Strongly Correlated Quantum Materials and
High-Temperature Superconductors Series

In the 2020-2021 academic year, the CMSA will be hosting a lecture series on Strongly Correlated Materials and High Tc Superconductor. All talks will take place from 10:30-12:00pm ET virtually on Zoom.

Cuprate high-temperature superconductors are a classic quantum material system to demonstrate the beauty of “Emergence and Entanglement” in the quantum phases of matter. Merely by adding more holes into an antiferromagnetic insulator, several fascinating phases emerge, including a d-wave superconductor, a pseudo-gap metal, and strange metal. After intensive studies from experimental, theoretical, and numerical communities for more than three decades, remarkable progress has been made, but basic questions remain:

  1. What is the origin of the superconductivity? What are the relative contributions of electron-phonon coupling, spin fluctuations, or resonating-valence-bonds? 
  2. How do we explain the pseudo-gap and the Fermi arc in the underdoped region above the critical temperature? Are they from some symmetry breaking order parameters, or do we need an unconventional picture involving fractionalization?
  3. Is the strange metal at optimal doping associated with a quantum critical point? And if so, what is the driving force of this phase transition?

The cuprate quantum materials have been a major source for many new concepts in modern condensed matter physics, such as quantum spin liquids, topological order, and non-Fermi liquids. In the coming years, it is clear that the study of the cuprates will continually motivate new concepts and development of new techniques. In this seminar series, we hope to accelerate this process by bringing together deeper conversations between experimental, theoretical, and numerical experts with different backgrounds and perspectives.

The Strongly Correlated Quantum Materials and High-Temperature Superconductors series is a part of the Quantum Matter in Mathematics and Physics seminar.

Seminar organizers: Juven Wang (Harvard CMSA) and Yahui Zhang (Harvard). 

Scientific program advisors: Professor Subir Sachdev (Harvard), Professor Patrick Lee (MIT).

In order to learn how to attend this series, please fill out this form.

For more information, please contact Juven Wang (jw@cmsa.fas.harvard.edu) and Yahui Zhang (yahui_zhang@g.harvard.edu)

Upcoming Talks

September 2, 2020 | 10:30am ET

Subir Sachdev (Harvard)

TitleMetal-to-metal quantum phase transitions not described by symmetry-breaking orders

Abstract: Numerous experiments have explored the phases of the cuprates with increasing doping density p from the antiferromagnetic insulator. There is now strong evidence that the small p region is a novel phase of matter, often called the pseudogap metal, separated from conventional Fermi liquid at larger p by a quantum phase transition. Symmetry-breaking orders play a spectator role, at best, at this quantum phase transition. I will describe trial wavefunctions across this metal-metal transition employing hidden layers of ancilla qubits (proposed by Ya-Hui Zhang). Quantum fluctuations are described by a gauge theory  of ghost fermions that carry neither spin nor charge. I will also
describe a separate approach to this transition in a t-J model with random exchange interactions in the limit of large dimensions. This approach leads to a partly solvable SYK-like critical theory of holons and spinons, and a linear in temperature resistivity from time reparameterization fluctuations. Near criticality, both approaches have in common emergent fractionalized excitations, and a significantly larger entropy than naively expected.

Video

September 23, 2020 | 10:30am ET

Subir Sachdev (Harvard)

Title: Metal-to-metal quantum phase transitions not described by symmetry-breaking orders II

Abstract: In this second talk, I will focus on (nearly) solvable models of metal-metal transition in random systems. The t-J model with random and all-to-all hopping and exchange can be mapped onto a quantum impurity model coupled self-consistently to an environment (the mapping also applies to a t-J model in a large dimension lattice,  with random nearest-neighbor exchange). Such models will be argued to exhibit metal-metal quantum phase transitions in the universality class of the SYK model, accompanied by a linear-in-T resistivity from time reparameterization  fluctuations. I will also present the results of exact diagonalization of random t-J clusters, obtained recently with Henry Shackleton, Alexander Wietek, and Antoine Georges.

Video

September 24, 2020 | 12:00pm ET

Inna Vishik (University of California, Davis)

Title: Universality vs materials-dependence in cuprates: ARPES studies of the model cuprate Hg1201

Abstract: The cuprate superconductors exhibit the highest ambient-pressure superconducting transition temperatures (T c ), and after more than three decades of extraordinary research activity, continue to pose formidable scientific challenges. A major experimental obstacle has been to distinguish universal phenomena from materials- or technique-dependent ones. Angle-resolved photoemission spectroscopy (ARPES) measures momentum-dependent single-particle electronic excitations and has been invaluable in the endeavor to determine the anisotropic momentum-space properties of the cuprates. HgBa 2 CuO 4+d (Hg1201) is a single-layer cuprate with a particularly high optimal T c and a simple crystal structure; yet there exists little information from ARPES about the electronic properties of this model system. I will present recent ARPES studies of doping-, temperature-, and momentum-dependent systematics of near-nodal dispersion anomalies in Hg1201. The data reveal a hierarchy of three distinct energy scales which establish several universal phenomena, both in terms of connecting multiple experimental techniques for a single material, and in terms of connecting comparable spectral features in multiple structurally similar cuprates.

Video

October 15, 2020 | 10:30am ET

Louis Taillefer (Université de Sherbrooke)

TitleNew signatures of the pseudogap phase of cuprate superconductors

Abstract: The pseudogap phase of cuprate superconductors is arguably the most enigmatic phase of quantum matter. We aim to shed new light on this phase by investigating the non- superconducting ground state of several cuprate materials at low temperature across a wide doping range, suppressing superconductivity with a magnetic field. Hall effect measurements across the pseudogap critical doping p* reveal a sharp drop in carrier density n from n = 1 + p above p* to n = p below p, signaling a major transformation of the Fermi surface. Angle-dependent magneto-resistance (ADMR) directly reveals a change in Fermi surface topology across p. From specific heat measurements, we observe the classic thermodynamic signatures of quantum criticality: the electronic specific heat C el shows a sharp peak at p, where it varies in temperature as C el ~ – T logT. At p and just above, the electrical resistivity is linear in T at low T, with an inelastic scattering rate that obeys the Planckian limit. Finally, the pseudogap phase is found to have a large negative thermal Hall conductivity, which extends to zero doping. We show that the pseudogap phase makes phonons become chiral. Understanding the mechanisms responsible for these various new signatures will help elucidate the nature of the pseudogap phase.

Video

October 28, 2020 | 10:30am ET

Patrick Lee (MIT)

Title: The not-so-normal normal state of underdoped Cuprate

Abstract: The underdoped Cuprate exhibits a rich variety of unusual properties that have been exposed after years of experimental investigations. They include a pseudo-gap near the anti-nodal points and “Fermi arcs” of gapless excitations, together with a variety of order such as charge order, nematicity and possibly loop currents and time reversal and inversion breaking. I shall argue that by making a single assumption of strong pair fluctuations at finite momentum (Pair density wave), a unified description of this phenomenology is possible. As an example, I will focus on a description of the ground state that emerges when superconductivity is suppressed by a magnetic field which supports small electron pockets. [Dai, Senthil, Lee, Phys Rev B101, 064502 (2020)] There is some support for the pair density wave hypothesis from STM data that found charge order at double the usual wave-vector in the vicinity of vortices, as well as evidence for a fragile form of superconductivity persisting to fields much above Hc2. I shall suggest a more direct experimental probe of the proposed fluctuating pair density wave.

Video

November 6, 2020 |12:30pm ET

Zhi-Xun Shen (Stanford University)

Title: Essential Ingredients for Superconductivity in Cupper Oxide Superconductors

Abstract: High‐temperature superconductivity in cupper oxides, with critical temperature well above what wasanticipated by the BCS theory, remains a major unsolved physics problem. The problem is fascinating because it is simultaneously simple ‐ being a single band and 1⁄2 spin system, yet extremely rich ‐ boasting d‐wave superconductivity, pseudogap, spin and charge orders, and strange metal phenomenology. For this reason, cuprates emerge as the most important model system for correlated electrons – stimulating conversations on the physics of Hubbard model, quantum critical point, Planckian metal and beyond.
Central to this debate is whether the Hubbard model, which is the natural starting point for the undoped
magnetic insulator, contains the essential ingredients for key physics in cuprates. In this talk, I will discuss our photoemission evidence for a multifaceted answer to this question [1‐3]. First, we show results that naturally points to the importance of Coulomb and magnetic interactions, including d‐wave superconducting gap structure [4], exchange energy (J) control of bandwidth in single‐hole dynamics [5]. Second, we evidence effects beyond the Hubbard model, including band dispersion anomalies at known phonon frequencies [6, 7], polaronic spectral lineshape and the emergence of quasiparticle with doping [8]. Third, we show properties likely of hybrid electronic and phononic origin, including the pseudogap [9‐11], and the almost vertical phase boundary near the critical 19% doping [12]. Fourth, we show examples of small q phononic coupling that cooperates with d‐wave superconductivity [13‐15]. Finally, we discuss recent experimental advance in synthesizing and investigating doped one‐dimensional (1D) cuprates [16]. As theoretical calculations of the 1D Hubbard model are reliable, a robust comparison can be carried out. The experiment reveals a near‐neighbor attractive interaction that is an order of magnitude larger than the attraction generated by spin‐superexchange in the Hubbard model. Addition of such an attractive term, likely of phononic origin, into the Hubbard model with canonical parameters provides a quantitative explanation for all important experimental observable: spinon and holon dispersions, and holon‐ holon attraction. Given the structural similarity of the materials, It is likely that an extended two‐dimensional
(2D) Hubbard model with such an attractive term, will connect the dots of the above four classes of
experimental observables and provide a holistic understanding of cuprates, including the elusive d‐wave superconductivity in 2D Hubbard model.

[1] A. Damascelli, Z. Hussain, and Z.‐X. Shen, Review of Modern Physics, 75, 473 (2003)
[2] M. Hashimoto et al., Nature Physics 10, 483 (2014)
[3] JA Sobota, Y He, ZX Shen ‐ arXiv preprint arXiv:2008.02378, 2020; submitted to Rev. of Mod. Phys.
[4] Z.‐X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993)
[5] B.O. Wells et al., Phys. Rev. Lett. 74, 964 (1995)
[6] A. Lanzara et al., Nature 412, 510 (2001)
[7] T. Cuk et al., Phys. Rev. Lett., 93, 117003 (2004)
[8] K.M. Shen et al., Phys. Rev. Lett., 93, 267002 (2004)
[9] D.M. King et al., J. of Phys. & Chem of Solids 56, 1865 (1995)
[10] D.S. Marshall et al., Phy. Rev. Lett. 76, 484 (1996)
[11] A.G. Loeser et al., Science 273, 325 (1996)
[12] S. Chen et al., Science, 366, 6469 (2019)
[13] T.P. Devereaux, T. Cuk, Z.X. Shen, N. Nagaosa, Phys. Rev. Lett., 93, 117004 (2004)
[14] S. Johnston et al., Phys. Rev. Lett. 108, 166404 (2012)
[15] Yu He et al., Science, 362, 62 (Oct. 2018)
[16] Z. Chen, Y. Wang et al., preprint, 2020


Video

November 12, 2020 |10:30am ET

Chandra Varma (Visting Professor, University of California, Berkeley.
Emeritus Distinguished Professor, University of California, Riverside.)

Title: Loop-Current Order and Quantum-Criticality in Cuprates

This talk is organized as follows:
1. Physical Principles leading to Loop-current order and quantum criticality as the central feature in the physics of Cuprates.
2. Summary of the essentially exact solution of the dissipative xy model for Loop-current fluctuations.
3. Quantitative comparison of theory for the quantum-criticality with a variety of experiments.
4. Topological decoration of loop-current order to understand ”Fermi-arcs” and small Fermi-surface magneto-oscillations.

Time permitting,
(i) Quantitative theory and experiment for fluctuations leading to d-wave superconductivity.
(ii) Extensions to understand AFM quantum-criticality in heavy-fermions and Fe-based superconductors.
(iii) Problems.


Video

November 18, 2020 |10:30am ET

Antoine Georges (Collège de France, Paris and Flatiron Institute, New York)

Title: Superconductivity, Stripes, Antiferromagnetism and the Pseudogap: What Do We Know Today about the 2D Hubbard model?

Abstract: Simplified as it is, the Hubbard model embodies much of the complexity of the `strong correlation problem’ and has established itself as a paradigmatic model in the field. In this talk, I will argue that several key aspects of its physics in two dimensions can now be established beyond doubt, thanks to the development of controlled and accurate computational methods. These methods implement different and complementary points of view on the quantum many-body problem. Along with pushing forward each method, the community has recently embarked into a major effort to combine and critically compare these approaches, and in several instances a consistent picture of the physics has emerged as a result. I will review in this perspective our current understanding of the emergence of a pseudogap in both the weak and strong coupling regimes. I will present recent progress in understanding how the pseudogap phase may evolve into a stripe-dominated regime at low temperature, and briefly address the delicate question of the competition between stripes and superconductivity. I will also emphasize outstanding questions which are still open, such as the possibility of a Fermi surface reconstruction without symmetry breaking. Whenever possible, connections to the physics of cuprate superconductors will be made. If time permits, I may also address the question of Planckian transport and bad metallic transport at high temperature.  

November 19, 2020 |10:30am ET

Eduardo Fradkin (University of Illinois at Urbana-Champaign)

Title: Pair Density Waves and Intertwined Orders in High Tc Superconductors

Abstract: I will argue that the orders that are present in high temperature superconductors naturally arise with the same strength and are better regarded as intertwined rather than competing. I illustrate this concept in the context of the orders that are present in the pair-density-wave state and the phase diagrams that result from this analysis. 

November 25, 2020 |10:30am ET

Qimiao Si (Rice University)

Title: Bad Metals and Electronic Orders – Nematicity from Iron Pnictides to Graphene Moiré Systems

Abstract: Strongly correlated electron systems often show bad-metal behavior, as operationally specified in terms of a resistivity at room temperature that reaches or exceeds the Mott-Ioffe-Regel limit. They display a rich landscape of electronic orders, which provide clues to the underlying microscopic physics. Iron-based superconductors present a striking case study, and have been the subject of extensive efforts during the past decade or so. They are well established to be bad metals, and their phase diagrams prominently feature various types of electronic orders that are essentially always accompanied by nematicity. In this talk, I will summarize these characteristic features and discuss our own efforts towards understanding the normal state through the lens of the electronic orders and their fluctuations. Implications for superconductivity will be briefly discussed. In the second part of the talk, I will consider the nematic correlations that have been observed in the graphene-based moiré narrow-band systems. I will present a theoretical study which demonstrates nematicity in a “fragile insulator”, predicts its persistence in the bad metal regime and provides an overall perspective on the phase diagram of these correlated systems.

December 2, 2020 |10:30am ET

Andrey Chubukov (University of Minnesota)

Title: TBA




December 9, 2020 |10:30am ET

David Hsieh (Caltech)

Title: TBA




December 16, 2020 |10:30am ET

Zheng-Yu Weng (Tsinghua University)

Title: TBA




December 17, 2020 |10:30am ET

Steven Kivelson (Stanford University)

Title: TBA






January 20, 2021 |10:30am ET

Thomas Peter Devereaux (Stanford University)

Title: TBA






February 3, 2021 |10:30am ET

Philip Phillips (University of Illinois Urbana-Champaign)

Title: TBA




February 4, 2021 |10:30am ET

Senthil Todadri (MIT)

Title: TBA




April 1, 2021 |10:30am ET

This image has an empty alt attribute; its file name is weng.png
Naoto Nagaosa (University of Tokyo)

Title: TBA




May 12, 2021 |10:30am ET

This image has an empty alt attribute; its file name is weng.png
André-Marie Tremblay (Université de Sherbrooke)

Title: TBA




Date TBA |10:30am ET

Suchitra Sebastian (University of Cambridge)

Title: TBA




Date TBA |10:30am ET

Jenny Hoffman (Harvard University)

Title: TBA




Related Posts