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Y. LeCun

Machine Learning sucks! (compared to humans and animals)

Supervised learning (SL) requires large numbers of labeled samples.
Reinforcement learning (RL) requires insane amounts of trials.
Self-Supervised Learning (SSL) works great but...
Generative prediction only works for text and other discrete modalities

Animals and humans:
Can learn new tasks very quickly.
Understand how the world works
Can reason an plan

Humans and animals have common sense
There behavior is driven by objectives (drives)
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We Need Human-Level AI for Intelligent Assistant

In the near future, all of our interactions with the 
digital world will be mediated by AI assistants.
Smart glasses
Communicates through voice, vision, display, electro-
myogram interfaces (EMG)

Intelligent Asistant
Can answer all of our questions
Can helps us in our daily lives
Understands our preferences and interests

For this, we need machines with human-level 
intelligence
Machines that understand how the world works
Machines that can remember, reason, plan.

“Her” 
(2013)
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Future AI Assistants need Human-Level AI

AI assistants will require (super-)human-level intelligence
Like having a staff of smart “people” working for us

But, we are nowhere near human-level AI today
Any 17 year-old can learn to drive in 20 hours of training
Any 10 year-old can learn to clear the dinner table in one shot
Any house cat can plan complex actions

What are we missing?
Learning how to world works (not just from text)
World models. Common sense
Memory, Reasoning, Hierarchical Planning
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Desiderata for AMI (Advanced Machine Intelligence)

Systems that learn world models from 
sensory inputs
E.g. learn intuitive physics from video

Systems that have persistent memory
Large-scale associative memories

Systems that can plan actions
So as to fulfill an objective

Systems that are controllable & safe
By design, not by fine-tuning.

Objective-Driven AI Architecture



Self-Supervised Learning 
has taken over the world
For understanding and generating text, 
images, video, 3D models, speech, 
proteins,...
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Self-Supervised Learning via Denoising / Reconstruction

Denoising Auto-Encoder [Vincent 2008], BERT [Devlin 2018], RoBERTa [Ott 2019]

Corruption
masking

Learned
representation

This is a [...] of text extracted 
[...] a large set of [...] articles

This is a piece of text extracted 
from a large set of news articles
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Emu: image generation

[ArXiv:2309.15807]

Dai et al.:
Emu: Enhancing Image Generation 
Models Using Photogenic Needles in a 
Haystack

AI at Meta, September 2023

Meta AI on WhatsApp & Messenger:
/imagine a photo a Harvard 
mathematician proving the Riemann 
hypothesis on a blackboard with the 
help of an intelligent robot.



Generative AI and
Auto-Regressive
Large Language Models
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Encoder

Auto-Regressive Generative Architectures

Outputs one “token” after another
Tokens may represent words, image patches, speech segments...

 Stochastic
Predictor

x[t-3] x[t-2] x[t-1] x[t] x[t+1]

Prompt

Encoder  Stochastic
Predictor

x[t-2] x[t-1] x[t] x[t+2]

Context
x[t+1]

Predicted token
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Auto-Regressive Large Language Models (AR-LLMs)
Outputs one text token after another
Tokens may represent words or subwords
Encoder/predictor is a transformer architecture
With billions of parameters: typically from 1B to 500B
Training data: 1 to 2 trillion tokens

LLMs for dialog/text generation: 
Open: BlenderBot, Galactica, LlaMA, Llama-2, Code Llama (FAIR), Mistral-7B, 
Mixtral-4x7B (Mistral), Falcon (UAE), Alpaca (Stanford), Yi (01.AI), OLMo (AI2), 
Gemma (Google)….
Proprietary: Meta AI (Meta), LaMDA/Bard, Gemini (Google), ChatGPT (OpenAI) …

Performance is amazing … but … they make stupid mistakes
Factual errors, logical errors, inconsistency, limited reasoning, toxicity...

LLMs have limited knowledge of the underlying reality
They have no common sense, no memory, & they can’t plan their answer
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Llama-2: https://ai.meta.com/llama/

Open source code / free & open models / can be used commercially
Available on Azure, AWS, HuggingFace,….
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SeamlessM4T
Speech or text input: 100 languages
Text output: 100 languages
Speech output: 35 languages
Seamless Expressive: real-time, preserves voice & expression
 https://ai.meta.com/blog/seamless-m4t/

https://ai.meta.com/blog/seamless-m4t/
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Auto-Regressive Generative Models Suck!

Auto-Regressive LLMs are doomed.
They cannot be made factual, non-toxic, etc.
They are not controllable
Probability e that any produced token takes 
us outside of the set of correct answers
Probability that answer of length n is 
correct:

P(correct) = (1-e)n

This diverges exponentially.
It’s not fixable (without a major redesign).

See also [Dziri...Choi, ArXiv:2305.18654]

Tree of all possible
token sequences

Tree of “correct”
answers
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Limitations of LLMs: no planning!

Auto-Regressive LLMs (at best) 
approximate the functions of the 
Wernicke and Broca areas in the brain.
What about the pre-frontal cortex?

ArXiv:2206.10498ArXiv:2301.06627
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Auto-Regressive Generative Models Suck!

AR-LLMs
Have a constant number of computational steps between input and 
output. Weak representational power.
Do not really reason. Do not really plan, Have no common sense

Noema Magazine, August 2023
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Auto-Regressive LLMs Suck !

Auto-Regressive LLMs are good for
Writing assistance, first draft generation, stylistic polishing.
Code writing assistance

What they not good for:
Producing factual and consistent answers (hallucinations!)
Taking into account recent information (anterior to the last training)
Behaving properly (they mimic behaviors from the training set)
Reasoning, planning, math
Using “tools”, such as search engines, calculators, database queries…

We are easily fooled by their fluency.
But they don’t know how the world works.
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Current AI Technology is (still) far from Human Level

Machines do not learn how the world works, like animals and humans
Auto-Regressive LLMs can not approach human-level intelligence
Fluency, but limited world model, limited planning, limited reasoning.
Most human and animal knowledge is non verbal.

We are still missing major advances to reach animal intelligence
AI is super-human in some narrow domains

There is no questions that, eventually, machines will eventually 
surpass human intelligence in all domains
Humanity’s total intelligence will increase
We should welcome that not fear it.
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We are missing something really big!

Never mind humans, cats and dogs can do amazing feats
Robots intelligence doesn’t come anywhere close

Any 10 year-old can learn to clear up the dinner table and fill up 
the dishwasher in minutes.
We do not have robots that can do that.

Any 17 year-old can learn to drive a car in 20 hours of practice
We still don’t have unlimited Level-5 autonomous driving

Any house cat can plan complex actions

We keep bumping into Moravec’s paradox
Things that are easy for humans are difficult 
for AI and vice versa.
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Data bandwidth and volume: LLM vs child.

LLM
Trained on 1.0E13 tokens (0.75E13 words). Each token is 2 bytes.
Data volume: 2.0E13 bytes. 
Would take 170,000 years for a human to read (8h/day, 250 w/minute)

Human child
16,000 wake hours in the first 4 years (30 minutes of YouTube uploads)
2 million optical nerve fibers, carrying about 10 bytes/sec each.
Data volume: 1.1E15 bytes

A four year-old child has seen 50 times more data than an LLM !
In 300 hours, has child has seen more data than an LLM.
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What are we missing?

Systems that learn world models from 
sensory inputs
E.g. learn intuitive physics from video

Systems that have persistent memory
Large-scale associative memories

Systems that can plan actions
So as to fulfill an objective
Reason like “System 2” in humans

Systems that are controllable & safe
By design, not by fine-tuning.

Objective-Driven AI Architecture



     Objective-Driven AI Systems
AI that can learn, reason, plan,

Yet is safe and controllable

“A path towards autonomous machine intelligence”
https://openreview.net/forum?id=BZ5a1r-kVsf

[various versions of this talk on YouTube]

https://openreview.net/forum?id=BZ5a1r-kVsf
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Modular Cognitive Architecture for Objective-Driven AI

Configurator
Configures other modules for task

Perception
Estimates state of the world

World Model
Predicts future world states

Cost
Compute “discomfort”

Actor
Find optimal action sequences

Short-Term Memory
Stores state-cost episodes percept

action

Actor

World Model

Intrinsic
cost

Perception

Short-term
memory

configurator

Critic
Cost
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Objective-Driven AI

Perception: Computes an abstract representation of the state of the world
Possibly combined with previously-acquired information in memory

World Model: Predict the state resulting from an imagined action sequence
Task Objective: Measures divergence to goal
Guardrail Objective: Immutable objective terms that ensure safety
Operation: Finds an action sequence that minimizes the objectives

 World ModelPerception

 Action
Sequence

Guardrail
Objective

Task
ObjectiveInitial World state

representation
Predicted state
Sequence
representation

memory
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Objective-Driven AI: Multistep/Recurrent World Model

Same world model applied at multiple time steps
Guardrail costs applied to entire state trajectory
This is identical to Model Predictive Control (MPC)
Action inference by minimization of the objectives
Using gradient-based method, graph search, dynamic prog, A*, MCTS,….

 World ModelPerception  World Model

 action0

Guardrail
Costs

Task
Cost

Guardrail
Costs

 action1

World state
representation

Predicted state
representation

Final state
representation
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Objective-Driven AI: Non-Deterministic World Model

The world is not deterministic or fully predictable
Latent variables parameterize the set of plausible predictions
Can be sampled from a prior or swept through a set.
Planning can be done for worst case or average case
Uncertainty in outcome can be predicted and quantified

 World ModelPerception  World Model

 action0

Guardrail
Costs

Task
Cost

Guardrail
Costs

 action1

World state
representation

Predicted state
representation

Final state
representation

Latent Latent
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Objective-Driven AI: Hierarchical Planning
Hierarchical World Model and Planning
Higher levels make longer-term predictions in more abstract representations
Predicted states at higher levels define subtask objectives for lower level
Guardrail objectives ensure safety at every level

 Pred1Enc1(x)
s1s1initial

 Pred0Enc0(x)

s0s0 initial

 a1

 Pred1

 Pred0

 a0

Task
Objective

z0 z0

z1 z1

Guardrail1 Guardrail1

Guardrail2 Guardrail2

Subtask
Objective
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Objective-Driven AI: Hierarchical Planning

Hierarchical Planning: going from NYU to Paris

 Pred1Enc1(x)
s1At NYU

 Pred0Enc0(x)

Sitting in
my NYU
office  a1

 Pred1

 Pred0

 a0

Distance
To Paris

z0 z0

z1 z1

Guardrail1 Guardrail1

Guardrail2 Guardrail2

Distance
To airport

Go down
In the street

Grab a taxi
To airport

Taxi or train?
EWR or JFK?

Which
Airline?

Obstacles?
hail or call?
Traffic?
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Objective-Driven AI: Hierarchical Planning

Multiple levels of world models
Predicted state at level k 
determines subtask 
for level k-1
Gradient-based optimization 
can be applied to action 
variables at all levels
Sampling can be applied
to latent variables
at all levels.

z2 z2

z0

z1 z1

z0

 Pred1

C(s1,s2)

Enc1(x)
s1 final

s1 initial

 Pred2Enc2(s[0])

s2 initial
s2 final

C(s2)

 Pred0

C(s0,s1)

Enc0(x)

s0 finals0 initial

 a0

 Pred1

 Pred0

 a0

 Pred2

 a1  a1

 a2  a2



How could Machines 
Learn World Models
from Sensory Input?

with
Self-Supervised Learning 
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How could machines learn like animals and humans?
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Physics

Actions

Objects

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Age

Age (months)

stability, 
support

gravity, inertia 
conservation of 
momentum

Object permanence

solidity, rigidity

shape 
constancy

crawling walking
emotional contagion

rational, goal- 
directed actions

face tracking

proto-imitation

pointing

biological 
motion

false perceptual 
beliefs

helping vs 
hindering

natural kind categories

Social 

Communication

[Emmanuel
   Dupoux]

How do babies learn 
how the world 
works?
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Generative World Models with Self-Supervised Training?

Generative world model architecture

Masking,
Action

Representation of the
State of the world
At time t

This is a [...] of text extracted 
[...] a large set of [...] articles

This is a piece of text extracted 
from a large set of news articles

Prediction of the
State of the world
At time t+1
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Generative Architectures DO NOT Work for Images

Because the world is only partially 
predictable
A predictive model should 
represent multiple predictions
Probabilistic models are 
intractable in high-dim continuous 
domains.
Generative Models must predict 
every detail of the world

My solution: Joint-Embedding 
Predictive Architecture

[Henaff, Canziani, LeCun ICLR 2019]

[Mathieu, 
 Couprie, 
 LeCun
 ICLR 2016]
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Joint Embedding World Model: Self-Supervised Training
Joint Embedding Predictive Architecture [LeCun 2022], [Assran 2023]

Transformation,
Action

Representation of the
State of the world
At time t

Prediction of the
Representation of the
State of the world
At time t+1
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Architectures: Generative vs Joint Embedding

Generative: predicts y (with all the details, including irrelevant ones)
Joint Embedding: predicts an abstract representation of y

a) Generative Architecture
Examples: VAE, MAE...

b) Joint Embedding Architecture
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Joint Embedding Architectures

Computes abstract representations for x and y
Tries to make them equal or predictable from each other.

a) Joint Embedding Architecture (JEA)
Examples: Siamese Net, Pirl, MoCo, 
SimCLR, BarlowTwins, VICReg,
 

b) Deterministic Joint Embedding 
    Predictive Architecture (DJEPA)
Examples: BYOL, VICRegL, I-JEPA

c) Joint Embedding Predictive 
    Architecture (JEPA)
Examples: Equivariant VICReg
I-JEPA…..
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Architecture for the world model: JEPA

JEPA: Joint Embedding 
Predictive Architecture.
x: observed past and present
y: future
a: action
z: latent variable (unknown)
D( ): prediction cost
C( ): surrogate cost
JEPA predicts a representation 
of the future Sy from a 
representation of the past and 
present Sx



Energy-Based Models

Capturing dependencies through an energy function
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Energy-Based Models: Implicit function
The only way to formalize & understand all model types
Gives low energy to compatible pairs of x and y
Gives higher energy to incompatible pairs

time or space → 

Energy
Landscape

x

F(x,y)

y

x

y
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Training Energy-Based Models:  Collapse Prevention

A flexible energy surface can take any shape.
We need a loss function that shapes the energy surface so that:
Data points have low energies
Points outside the regions of high data density have higher energies.

      Collapse!               Contrastive Method       Regularized Methods
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EBM Training: two categories of methods

Contrastive methods
Push down on energy of 
training samples
Pull up on energy of 
suitably-generated 
contrastive samples
Scales very badly with 
dimension

Regularized Methods
Regularizer minimizes the 
volume of space that can 
take low energy

Contrastive
Method

Regularized
Method

Low energy
region

Training
samples

Contrastive
samples

x

x

x

y

y

y
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Latent-Variable EBM

Latent variable z: 
Captures the information in y that is not available in x
Computed by minimization

x y

=
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EBM Architectures

Some architectures can lead to a collapse of the energy surface

d) Joint Embedding Architecture
    CAN COLLAPSE

b) Generative latent-variable Architecture
    CAN COLLAPSE

a) Prediction / regression
    NO COLLAPSE

c) Auto-Encoder
    CAN COLLAPSE
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Energy-Based Models vs Probabilistic Models

Probabilistic models are a special case of EBM
Energies are like un-normalized negative log probabilities

Why use EBM instead of probabilistic models?
EBM gives more flexibility in the choice of the scoring 
function.
More flexibility in the choice of objective function for 
learning

From energy to probability: Gibbs-Boltzmann 
distribution
Beta is a positive constant

Energy
Function

x

F(x,y)

y
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Contrastive Methods vs Regularized/Architectural Methods

Contrastive: [they all are different ways to pick which points to push up]
C1: push down of the energy of data points, push up everywhere else: Max likelihood (needs 
tractable partition function or variational approximation)
C2: push down of the energy of data points, push up on chosen locations: max likelihood with 
MC/MMC/HMC, Contrastive divergence, Metric learning/Siamese nets, Ratio Matching, Noise 
Contrastive Estimation, Min Probability Flow, adversarial generator/GANs
C3: train a function that maps points off the data manifold to points on the data manifold: 
denoising auto-encoder, masked auto-encoder (e.g. BERT)

 Regularized/Architectural: [Different ways to limit the information capacity of the latent representation]
A1: build the machine so that the volume of low energy space is bounded: PCA, K-means, 
Gaussian Mixture Model, Square ICA, normalizing flows…
A2: use a regularization term that measures the volume of space that has low energy: Sparse 
coding, sparse auto-encoder, LISTA, Variational Auto-Encoders, discretization/VQ/VQVAE.
A3: F(x,y) = C(y, G(x,y)), make G(x,y) as "constant" as possible with respect to y: Contracting 
auto-encoder, saturating auto-encoder
A4: minimize the gradient and maximize the curvature around data points: score matching
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Contrastive EBM Training: Denoising Auto-Encoder
[LeCun 1987], [Seung 1998], [Vincent 2008, 2010]
NLP: BERT [

Figures: Alfredo Canziani
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Example: Regularized Latent-Variable EBM

Basic idea: limiting the information capacity of the latent 
variable to limit the volume of low-energy regions
Examples: K-Means, sparse coding

y

z

y

Dec(z)

C(y,y)minz

E( y , z )=‖y−Wz‖2 z∈1hot
 R(z)
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Regularizing z by making it “fuzzy” (stochastic)

The information content of the latent variable z must be minimized
One (probabilistic) way to do this: 
make z “fuzzy” (e.g. stochastic)  
z is a sample from a distribution q(z|y)

Minimize the expected value of the energy under q(z|y)

y

y

Dec(z,h)

C(y,y)

zR(z)

Minimize the information content of q(z|y) about y
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Minimize expected energy & information content of z

Minimize the expected energy

Minimize the relative entropy
Between q(z|y) and a prior distribution p(z).

This is the number of bits one sample from q(z|y)
will give us about z, knowing that z comes from p(z)

y

y

Dec(z,h)

C(y,y)

zR(z)
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Variational free energy: trades average energy and information in z

Find a distribution q(z|y) that minimizes the expected energy while 
having maximum entropy 
high entropy distribution == small information content from a sample

Pick a family of distributions q(z|y) (e.g. Gaussians) and find the one 
that minimizes the variational free energy: 

The trade-off between energy and entropy is controlled by the beta 
parameter.
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Recommendations:

Abandon generative models 
in favor joint-embedding architectures

Abandon probabilistic model
in favor of energy-based models

Abandon contrastive methods
in favor of regularized methods

Abandon Reinforcement Learning
In favor of model-predictive control
Use RL only when planning doesn’t yield the 
predicted outcome, to adjust the world model 
or the critic.
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Training a JEPA with Regularized Methods

Four terms in the cost
Maximize information 
content in 
representation of x
Maximize information 
content in 
representation of y
Minimize Prediction 
error
Minimize information 
content of latent 
variable z

Maximize
Information

Content

Maximize
Information

Content

Minimize
Information

Content

Minimize
Prediction

Error
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VICReg: Variance, Invariance, Covariance Regularization

Variance: 
Maintains variance of 
components of 
representations

Invariance:
Minimizes prediction 
error.

Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],
VICRegL [Bardes et al. NeurIPS 2022], MCR2 [Yu et al. NeurIPS 2020][Ma, Tsao, Shum, 2022]
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VICReg: Variance, Invariance, Covariance Regularization

Variance: 
Maintains variance of 
components of 
representations

Covariance:
Decorrelates 
components of 
covariance matrix of 
representations

Invariance:
Minimizes prediction 
error.

Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],
VICRegL [Bardes et al. NeurIPS 2022], MCR2 [Yu et al. NeurIPS 2020][Ma, Tsao, Shum, 2022]
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VICReg: Variance, Invariance, Covariance Regularization

Variance: 
Maintains variance of 
components of 
representations

Covariance:
Decorrelates 
components of 
covariance matrix of 
representations

Invariance:
Minimizes prediction 
error.

Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],
VICRegL [Bardes et al. NeurIPS 2022], MCR2 [Yu et al. NeurIPS 2020][Ma, Tsao, Shum, 2022]
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VICReg: expander makes variables pairwise independent

[Mialon, Balestriero, LeCun arxiv:2209.14905]
VC criterion can be used for source separation / ICA
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SSL-Pretrained Joint Embedding for Image Recognition

x y

hx

Costs

hy

FeX(x) FeX(y)

Proj(hx) Proj(hy)

x

hx

FeX(x)

Linear
Classifier

Cross
entropy

label

JEA pretrained with VICReg

“polar bear”

Training a supervised linear head

d=2048

d=8192

ConvNext
ConvNet
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VICReg: Results with linear head and semi-supervised.
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VICReg: Results with transfer tasks.
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VICRegL: local matching latent variable for segmentation

Latent variable optimization: 
Finds a pairing between local feature vectors of the two images
[Bardes, Ponce, LeCun, NeurIPS 2022, arXiv:2210.01571]
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VICRegL: local matching latent variable for segmentation
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Distillation Methods

Modified Siamese nets
Predictor head eliminates variation of 
representations due to distortions

Examples:
Bootstrap Your Own Latents [Grill 
arXiv:2006.07733]
SimSiam [Chen & He arXiv:2011.10566]
DINOv2 [Oquab arXiv:2304.07193]

Advantages
No negative samples

Disadvantage: 
we don’t completely understand why it 
works! [Tian et al. ArXiv:2102.06810]

Teacher 
branchStudent 

branch

Transformation,
Corruption

Weights  EMA
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DINOv2: image foundation model

self-supervised generic image features
Demo: https://dinov2.metademolab.com/
Paper: [Oquab et al. ArXiv:2304.07193]
Classification

86.5% on IN1k with frozen features and 
linear head.

Fine-grained classification

Depth estimation

Semantic segmentation

Instance Retrieval

Dense & sparse feature matching

https://dinov2.metademolab.com/
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DINOv2: image foundation model
Demo: https://dinov2.metademolab.com/
Paper: [Oquab et al. ArXiv:2304.07193]

https://dinov2.metademolab.com/
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DINOv2: Joint Embedding Architecture

SSL by distillation

quantize classify

 cross-ent
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DINOv2

Feature visualization: RGB = top 3 principal components
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DINOv2

Feature extraction, depth estimation, segmentation
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Canopy Height Map using DINOv2

Estimates tree canopy 
height from satellite 
images using DINOv2 
features
Using ground truth from 
Lidar images
0.5 meter resolution 
images

[ArXiv:2304.07213]
Tolan et al.: Sub-meter 
resolution canopy height 
maps using self-
supervised learning and a 
vision transformer trained 
on Aerial and GEDI Lidar



Y. LeCun

Image-JEPA: uses masking & transformer architectures

“SSL from images with a JEPA”
[M. Assran et al arxiv:2301.08243]

Jointly embeds a context and a 
number of neighboring patches.
Uses predictors
Uses only masking
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I-JEPA Results

Training is fast

Non-generative method 
beat reconstruction-
based generative 
methods such as 
Masked Auto-Encoder
(with a frozen trunk).
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I-JEPA Results on ImageNet

JEPA better than generative 
architecture on pixels.

Closing the gap with methods 
that use data augments

Methods with only masking
No data augmentation

Methods with data 
augmentation
Similar to SimCLR
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I-JEPA Results on ImageNet with 1% training

JEPA better than generative 
architecture on pixels.
Closing the gap with methods 
that use data augments
Methods with only masking
Methods with data 
augmentation
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Sample contrastive vs Dimension contrastive?

[Garrido et al. Arxiv:2206.02574 , ICLR2023] (outstanding paper, honorable mention)

“ON THE DUALITY BETWEEN CONTRASTIVE AND NON 
CONTRASTIVE SELF-SUPERVISED LEARNING”



Video-JEPA

https://github.com/facebookresearch/jepa

Search for V-JEPA

“Revisiting Feature Prediction for Learning Visual Representations from Video”
Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, 
Yann LeCun, Mahmoud Assran1, Nicolas Ballas

https://github.com/facebookresearch/jepa
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Video-JEPA
[Bardes et al. 2024]

Corruption,
Masking

Representation of the
Corrupted input

Prediction of the
Representation 
of the full inputMask

Position
Encoding
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V-JEPA: results on action recognition

Supervised head on frozen 
backbone.

Comparison with 
generative models: 
OmniMAE, VideoMAE, 
Hiera

Comparison with image 
models: I-JEPA, DINOv2, 
OpenCLIP
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V-JEPA: results for low-shot action recognition

Rows 1-3: generative architectures with reconstruction
Row 4: V-JEPA
Supervised head on frozen backbone.
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V-JEPA: training on video vs training on images

Frozen evaluation
Pre-training on video gives better results on action recognition
V-JEPA: best results on ImageNet1K among video models
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V-JEPA: sample efficiency and learning speed

Evaluation on Something-Something-v2
Comparison with reconstruction-based generative methods
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V-JEPA: Reconstruction with a separately-trained decoder



SSL for PDEs

ArXiv:2307.05432    NeurIPS 2023
Self-Supervised Learning with Lie Symmetries for Partial Differential Equations
Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, Bobak T. Kiani
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SSL for PDE: extracting dynamical parameters with VICReg
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Using VICReg to learn representations of the equation.
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SSL for PDE
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SSL for PDE: Data “augmentation”
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SSL for Predicting Buoyancy in Navier-Stokes



Y. LeCun

SSL for Predicting Buoyancy in Navier-Stokes
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SSL pre-training gives better results than purely supervised
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Problems to Solve

Mathematical Foundations of Energy-Based Learning
The geometry of energy surfaces, scaling laws, bounds...

JEPA with regularized latent variables
Learning and planning in non-deterministic environments

Planning algorithms in the presence of uncertainty
Gradient-based methods and combinatorial search methods

Learning Cost Modules (Inverse RL)
Energy-based approach: give low cost to observed trajectories

Planning with inaccurate world models
Preventing bad plans in uncertain parts of the space

Exploration to adjust world models
Intrinsic objectives for curiosity
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Things we are working on

Self-Supervised Learning from Video
Hierarchical Video-JEPA trained with SSL

LLMs that can reason & plan, driven by objectives 
Dialog systems that plan in representation space and use AR-LLM to 
turn representations into text

 Learning hierarchical planning
Training a multi-timescale H-JEPA on toy planning problems. 
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Points
Computing power
AR-LLM use a fixed amount of computation per token
Objective-Driven AI is Turing complete (inference == optimization)

We are still missing essential concepts to reach human-level AI
Scaling up auto-regressive LLMs will not take us there
We need machines to learn how the world works

Learning World Models with Self-Supervised Learning and JEPA
Non-generative architecture, predicts in representation space

Objective-Driven AI Architectures
Can plan their answers
Must satisfy objectives: are steerable & controllable
Guardrail objectives can make them safe by construction.
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Future Universal Virtual Assistant

All of our interactions with the digital world
will be mediated by AI assistants. 
They will constitute a repository of all 
human knowledge and culture
They will constitute a shared infrastructure
Like the Internet today.

These AI platform MUST be open source
Otherwise, our culture will be controlled by a few companies 
on the West Coast of the US or in China.
Training them will have to be crowd-sourced

Open source AI platforms are necessary
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What does this vision mean for policy?

AI systems will become a common platform
The platforms (foundation models) will be open source
They will condense all of human knowledge 
Guardrail objectives will be shared for safety

Training and fine-tuning will be crowd-sourced
Linguistic, cultural, and interest groups will fine-tune base models to 
cater to their interests.

Proprietary systems for vertical applications will be built on top
When everyone has an AI assistant, we will need
Massive computing infrastructure for inference: efficient inference chips.

OPEN SOURCE AI MUST NOT BE REGULATED OUT OF EXISTENCE 
AI Alliance: Meta, IBM, Intel, Sony, academia, startups…. 
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Questions
How long is it going to take to reach human-level AI?
Years to decades. Many problems to solve on the way.
Before we get to HLAI, we will get to cat-level AI, dog-level AI,...

What is AGI?
There is no such thing. Intelligence is highly multidimensional
Intelligence is a collection of skills + ability to learn new skills quickly
Even humans can only accomplish a tiny subset of all tasks

Will machines surpass human intelligence
Yes, they already do in some narrow domains.
There is no question that machine will eventually surpass human 
intelligence in all domains where humans are intelligent (and more)
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Are there short-term risks associated with powerful AI?
Yes, as with every technology.
Disinformation, propaganda, hate, spam,...: AI is the solution!
Concentration of information sources
All those risks can be mitigated

Are there long-term risks with (super-)human-level AI?
Robots will not take over the world! a mistaken projection of human nature on machines

Intelligence is not correlated with a desire to dominate, even in humans
Objective-Driven AI systems will be made subservient to humans
AI will not be a “species” competing with us.
We will design its goals and guardrails.

Questions



Y. LeCun

Questions
How to solve the alignment problem?
Through trial and error and testing in sand-boxed systems
We are very familiar with designing objectives for human and 
superhuman entities. It’s called law making.
What if bad people get their hand on on powerful AI? 
Their Evil AI will be taken down by the Good Guys’ AI police.

What are the benefits of human-level AI?
AI will amplify human intelligence, progress will accelerate
As if everyone had a super-smart staff working for them
The effect on society may be as profound as the printing press

By amplifying human intelligence, AI will bring a new 
era of enlightenment, a new renaissance for humanity.



Thank 
you!
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