Omega^{\bullet}_X/\mathbb{C}) \cong H^k_B(X, \mathbb{C}).$

- So, for X projective, the Hodge filtration and Frölicher s.s. are algebraic.
- Relative version \Rightarrow If $f : X \to Y$ is algebraic, smooth projective, then the Hodge bundles \mathcal{H}^k , $F^p\mathcal{H}^k$, $\mathcal{H}^{p,q}$ are algebraic on Y.

• Katz-Oda construction : relative holomorphic de Rham complex $\Omega^{\bullet}_{X/Y}$. $R^k f_* \Omega^{\bullet}_{X/Y} \cong \mathcal{H}^k := H^k \otimes \mathcal{O}_Y$. Hodge filtration $F^p \mathcal{H}^k = R^k f_* \Omega^{\bullet \geq p}_{X/Y}$ with fiber $F^p H^k(X_t)$.

- Let $L^2\Omega^{\bullet}_X := f^*\Omega^2_Y \wedge \Omega^{\bullet-2}_X.$
- Exact sequence. $0 \to \Omega^{\bullet-1}_{X/Y} \otimes f^*\Omega_Y \to \Omega^{\bullet}_X/L^2\Omega^{\bullet}_X \to \Omega^{\bullet}_{X/Y} \to 0$

Thm. (Katz-Oda) The Gauss-Manin connection $\nabla : \mathcal{H}^k \to \mathcal{H}^k \otimes \Omega_Y$ is the connecting map.

Corollary. The Gauss-Manin connection is algebraic.