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Abstract
Five sporadic simple groups were proposed in 19th century and 21
additional ones arose during the period 1965-1975. There were
many discussions about the nature of finite simple groups and how
sporadic groups are placed in mathematics. While in mathematics
graduate school at University of Chicago, I became fascinated with
the unfolding story of sporadic simple groups. It involved theory,
detective work and experiments. During this lecture, I will describe
some of the people, important ideas and evolution of thinking about
sporadic simple groups. Most should be accessible to a general
mathematical audience.
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Notations
In a group, 〈S〉 means the subgroup generated by the subset S .
order of a group is its cardinality;
order of a group element is the order of the cyclic group it generates;
involution is an element of order 2 in a group;
G ′ commutator subgroup of the group G ; Z (G ) is the center of G ;

classical groups are GL(n, q),PSL(n, q),Oε(n, q) · · · (n refers to the
dimension of the square matrices and q the cardinality of the finite
field Fq). For unitary groups and others which involve a degree 2 field
extension, q denotes the ground field;

FSG means finite simple groups, CFSG means classification of FSG;
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CG (S), NG (S) means the centralizer, normalizer (resp.) of S in G ;
direct product notation: 2× 2× Alt5 means Z2 × Z2 × Alt5;

group extensions ; in general A.B means a group with normal
subgroup A and quotient B ; A:B means split extension, A·B means
nonsplit extension; example 2·Alt5 = SL(2, 5)

21+2r
ε , an extraspecial 2-group of type ε = ±;
p1+2r an extraspecial p-group;
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Scope

I shall discuss how our discoveries of the 26 sporadic simple groups
evolved, with emphasis on what I myself experienced or heard from
witnesses. I became mathematically active starting in mid 1960s and
felt the excitement and mystery of the ongoing events in finite group
theory.

The earliest use of the term “sporadic group” may be Burnside (1911,
p. 504, note N) where he comments about the Mathieu groups:

“These apparently sporadic simple groups would probably repay a
closer examination than they have yet received”.

It is worth mentioning that Burnside also wrote that probably groups
of odd order were solvable, a theorem proved by Feit and Thompson
in 1959 [?]. A consequence is that a nonabelian finite simple group
has order divisible by 2 and so contains involutions.

May 15, 2020 5 / 91



The Mathieu groups were not part of natural infinite families, like the
alternating groups, or classical matrix groups like PSL(n, q).

The term sporadic group has come to mean a nonabelian finite
simple group which is not a group of Lie type or an alternating group.
There are 26 sporadic groups. It is a consequence of the CFSG that
there are no more. There is no proof which is independent of CFSG.
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In the group theory community, “discovery” meant presentation of
strong evidence for existence. Proof of existence usually came later,
frequently done by someone else.

Discoveries of previously unknown simple groups were strongly
connected to the ongoing classification of the finite simple groups
(CFSG). The program to classify finite simple groups came to life in
the early 1950s and was mostly finished around the early 1980s,
though some issues were identified and resolved later. It is generally
believed to be settled and that the list is complete. Things I learned
from working on CFSG helped me find my way in the world of
sporadic groups.
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I will not attempt to survey the CFSG. Apologies to the many
researchers on CFSG who will not be mentioned. One could say that
most effort in the CFSG program was directed towards achieving an
upper bound on the possible finite simple groups. Those who sought
new groups and tried to construct them contributed to achieving a
lower bound on the possible finite simple groups. These two bounds
met eventually.
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Main themes which developed for the sporadic groups

Most finite simple groups are of Lie type (analogues of Lie groups
over finite fields, and variations) and can be treated uniformly by Lie
theory. Symmetric and alternating groups are easy to understand.
The sporadic groups are not easily described. Listed below are several
themes which are relevant for discovering or describing for most of
the sporadic groups.

For certain sporadic groups, more than one category applies.
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External themes:

Multiply transitive and rank 3 permutation representations (rank 3:
transitive permutation representation for which point stabilizer has
just three orbits)

Isometries of lattices in Euclidean space (Leech lattice and related
lattices)

Automorphisms of commutative non associative algebras

Internal themes:

ω-transposition groups (two involutions in a group generate a
dihedral group of restricted order)

pure group theoretic characterizations (such as characterization by
centralizer of involution or other properties)
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The list of FSG, changing over time

Now, I will give the view of KNOWN OR PUTATIVE finite simple
groups at several moments in history. In some cases, finite simple
groups were believed to exist and be unique but proofs came later.

The date given for sporadic groups is year of discovery, as well as I
remember (or estimate). Accuracy is greater after 1968. Publication
dates are found in the reference section.
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1910 view of FSG

Cyclic groups of prime order

Alternating groups of degree at least 5

Some classical groups over finite fields (GL, GU, PSO, PSp), done by
Galois and Jordan.
Groups of type G2,E6 (and possibly F4) by L. E. Dickson (around
1901 or so), at least in odd characteristic.

Proposals by Émile Mathieu of the Mathieu groups:
M11,M12,M22,M23,M24 [?, ?, ?] (1861-1873). Their existence was
first made rigorous in 1937 by E. Witt [?, ?].

[sporadic count=5]
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1959 view of FSG
Cyclic groups of prime order

Alternating groups of degree at least 5
NEW LIE TYPE:
1955 Chevalley groups over finite fields
(types An(q),Bn(q),Cn(q),Dn(q),E6,7,8(q),F4(q),G2(q), q = prime
power; some restrictions on n, q) [?]; includes classical groups: for
example An(q) ∼= PSL(n + 1, q).
NEW LIE TYPE:
1959 Steinberg variations of Chevalley groups, associated to graph
times field automorphisms (types 2An(q),2 Dn(q),3 D4(q),2 E6(q), q =
prime power; some restrictions on n, q); includes classical groups
involving field automorphism: for example 2An(q) ∼= PSU(n + 1, q).

A few Chevalley-Steinberg groups are nonsimple; there are some
isomorphisms between groups from different families.

Mathieu groups
[sporadic count=5]
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1962 view of FSG

Same as in 1959 plus these:

NEW LIE TYPE:
1960 The series of Suzuki groups Sz(q), q= odd power of 2, q ≥ 8,
found by pure group theoretic internal characterization [?]; these
might have been considered “sporadic” but in 1961 were shown by
Takashi Ono to be of Lie type, 2B2(q), associated to an isomorphism
of the group B2(q) but which does not come from a morphism of the
Lie algebra [?, ?].

NEW LIE TYPE:
1961 The two series of groups defined by Ree, 2G2(q), q ≥ 27, q=
odd power of 3; and 2F4(q)′, for q an odd power of 2. The group
2F4(2) is nonsimple; its derived group 2F4(2)′, called the Tits group,
has index 2 and is simple [?].
Mathieu groups

[sporadic count=5]
May 15, 2020 14 / 91



1970 view of FSG; the deluge, part 1
Same as in 1962 plus these:

NEW SPORADIC:

1965 Janko group J1

1967 Hall-Janko group (HJ = J2); Janko group J3; Higman-Sims
group; McLaughlin, Suzuki sporadic group,

1968 Conway’s Co1,Co2,Co3; Held; Fischer’s 3-transposition groups
Fi22,Fi23,Fi

′
24 ;

1969 Lyons group

[sporadic count=5+13=19]
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1970-1972 blues

New real and putative groups were fun to examine. There were no
announcements about sporadic group discoveries during 1970-1972.
A mild depression spread within the finite group community.
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1973 view of FSG: the deluge part 2
Same view as in 1970 with these additions:

NEW SPORADIC:
before mid-May 1973: O ′Nan (a group of order 29345·7319·31)

early 1973: Ru (Rudvalis rank 3 group) order 21433537·13·29

summer 1973: F2 (Fischer’s Baby Monster; a {3, 4}-transposition
group)

November 1973: M = F1 (Monster, by Fischer and Griess)
({3, 4, 5, 6}-transposition groups);

F3 (Thompson),

F5 (Harada-Norton)

[sporadic group count=25]
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1975 view of FSG
Same as 1973, plus

NEW SPORADIC:

May, 1975: Janko’s fourth group J4 order
221335·11311·23·29·31·37·43 found by centralizer of involution
21+123M222.
[sporadic group count=26]
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THE FINAL LIST of FSG (after decades of CFSG):

(a) cyclic groups of prime order;

(b) the alternating groups (even permutations on a set of n symbols,
n ≥ 5);

(c) groups of Lie type over finite fields (17 families): Chevalley
groups An(q) ∼= PSL(n + 1, q), Bn(q) = PSO(2n + 1, q), . . . ,E8(q);
Steinberg, Suzuki and Ree variations:
2An(q) = PSU(n + 1, q), . . . 2F4(22m+1)′;

(d) 26 sporadic groups = 5 groups of Mathieu from 1860s, plus 21
others, discovered during period 1965-1975.

[sporadic count = 26]
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Of the 26 sporadic groups, 20 are subquotients of the Monster, the
largest sporadic. These twenty groups form The Happy Family. The
set of six remaining groups are called The Pariahs. There is no single
simply stated theme which explains or describes the sporadic groups
in a useful or efficient manner. The broadest coverage so far is
membership in the Happy Family.

May 15, 2020 20 / 91



Fuzzy boundary between sporadic simple groups and the others

(1) We see an easily expressed 3-transposition condition in symmetric
groups and in some classical groups over fields of characteristic 2 and
3 (for reflections or transvections). The classification of nonsolvable
3-transposition groups includes three previously unknown sporadic
groups, Fi22,Fi23 and Fi24. What resulted from such a simple
hypothesis is amazing.

(2) The finite real and complex reflection groups were classified a
long time ago. Their composition factors involve only cyclic groups,
alternating groups and certain classical matrix groups over the fields
of 2 and 3 elements.

The finite quaternionic reflection groups were classified in the 1970s
by Arjeh Cohen [?]. Their composition factors involve only cyclic
groups, alternating groups, a few classic matrix groups of small
dimension over small fields, and the sporadic group of Hall-Janko.
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(3) Timmesfeld’s classification [?] of {4, odd}+ transposition groups
with no normal solvable subgroups gave most groups of Lie type in
characteristic 2 (the groups 2F4(q) do not occur here), all of the
3-transposition groups of Fischer, plus the sporadic Hall-Janko group
(which is not a 3-transposition group). The group HJ embeds into
the group G2(4) and its {4, odd}+-transpositions are contained in
those of G2(4). So, HJ is close to being a group of Lie type in
characteristic 2.

(4) Also the {3, 4, 5, 6}-transposition property of the 2A-involutions
in M (the Monster) feels like something close to Weyl groups in Lie
algebra theory, particularly because of the theory of Miyamoto
involutions [?] and Sakuma’s theorem [?].
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Beginnings of CFSG and sporadic encounters

The CFSG starts in early 1950s and, as a consequence, encourages a
search for more finite simple groups.

In any group, two involutions generate a dihedral group. The
following theorem [?] extends a thesis result of Kenneth Fowler at
University of Michigan [?], under the direction of Richard Brauer.

Theorem
(Brauer-Fowler) There exists a function f : N→ R so that if G is a
finite simple group (of even order) and t ∈ G is an involution, then
|G | ≤ f (|CG (t)|).

In other words, if H is a finite group then, up to isomorphism, only
finitely many finite simple groups have an involution whose
centralizer is isomorphic to H . (Usually, that number is zero.)
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The function f is extravagant, of no practical value. However, the
psychological impact of limiting a finite simple group by a centralizer
of involution was powerful.
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In Brauer’s talk in Amsterdam ICM (1954), he gave an early theorem
along this line. We first give some notation.

Let q be an odd prime power and let H be the centralizer of an

involution

1 0 0
0 −1 0
0 0 −1

 (mod scalars) in the simple group

PSL(3, q). So, H is the group of all matrices of the form

(
c

A

)
(mod scalars ) where A is an invertible 2× 2 matrix and
c · det(A) = 1. So, for all odd q, H is isomorphic to GL(2, q).

Theorem
Assume that (i) G is a finite simple group with involution u so that
CG (u) ∼= GL(2, q);
(ii) for x 6= 1 in Z (CG (u)), CG (x) = CG (u);
Then G ∼= PSL(3, q) or q = 3 and G ∼= M11, the Mathieu group of
order 7920 = 24325 · 11.
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Hypothesis (ii) was eventually removed.

Note that we get the expected answers PSL(3, q) but in the proof
there is a branch of the argument which leads to a sporadic group. If
you had never met M11 before, you would meet it this way.

There were many results in CFSG which were intended to
characterize known finite simple groups by some internal property.
Occasionally, there was a branch in the argument which led to the
discovery of a new (previously unknown) finite simple group.

Brauer’s strategy applied “only” to simple groups of even order. In
1959, Feit and Thompson proved that all finite groups of odd order
are solvable. After their theorem, it was clear that Brauer’s viewpoint
was more relevant to understanding finite simple groups.
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Theorem
(Janko-Thompson) Let q ≥ 5 be a prime power and G be a finite
simple group with abelian Sylow 2-subgroups and an involution t so
that CG (t) ∼= 2× PSL(2, q). Then q is an odd power of 3 with
q ≥ 27 or q = 5.

The case q = 5 was mistakenly eliminated due to an error in a
character table for PSL(2, 11). The error was found later by Janko,
who obtained the following result.

Theorem
(Janko [?]) Let G be a finite simple group with abelian Sylow
2-subgroups and an involution t so that CG (t) ∼= 2× PSL(2, 5).
Then G has order 175560 = 233·5·7·11·19. Furthermore, such G
exist and are unique up to isomorphism.

May 15, 2020 27 / 91



Assuming that such a G exists, Janko gave two matrices A,B in
GL(7, 11), which would generate such a simple group (and
incidentally prove uniqueness of such a group). In [?] M. A. Ward
gave a nice proof that A and B do do generate a simple group of the
right order and W. A. Coppel gave a nice proof that this subgroup
lies in a G2(11)-subgroup of GL(7, 11) [?].

The group J1 is another example of how a sporadic group comes up
as a special case in a classification result.
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Reaction to J1, the first new sporadic simple group in a century

There was a lot of discussion about what the appearance of J1 could
mean. The Suzuki series discovered in 1960 turned out to be groups
of Lie type. Were there more sporadics waiting to be discovered?
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(1) Think about the order of GL(n, q),

q(n
2)(qn − 1)(qn−1 − 1) · · · (q − 1)

There are similar polynomial expressions for orders of groups over Lie
type over finite fields of q elements. Maybe the new group J1, of
order

175560 = 11·12·1330 = 11(11 + 1)(113 − 1)

is part of a series of groups of order q(q + 1)(q3 − 1) where q is a
prime power (or maybe a power of 11). This was a nice idea, but it
did not lead anywhere.
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(2) Consider these amusing factorizations (found in [?]):

175560 = 233·5·7·11·19 = 19·20·21·22 = 55·56·57

As far as I know, no one has done anything special with this.
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(3) J1 contains a subgroup isomorphic to PSL(2, 11) of index
266 = 2 · 133. Since 133 is the dimension of the E7 Lie algebra,
maybe something is going on with the exceptional Lie group E7?

The group J1 has a 7-dimensional representation over F11 which
embeds J1 in G2(11)! There is a containment of exceptional Lie
groups G2 ≤ F4 ≤ E6 ≤ E7 ≤ E8, so there is a from J1 link to E7, but
somewhat distant.
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Centralizer of involution examples
The strategy of characterization by centralizer of involution was
pursued, refined and replaced as the years went by. One can not hope
to try all finite groups as centralizer of involution candidates to finish
CFSG. Still, it is remarkable that many small groups occurred as
centralizers of involutions in previously unknown finite simple groups.

(1) The dichotomy with C = 21+4:Alt5 as a centralizer of involution
in a simple group, G : I am not sure why Janko chose this example,
but it was fortunate. The group C has three conjugacy classes of
involutions. Take involutions z in the center, w in O2(C ) and
t ∈ C \ O2(C ). They represent the three conjugacy classes. The
Glauberman Z ∗-theorem [?] says that z must be conjugate to one of
w , t. The case where z is conjugate to just one of w , t leads to the
group HJ (and z is conjugate to w , in fact). The case where z is
conjugate to both w and t leads to the group J3 of order
50232960 = 2735·17·19.
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(2) The sporadic group of McLaughlin has one conjugacy class of
involutions with centralizer of shape 2·Alt8, the double cover of Alt8,
described by Schur [?].

Richard Lyons, while a graduate student at U Chicago, produced
strong evidence that there is a finite simple group with an involution
centralizer isomorphic to 2·Alt11 [?]. The Lyons group has order
2837567·11·31·37·67.

No group 2·Altn, for n ≤ 7 is the centralizer of an involution in a
finite simple group (this follows from Glauberman’s Z ∗ theorem [?]).
The CFSG shows that the groups 2·Altn, n 6= 8, 11 are not
centralizers of involutions in finite simple groups.
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(3) With finitely many exceptions, finite groups of Lie type over a
field of characteristic p have Schur multiplier of order relatively prime
to p [?, ?, ?, ?, ?]. Certain associated exceptional central extensions
appeared as normal subgroups in normalizers of small p-groups within
sporadic groups. Some examples: (a) 2·PSU(6, 2) in Fi22; (b)
32·PSU(4, 3) in Co1; (c) 2·F4(2) in the Monster; (d) The group Co3

has an involution centralizer of the form 2·Sp(6, 2); (e) certain
central extensions of PSL(3, 4) in the groups of Held and O’Nan.

For a discussion of connections between exceptionally nonvanishing
cohomology and sporadic groups, see [?].

I do not recall a case of a sporadic group being discovered by
centralizer of involution procedure, starting with such an exceptional
covering of a group of Lie type.
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(4) Dieter Held studied the group 21+6
+ :GL(3, 2), which is a

centralizer of involution in both GL(5, 2) and M24 and found that it is
a centralizer of involution in a third group, the sporadic group of
Held, order 4030387200 = 21033527317.

From CFSG, we know that, given a particular group H , the number
of finite simple groups, up to isomorphism, having H as centralizer of
involution is at most 3. Only H = 21+6

+ :GL(3, 2) achieves the upper
bound of 3. Several groups occur as centralizer twice. The pair of
simple groups PSL(2, 7),Alt6 each have one conjugacy class of
involutions and common involution centralizer Dih8. The pair of
simple groups HJ , J3 have involutions with common centralizer
21+4
− :Alt5.
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(5) Janko went through many candidates for centralizer of involution,
as he looked for more sporadic groups. I have been told that while he
was on the Ohio State faculty, he gave weekly seminars about the
cases he considered for centralizers of involution in a simple group.
None of those led to a new simple group.

Janko even studied series of centralizer candidates. Jon Alperin told
me that Janko considered q1+8Sp(6, q) for q a power of 2. This
series generalizes the case of an involution centralizer 21+8Sp(6, 2) in
the group Co2. No simple group occurs for such a centralizer when
q > 2. At a 1972 meeting in Gainesville, Florida, Janko proposed
another infinite family of centralizers for possible new simple groups.
Within a few weeks after the conference, this possibility was
eliminated, but he reported on yet another family of centralizer
candidates in the conference proceedings [?].
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Don Higman’s rank 3 theory
A permutation representation of a group G on a set Ω is a group
homomorphism G → Sym(Ω). Its degree is the cardinality |Ω|.
The rank of a transitive permutation representation of the group G
on a set Ω is the number of orbits for the natural action on Ω× Ω.
Equivalently, it is the number of orbits of a point stabilizer
Ga := {g ∈ G | ga = a} on Ω.
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Notation
Let the finite group G act on the set Ω transitively with rank 3. For
a ∈ Ω, let the orbits of the point-stabilizer Ga be {a},∆(a), Γ(a).
Assume that if g ∈ G , then ∆(g · a) = g ·∆(a) and
Γ(g · a) = g · Γ(a).
Define n := |Ω|, the degree;
k := |∆(a)|,
` := |Γ(a)|
λ := |∆(a) ∩∆(b)| for b ∈ ∆(a),
µ := |∆(a) ∩∆(b)| for b ∈ Γ(a).
Call k , ` the subdegrees and call k , `, λ, µ the rank 3 parameters or
the Higman parameters of the rank 3 representation.

Lemma
[?] µ` = k(k − λ− 1) (the Higman condition).
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Call a sequence of nonnegative integers k , `, λ, µ a Higman quadruple
if they satisfy the Higman criterion. A Higman quadruple may arise
from a rank 3 group, or not. Don Higman kept a list of such
quadruples which might be relevant to finite groups.

There are other numerical conditions in [?]; above is all I need now.

The next example may be verified by counting. No specialized group
theory is required.
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Example
Let G be 4-transitive subgroup of Symm for m ≥ 4, Ω = the set of
unordered pairs of distinct integers from {1, 2, 3, . . . ,m}. The action
of G is transitive. The stabilizer in G of (i , j) has two nontrivial
orbits:
∆((i , j)) := the pairs which contain just one of i, j (cardinality
k = 2(m − 2));
Γ((i , j)): = the pairs which avoid i, j (cardinality ` =

(
m−2

2

)
).

The stabilizer of (i , j) in G is transitive on the sets ∆((i , j)) and
Γ((i , j)). So, we have a rank 3 permutation representation on

n = 1 + k + ` = 1 + 2(m − 2) + (m−2)(m−3)
2

=
(
m
2

)
points. The

remaining parameters for the Higman condition are:
λ = m − 3 + 1 = m − 2; µ = 4.
The Higman condition µ` = k(k − λ− 1) here would say 4

(
m−2

2

)
equals 2(m− 2)(2(m− 2)− (m− 2)− 1) = 2(m− 2)(m− 3), which
is true.

Remark
To a rank 3 group, there is a natural associated graph. Connect a
point a ∈ Ω by an edge to a point b if and only if b ∈ ∆(a).
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1967, the sporadic groups of Hall-Janko and Higman-Sims
Now we jump to year 1967 and linked stories about the sporadic
groups HJ and HS .

The Hall-Janko group, HJ , which has order 604800 = 2733527, was
discovered independently by Zvonimir Janko and Marshall Hall.
Janko started starting by using C := 21+4

− :Alt5 (split extension) as
candidate for the centralizer of an involution in a simple group. Hall
worked with a Higman quadruple k = 36, ` = 63, λ = 14, µ = 12,
good for the group H ∼= PSU(3, 3) to be a one-point stabilizer in a
degree 100 rank 3 group of order 604800 = 2733527. Marshall Hall
worked out properties of a putative simple group. David Wales and
Marshall Hall constructed one with computer [?, ?].
The announcements of Zvonimir Janko and Marshall Hall referenced
each other’s work [?, ?, ?]. It is nice to learn about such courtesy.
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The story I tell of the Higman-Sims group discovery and existence
proof is taken from testimony of Charles Sims (see [?, ?].

It took place at a conference “Computational problems in abstract
algebra” in Oxford in 1967.

Marshall Hall lectured on his construction of his simple group HJ ,
order 2733527. It acted in a rank 3 fashion on a graph on 100 points
and valency 36.

On the last day of the conference, 2 September, 1967, Higman and
Sims thought about 100 and wondered if that number could come up
in other ways for rank 3 groups. They may not have been so curious
but for the fact that our number system is written in base 10 and
100 = 102. Right away, they thought of the wreath product Sym10 o 2
acting on the cartesian product of two 10-sets. This is rank 3 with
subdegrees 1, 18, 81. The Higman parameters are (18, 81, 8, 2).
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Higman had a table of Higman quadruples. One quadruple was
(22, 77, 0, 6). The number 22 suggested that the Mathieu group M22

could be a point stabilizer in a rank 3 group with these parameters
(the symmetric and alternating groups on 22 points will not work
here since they do not act transitively on a set of 77 points). For 77,
it is well known that M22 acts on a Steiner system S(3, 6, 22), which
has 77 blocks (77 =

(
22
3

)
/
(

6
3

)
).

So, they defined a graph. For nodes of the graph, they used a set Ω
of 100 points: *, with the 22 points ∆ affording M22, and with the
77 blocks Γ. It is clear that Aut(M22) = M22:2 acts on this set of 100
points. Work of E. Witt on existence and uniqueness of Steiner
systems associated to Mathieu groups [?, ?] was very helpful to
Higman and Sims.
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The edges in the graph are defined as follows: * is connected to just
the 22 points of ∆. A point p in ∆ is connected to * and the 21
blocks containing it. A block is connected to the 6 points in the
block and the 16 blocks disjoint from it. (So Higman parameters
have values λ = 0, µ = 6.)

They needed to prove existence of some permutation π on Ω which
preserved the graph and moved *. This will prove that the group G
generated by π and the action of Aut(M22) on the set Ω is a rank 3
group with parameters (22, 77, 0, 6).
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Higman and Sims talked all night and got such a π. By the morning
of Sunday, 3 September, 1967, it was clear that their group G or a
subgroup of index 2 was a new simple group. (It turns out that the
commutator subgroup G ′ has index 2 and is simple of order
2932537·11.) Time from conception to existence proof for this
sporadic group was about a day. Their performance was unique. For
other sporadic groups, gap between discovery and construction
ranged from weeks to years.

I learned in 2007 that Dale Mesner had constructed this Higman Sims
graph in his 1956 doctoral thesis at the Department of Statistics,
Michigan State University. This 291 page thesis explored several
topics, including integrality conditions for strongly regular graphs
(association schemes with two classes) related to Latin squares.

Mesner does not mention concerns about its automorphism group or
acknowledge connections with Mathieu groups and Steiner systems.
Jon Hall gives an account of this in [?].
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Given Higman parameters, when is there a rank 3 group?
Don Higman maintained a list of parameter values which met his
conditions. Some corresponded to actual rank 3 groups. There are
relevant group theoretical conditions besides arithmetic ones. If G is
a rank 3 group with point stabilizer H , the group H must have
subgroups of indices k and `. See [?], p.125 for Higman’s table of
parameters which apply to actual rank 3 groups.
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Discovery of the McLaughlin group
When I was in grad school at University of Chicago, Jack McLaughlin
was in residence there during a sabbatical year (1968-69 maybe?)
from University of Michigan. He was thinking about the
Higman-Sims group and Don Higman’s rank 3 theory. McLaughlin
thought about the group H = PSU(4, 3), order 27365·7 and
considered a maximal parabolic subgroup of index 112. He next
studied Higman quadruples k , `, λ, µ with k = 112. Since ` must be
the index of a subgroup of H , he reviewed ones he knew about and
thought of a subgroup isomorphic to PSL(3, 4), order
26325·7 = 20160, described by H. H. Mitchell around 1918 [?]. This
gives ` = 162 and the Higman condition forces λ = 30 and µ = 56.
McLaughlin defined a graph on 275 nodes and valency 112 at each
node. Using strategy of Higman and Sims, he constructed an
automorphism of the graph and thereby constructed a new sporadic
group of order 2736537·11 [?]. I omit details.
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That year, Janko came to University of Chicago to give a seminar. I
joined the colloquium dinner party, which included Jack and Doris
McLaughlin and possibly George Glauberman. I remember that Janko
and McLaughlin were in good moods.
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Looking for more sporadics
Lots of group theorists looked for sporadics, some probably in secret.
I played with Higman criterion and ”rediscovered” the parameters
which McLaughlin used, as well as finding many interesting
quadruples which led nowhere.

Remarkably, the Higman-Sims group, discovered as a rank 3 group,
has doubly transitive representations, on cosets of
PSU(3, 5)-subgroups. A putative simple group with the latter
property was investigated by Graham Higman, but he did not
complete the work before Donald Higman and Charles Sims
discovered and constructed their group. Some sporadics are multiply
transitive permutation groups: all Mathieu groups; Higman-Sims
group; Co3 (on cosets of a subgroup isomorphic to McL:2).
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My impression was that the search for sporadic groups was done
more systematically in the world of centralizer of involution studies
than in the world of permutation groups. Centralizer of involution
results directly supported the ongoing CFSG program. Sometimes, a
new sporadic group was a surprise conclusion of a standard
centralizer of involution characterization, such as the Held group [?]
and the Harada-Norton group [?].

Janko was the most openly energetic explorer of centralizer of
involution problems. He found success four times, starting with
centralizer candidates which puzzled observers. They wondered
whether he had extremely good insight or just an amazing lucky
streak. The most exotic-looking centralizer for his groups was
21+12.3.M22.2 for the pariah J4. The context of his successes surely
included a far greater number of trials which led to no new groups
but strengthened his instincts.
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The Leech lattice

This single object, the Leech lattice, is a rich mathematical world
with some remarkable number theory, combinatorics and group
theory. It was discovered by John Leech in the mid-1960s, as a dense
lattice packing in 24-dimensional Euclidean space [?, ?]. My
understanding is that he wanted someone to analyze the isometry
group. At the International Congress of Mathematicians in 1966,
McKay (then a graduate student) suggested this to Conway, who
took up the challenge.
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First, a few definitions. A lattice L in Euclidean n-space is a Z-linear
combination of a basis. It is integral if all inner products 〈x | y〉 are
integers and is even if all inner products are integers and
〈x | x〉 ∈ 2Z for all x ∈ L. A Gram matrix for L with respect to the
Z-basis v1, . . . , vn of L is the n × n matrix whose i , j entry is 〈vi | vj〉.
The determinant of L is the determinant of any Gram matrix. If a
lattice is even and unimodular, n is divisible by 8. If n = 24, there are
just 24 even unimodular lattices of determinant 1. The Leech lattice
is the only one without vectors of norm 2; its minimum norm is 4.

A common notation for the Leech lattice is Λ.
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Conway’s story, reported in [?], is that he figured it all out in a single
session of 12.5 hours. Some people told me that, for a short time,
there was more than one candidate for the group order of the
isometry group. The final result is that the order of the isometry
group is 22239547211·13·23.

Common notation for this isometry group is Co0 or O(Λ).

May 15, 2020 54 / 91



Here is the standard description of the Leech lattice.

The Leech lattice is built from sublattices starting with a sublattice J
which had 24× 24 Gram matrix diagonal(4, 4, . . . , 4, 4). Take an
orthogonal basis for this lattice, say vi , i ∈ Ω, where Ω is an index set
of size 24. Now take a Golay code G, a 12-dimensional linear
subspace of FΩ

2 so that the minimum weight of a vector is 8 (weight
means the number of nonzero coordinates). This sublattice J was
then made to a larger lattice K by taking the Z-span of J and all
sums 1

2
vA, where A is the subset of Ω corresponding to a word in G.

Finally, we get the Leech lattice Λ := K + Z(−vi + 1
4
vΩ) (this

definition of Λ is independent of choice of i ∈ Ω).
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The group M24, the group of the Golay code G, acts on
24-dimensional space by permuting the basis vi , i ∈ Ω, as it permutes
the index set. For this action, M24 preserves each of the lattices
J ,K ,Λ. Using the same basis, there is for every subset S of Ω, a

linear transformation defined by εS : vi 7→

{
−vi if i ∈ S

vi if i /∈ S
. Self

duality of the Golay code show that εS takes Λ to itself if and only if
S corresponds to a Golay codeword. All these transformations give a
monomial group H of shape 212:M24.
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The full isometry group of Λ is larger than H . The order of the
isometry group follows from the mass formula [?] involving all rank
24 even unimodular lattices. Conway gave an explicit formula for an
isometry u not in H , then showed that the full isometry group of Λ is
generated by u and H and has order 22239547211·13·23. His isometry
was useful in computations.

A different style analysis of the Leech lattice, its properties and its
isometry group was given by me in [?]. It emphasizes configurations
of
√

2E8-sublattices. It is relatively free of calculations with matrices,
special counting arguments, etc.

May 15, 2020 57 / 91



Consequences of Leech lattice theory for finite groups

The quotient Co1 := Co0/{±1} is simple of order 22139547211·13·23.

Stabilizers of sublattices gave then-new sporadic groups
Co2 of order 21037537·11·23
Co3 of order 21836537·11·23

and some familiar ones:
HS re-discovered, order 2932537·11
McL re-discovered, order 2736537·11

Centralizers of certain isometries gave the groups HJ of order
2733527 and Suz of order 21337527·11·23; both re-discovered. (More
precisely, perfect groups 2·HJ and 6·Suz occur as subgroups of
centralizers within Co0.)
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Fischer’s ω-transposition group theory
(1) Definition of ω-transposition group. Let ω be a nonempty
subset of {3, 4, 5, . . . }. Recall that in any group, two involutions
generate a dihedral group. An ω-transposition group is a finite group
G generated by D, a union of conjugacy classes of involutions, so
that for x 6= y in D, then either x , y commute or xy has order
|xy | ∈ ω. So 〈x , y〉 is a dihedral group of order 2|xy |.
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Examples for the case ω = {3}:
(a) D = the set of transpositions (i , j) in a symmetric group
G = Symn. If (i , j) and (k , `) do not commute, their product is a
3-cycle. So the group generated by (i , j) and (k , `) is a copy of
Sym3

∼= Dih6.
(b) Orthogonal reflections in Oε(2m, 2), (ε = ±). Other examples in
classical groups over fields of 2 and 3 elements.
Fischer classified such groups provided that a solvable normal
subgroup is in the center. We get symmetric groups, some classical
groups over small fields AND three previously unknown almost-simple
groups Fi22,Fi23,Fi24. To me, finding these sporadic groups from the
simple-looking 3-transposition property is one of the most surprising
aspects of sporadic group theory.

May 15, 2020 60 / 91



Examples for the case ω = {3, 4}: (a) GL(n, 2), for D the
conjugacy class of transvections = identity + rank 1 nilpotent, e.g.1 1 0

0 1 0
0 0 1

. Easy to check that two different transvections generate

a dihedral group of order at most 8.
(b) some sporadic groups: Co2, Baby Monster F2. The Baby Monster
was Fischer’s fourth sporadic group.
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(c) Examples of unlikely ω-transposition theories : A finite
group generated by a conjugacy class of involutions is an
ω-transposition group for some ω. Such a set may be difficult to
work with compared to ω = {3}. The Suzuki group Sz(8), order
29120 = 265·7·13 has one class of involutions. Two distinct
involutions commute or their product has order 5, 7 or 13.

For PSL(2, 2n), the involutions are the transvections (with Jordan

canonical form

(
1 0
1 1

)
) and ω must contain all divisors of 2n + 1

and 2n − 1.
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Computer constructions of sporadic groups
The Higman-Sims group was envisioned and constructed in about a
day. Other sporadic groups were constructed by hand, including
Mathieu groups and most 3-transposition groups. Several groups
were constructed by computer. The first such constructions were for
HJ , J3,Held , Lyons,O

′Nan,Rudvalis,BabyMonster , J4 by McKay,
Sims, Leon, Norton, Benson, Conway, Wales, et al. [?]

The Rudvalis group has a subgroup of index “only” 4060. Some
sporadic groups required computations with permutation
representations on cosets of subgroups with large indices. For
example, the O’Nan group has a permutation representation on
122760 symbols and the Lyons group has a permutation
representation on 8835156 points. For each of the latter two groups,
Sims took two years or so for construction with computer work [?, ?].
Computational challenges got tougher with larger groups.

In a few cases, there were subsequent constructions by hand.
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The simple group of Fischer and Griess

During summer 1973, I received a letter from Ulrich Dempwolff who
reported that Fischer had evidence for a new group, a
{3, 4}-transposition group, of order 241313567211·13·17·19·23·31·47,
about 4× 1033; it would become Fischer’s fourth sporadic group.
This group was eventually called the Baby Monster. For the moment,
I will denote it H , Properties of this group suggested that there could
be a larger group.

For example H contains a subgroup 21+22Co2. To me this suggested
a larger group 21+24Co1. Also H contains a subgroup 31+10PSU(5, 2).
To me, this suggested a larger group 31+122Suz . These larger groups,
plus other information about H came together to suggest a simple
group G with all these larger groups as subgroups.
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After initial studies, I felt that there were no obvious reasons to reject
the possibility that such a G may exist. I add that H was not a
subgroup of G but instead G had a subgroup 2·H which was a
nonsplit central extension of H by Z2. The first weekend in November
1973, in Ann Arbor, was when I felt there was a serious chance of a
new sporadic group. At a meeting in Bielefeld the same weekend,
Fischer spoke about his ideas for the same group. We had no direct
communications about this topic until weeks or months after that.

Fischer’s thinking may have overlapped with mine. He was also
thinking about the class of {3, 4}-transpositions in H and what they
would correspond to in a larger simple group which contained 2·H as
a centralizer of involution. This group would eventually be called the
Monster and become Fischer’s fifth sporadic group, and my first (and
only).
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Monstrous Moonshine

The starting point for Monstrous Moonshine of Conway and Norton
were two ideas.

First, John McKay’s surprising observation that 196884 (the first
nontrivial coefficient of the elliptic modular function j(z) equals
1+196883 (z varies over the upper half complex plane). The number
196883 = 47·59·71 was expected to be the smallest degree of a
nontrivial irreducible representation of the Monster. It is easy to show
that the degree of a faithful matrix representation of the Monster is
at least 196883.
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Second, John Thompson looked at a few of the the higher coefficients
of j(z) = q−1 + 744 + 196884q + 21493760q2 + 864299970q3 + · · · ,
where q = e2πiz and noticed that they were nonnegative linear
combinations of degrees of irreducible representations of the Monster,
1, 196883, 21296876, 842609326, . . . . He then asked whether there
could be a graded space V =

⊕
n≥−1 Vn, where Vn is a finite

dimensional module for the monster, so that the formal series∑
n≥−1 dim(Vn)qn equals j(z)− 744 and that the series∑
n≥−1 tr(g |Vn)qn could be interesting for all g in the Monster.

It was indeed interesting. It was the basis of the Monstrous
Moonshine theory of Conway and Norton, a near-bijective
correspondence between conjugacy classes of the Monster and a
family of genus 0 function fields on the upper half plane. This was a
surprising connection between deep parts of finite group theory and
number theory. The impact on mathematics would be great.
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Existence proof for the Monster

Difficulty of a construction

The order of the Monster was about 8× 1053, so construction was
expected to be difficult. Some sporadic groups were constructed with
computer work, which in some cases took years. The problem with
trying a computer construction of the Monster was that there were
no small representations.

The smallest index of a subgroup was believed to be about 1020, so a
permutation representation would involve that many symbols. The
smallest degree of a faithful matrix representation in characteristic 0
had been known since 1973 to be at least 196883 [?]; in fact the
smallest degree of a faithful matrix representation over a field of
characteristic not 2 or 3 turns out to be at least 196883, and the
smallest degree in characteristics 2 and 3 is at least 196882 by a
result of Steve Smith and myself [?].
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Worth the effort?

In the mid 1970s, there was an increasing awareness of large and
larger sporadic groups. The Monster was really large compared to
predecessors. The difficulty of constructing it seemed orders of
magnitude beyond past experiences.

An effort to construct it may go a long time without reward. Not
only that, but there could be even larger and larger sporadic groups
to deal with in the years to come. The sense of what was important
to CFSG could change.

I recall a group theorist telling me that he/she could have envisioned
the same expansion of ideas from Baby Monster to Monster as I did.
This person did not want to pursue consequences because they
foresaw only a thankless labor with little likelihood of payoff. There
was no lack of challenging problems to work on in the ongoing CFSG.
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Shifting winds in late 1970s

In the late 1970s, there was a sense that the classification of finite
groups might close in the near future since Daniel Gorenstein and
Richard Lyons had outlined an end game [?]. No sporadics had been
discovered since May 1975. Also Monstrous Moonshine came along
and suddenly made resolving existence of the Monster important. I
began to think about how a construction would go.
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The attempt, late 1979

In fall 1979, about six years after Fischer and I discovered evidence
for the Monster, I decided to make a serious try at a construction. I
was at the Institute for Advanced Study, on a one year sabbatical
from the University of Michigan.

To me, the most reasonable setting seemed to be a degree 196883
complex representation, which was expected to be writeable over the
rationals. Work of Simon Norton suggested that if B is an irreducible
196883-dimensional representation of the Monster, B is self-dual and
has a degree 3 invariant symmetric tensor. This means that B would
have the structure of a commutative algebra with an associative
bilinear form, for which the Monster acts as algebra automorphisms.

Let us say a finite simple group has Monster type if it has an
involution whose centralizer has the form 21+24Co1, My goal was to
create a finite group which has Monster type.
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I started by trying to construct a dimension 196883 representation B
for a suitable group C of shape 21+24Co1 and consider the family of
C -invariant algebra structures. Then I had to (1) make a choice of
C -invariant algebra structure which could be invariant under a finite
group larger than C ; (2) define an invertible linear transformation σ
on B , then prove that σ preserves the algebra structure; (3) Show
that the group 〈C , σ〉 generated by C and σ is a finite simple group
in which C is the centralizer of an involution. Then 〈C , σ〉 would be
a group of Monster type.
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We can describe C with a fiber product, Ĉ :

Ĉ 99K C∞
...
∨ ↓

Co0 → Co1

where C∞ is a subgroup of GL(212,Q) of the form 21+24.Co1. We

can think of Ĉ as the subgroup of the direct product Co0 × C∞
consisting of all pairs (u, v) so that the images in Co1 of u ∈ Co0 and

v ∈ C∞ are equal. Then we take C := Ĉ/〈(−1,−1)〉 where the first
component of (−1,−1) means the scalar −1 on the rational span of
the Leech lattice and where the second component means −1 in
GL(212,Q).

The smallest faithful representation of C has dimension
98304 = 24·212.
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We use notation similar to that in [?]. Let z be the involution which
generates the center of C and let R := O2(C ).
Define B := U ⊕ V ⊕W , a direct sum of irreducible C -modules,
where U has dimension 299, dim(V ) = 98280 and W has dimension
98304 = 24 · 212.

Think of U as 24× 24 symmetric matrices of trace 0; V has a basis
of all unordered pairs {λ,−λ} where λ is a minimum norm vector in
the Leech lattice; and W can be thought of as a tensor product of a
degree 24 representation of C0 and a degree 212 representation of C∞.
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The spaces HomC (X ⊗ Y ,Z ) were described, where
X ,Y ,Z ∈ {U ,V ,W }. This information enables a description of the
multi-parameter space of C -invariant algebra structures B × B → B .
A choice of algebra and automorphism σ of the algebra, σ /∈ C , were
sought.

If the Monster were to exist, there would be a subgroup K of the
form 22+11+22[M24 × Sym3] for which C ∩ K would look like
22+11+22[M24 × 2]. The right hand factor in [M24 × 2] can be thought
of as representing a subgroup generated by the transposition (1, 2)
inside the symmetric group on {1, 2, 3}. My choice of σ would be an
element of K which, in the quotient [M24 × Sym3] of K , represents
the transposition (2, 3) in the right hand factor.
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Such a σ would not leave the subspaces U ,V ,W invariant. I found
that certain direct sum decompositions of
U = U1 ⊕ U2 ⊕ . . . ,V = V1 ⊕ V2 ⊕ . . . ,W = W1 ⊕W2 ⊕ . . . were
helpful to imagine an approximation of a good σ of order 2 (σ would
permute these smaller summands, for example, fixing certain ones
while switching some Ui and Vj and some Vk and W`, etc.).

Getting signs right in a matrix for σ was a big problem, solved by
trial and error. Without knowing signs exactly, the procedure of the
previous paragraph enabled me to determine a product, uniquely up
to scalar multiple, at an early stage. Call the product *.
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When I chose an invertible linear transformation σ, I had to check
whether it preserved the algebra product. This involved taking a
convenient basis bi of B , then asking whether σ(bi ∗ bj) equals
(σbi) ∗ (σbj), for all i , j .
A check typically took about a week of verifications by hand. Failures
of equality were studied and new formulas for σ were proposed. I
tested a long series of candidates before finding one which worked.
Sometimes, I ran a second test for a candidate using a different basis
to understand failures better.
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This construction took a few months, roughly October 1979 to early
January, 1980. I worked around the clock, sleeping as needed and
taking little time off. Enrico Bombieri, an IAS faculty member,
encouraged me a lot during this intense time. I was very grateful for
his support. I announced the construction on 14 January, 1980, by
mailing copies of a typed announcement to many group theorists.
Later, I wrote up consequences of the construction, such as short
existence proofs for other sporadic groups and table of involvement of
sporadic groups in one another. The article was submitted to
Inventiones and appeared in 1982 [?].

Uniqueness of the Monster was proved by Griess, Meierfrankenfeld
and Segev in 1989 [?]. There is still no uniqueness proof for (B , ∗) as
an algebra (though it is essentially unique, given that a group of
Monster type acts as algebra automorphisms for a commutative
algebra of dimension 196883).
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Graded spaces
A graded space for the Monster was announced by Igor Frenkel,
James Lepowsky and Arne Meurman in 1983, a response to the
Thompson suggestion. They used a blend of theory for hightest
weight modules for affine Lie algebras and the techniques from the
Monster construction [?]. They proved graded traces were right for
many but not all group elements of the Monster. Later, Borcherds
proved that the traces were right for all group elements.[?]
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VOAs and MVOA
In the mid 1980s, Richard Borcherds introduced vertex operator
algebras [?]. Authors Frenkel, Lepowsky and Meurman then enriched
their graded representation of the Monster with vertex operator
algebra theory to produce the Moonshine VOA or MVOA, whose
automorphism group is the Monster [?]. They use the symbol V \ for
this VOA.

The graded dimension for a MVOA is q · (j(z)− 744), representing
removal of constant term from the elliptic modular function, then a
shift of degree.
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Some consequences of VOA axioms

The definition of a VOA is too long to present here. A VOA is a
graded space over a field of characteristic 0. I mention a few points
about the case of VOAs graded over the nonnegative integers.

Given a VOA V = ⊕i≥0Vi , the k-th product gives a bilinear map
Vi × Vj−→Vi+j−k−1. So, Vn under the (n−1)th product is a finite
dimensional algebra, denoted (Vn, (n−1)th).

In addition, (a) if dim(V0) = 1, (V1, 0
th) is a Lie algebra; (b) if

dim(V0) = 1 and dim(V1) = 0, then (V2, 1
st) is a commutative

algebra with a symmetric, associative form (ab, c) = (a, bc).

Algebras as in (b) are sometimes called Griess algebras.

A vertex algebra (VA) over a commutative ring K is a graded
K -module with a set of axioms similar to the VOA axioms. There is
an analogue of a vacuum element but there is not necessarily an
analogue of a Virasoro element [?, ?].

May 15, 2020 81 / 91



In the Frenkel-Lepowsky-Meurman VOA V \, (V \
2 , 1

st) is a
commutative nonassociative algebra of dimension 196884, essentially
the algebra I defined to construct the Monster.

Automorphism group of a finitely generated VOA is an algebraic
group, a theorem of Chongying Dong and myself [?]. Our paper has
some results about derivation algebras of VOAs.
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Graded complex representations for other groups?

The authors Duncan, Mertens and Ono [?] have constructed graded
spaces for the O’Nan sporadic group, order 29335·7311·19·31 with
number theoretic properties. The graded traces in one version are
weight 3

2
modular forms. These graded spaces do not (yet?) have

additional algebraic properties like a VOA does. This is a very
interesting advance. Moonshine for other pariahs has been sought for
decades. This “O’Nanshine” seems to be the best so far.

There is an automorphism of order 2 of the O’Nan group whose fixed
point subgroup is isomorphic to J1. So the O’Nanshine space gives a
kind of Moonshine for J1.
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Lattices, vertex algebras and applications

The articles [?, ?] by Chongying Dong and myself establish a
beginning to a theory of (group-invariant) integral forms in VOAs,
and give an integral form in V \ which is invariant under the Monster.
Carnahan [?] shows that there is even one which is self-dual. None of
these Monster-invariant forms is given an explicit description,
unfortunately.

There is a standard integral form in the lattice VOA VL, for any even
lattice L, given with explicit generators [?]. Moreover, when L is a
root lattice of type ADE, those natural generators which lie in the
degree 1 term form a standard Chevalley basis of the finite
dimensional simple complex Lie algebra ((VL)1, 0

th) as well as a basis
for the intersection of the standard integral form in VL with (VL)1.
So, we have a natural generalization of usual Chevalley basis and root
lattice to an integral form in the lattice VOA VL.
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Is every finite group the automorphism group of a VOA?

There is a natural question, in the spirit of Noether’s inverse Galois
problem (given a finite group, G , is there a Galois field extension K
of the rationals Q so that Gal(K/Q) ∼= G?). The Noether problem is
not settled.
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Given a finite group G , is there a VOA whose automorphism group is
G? The answer is unknown in general but is yes for G = M and a
variety other finite groups. Automorphism groups of VOAs are
studied in articles of Dong, Griess, Nagaomo and Ryba [?, ?, ?]. One
of the interesting cases of large rank is the occurrence of 227.E6(2);
see Shimakura [?]

For VAs over fields of positive characteristic, there are more results.
In particular, there is a fairly natural affirmative answer for G which
is an adjoint form Chevalley or Steinberg group extended upwards by
diagonal and graph automorphisms, proved by Ching Hung Lam and
myself [?, ?]. This result makes use of the standard integral form in
VL.
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Short existence proof of the Monster and MVOA

Shimakura [?] gave a relatively short existence proof of a Moonshine
VOA using a theory of Miyamoto about simple current modules for a
VOA [?]. Ching Hung Lam and I used this construction of an MVOA
to give a relatively short existence proof for the Monster [?]. The
very long calculations in earlier proofs [?, ?] are now avoidable, a sign
of progress.

The relationship between VOA theory and finite simple groups has
become stronger.

So far, there is no uniqueness result for an MVOA or for its
196884-dimensional algebra (MVOA2, 1

st) associated to the Monster
construction. For some partial results, see [?].
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Final remarks

(1) Uniqueness of Monster was proved by Griess, Meierfrankenfeld
and Segev [?]. This article contains a proof of the group order
246320597611213317·19·23·29·31·41·47·59·71 and the first proof that
the action of the Monster on pairs of 2A-involutions has nine orbits.
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(2) In year 1975, during the Rutgers special year in finite groups,
Bernd Fischer visited for a few weeks and lectured on aspects of his
ω-transposition groups, especially his {3, 4}-transposition groups. In
conversations, he showed me work on the so-called Y-diagrams. The
nodes corresponded to 2A-involutions in the Monster. Two nodes are
disconnected if the pair of involutions commute and are connected if
the two involutions generate a dihedral group of order 6. He showed
me examples of such involutions forming diagrams which look like Y,
with arms of various lengths.

Interesting results on Y-diagrams are discussed in the Atlas of Finite
Groups [?], though sometimes without references or indications of
proofs.
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(4) Serge Lang noted the Monstrous Moonshine excitement, which
got started with the number 196884=1+196883. Serge, who was
very conscious about politics, told me that the way he remembers
196884 is to recall 1968 (year of political conflict in Paris and
Chicago) and 1984 (the title of George Orwell’s famous novel).
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(5) I learned about the O’Nan sporadic group from Jon Alperin’s
lecture in Warwick, May, 1973. Mike O’Nan was interested in finite
groups G with the following property: given E ,F , a pair of
elementary abelian 2-group contained in G of maximal rank, and two
maximal flags 1 = E0 < E1 < · · · ,Er = E and
1 = F0 < F1 < · · · ,Fr = F , then there exists an element g ∈ G so
that gEig

−1 = Fi for i = 0, 1, . . . r . This property could be called
transitivity on maximal flags of 2-subgroups. O’Nan thereby found a
new sporadic group, now called the O’Nan group. See [?, ?].

The group J1 has this property; this easy to see because the Sylow
2-normalizer is a semidirect product of an elementary abelian group
of order 8 by a nonabelian group of order 21, acting faithfully. See [?]
for a list.

The O’Nan group is the only sporadic group found by a strategy
which was not one of the main themes I indicated early in this lecture.
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