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Abstract. For a self-similar measure in Rd with overlaps but satisfies the so-called “bounded
measure type condition” introduced by Tang and the authors, we set up a framework for
deriving a closed formula for the Lq-spectrum of the measure for q ≥ 0. The framework allows
us to include iterated function systems that have different contraction ratios and those in higher
dimension. For self-similar measures with overlaps, closed formulas for τ(q) have only been
obtained earlier for measures satisfying Strichartz second-order identities. We illustrate how
to use our results to prove the differentiability of the Lq-spectrum, obtain the multifractal
dimension spectrum, and compute the Hausdorff dimension of the measure.
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1. Introduction

Let µ be a positive finite Borel measure on Rd whose support supp(µ) is compact. For q ∈ R,

the Lq-spectrum τ(q) of µ is defined as

τ(q) := lim
δ→0+

ln sup
∑

i µ(Bδ(xi))
q

ln δ
,

where Bδ(xi) is a disjoint family of δ-balls with center xi ∈ supp(µ) and the supremum is taken

over all such families. The function τ(q) arises in the theory of multifractal decomposition of
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measures. A major goal of the theory is to compute the following dimension spectrum:

f(α) := dimH

{
x ∈ supp(µ) : lim

δ→0+

lnµ(Bδ(x))

ln δ
= α

}
,

where dimH denotes Hausdorff dimension. The multifractal formalism, a heuristic principle

first proposed by physicists (see [7, 8] and the references therein), asserts that the dimension

spectrum is equal to the Legendre transform of τ(q), i.e.,

f(α) = τ∗(α) := inf{qα− τ(q) : q ∈ R}.

We are mainly interested in self-similar measures. For such measures, the multifractal for-

malism has been verified rigorously for those satisfying the separated open set condition [1, 3].

For self-similar measures defined by iterated function systems satisfying the weak separation

condition, Lau and the first author [13] proved that if τ(q) is differentiable at q ≥ 0, then

the multifractal formulism at the corresponding point holds. Feng and Lau [5] removed the

differentiability condition; they also studied the validity of the multiformal formalism in the

region q < 0.

The Lq-spectrum also encodes other important information of the measure. For example,

τ(0) is the negative of the box dimension of µ; if τ is differentiable at q = 1, then τ ′(1) is

equal to the Hausdorff dimension of µ (see [9, 13, 19, 23] and the references therein); for q > 1,

τ(q)/(q − 1) is the Lq-dimension of µ (see [24]).

The computation of Lq-spectrum thus plays a key role in the theory of multifractal measures.

For self-similar and graph-directed self-similar measures satisfying the open set condition, τ(q)

is computed by Cawley and Mauldin [1] and Edgar and Mauldin [3]. For self-similar measures

with overlaps, the computation is much more difficult. Lau and the first author obtained τ(q),

q ≥ 0, for the infinite Bernoulli convolution associated with the golden ratio [12] and a class of

convolutions of Cantor measures [14]. Feng [4] computed τ(q) for infinite Bernoulli convolutions

associated with a class of Pisot numbers. The graph of τ(q) for q < 0 has been studied by Lau,

Wang, Feng and Olivier [4, 6, 17].

The computation of τ(q) in [12] and [14] makes use of Strichartz second-order self-similar

identities. Unfortunately, very few self-similar measures satisfy these identities. Thus, closed

formulas for τ(q) have been obtained for only a few classes of measures that are defined by

iterated function systems on R with the same contraction ratio. The main objective of this paper

is to derive a closed formula for τ(q), q ≥ 0, for self-similar measures satisfying the so-called

bounded measure type condition (Condition (B)) introduced in [22]. It is worth mentioning

that recently G. Deng and the first author [2] used a infinite matrix method to obtain the

differentiability of the Lq-spectrum for a class if IFSs that includes some of those studies in this

paper; however, the method does not yield a closed formula for τ(q).

Throughout this paper an iterated function system (IFS) refers to a finite family of contrac-

tions defined on a compact subset X of Rd. The derivation of τ(q) in this paper is based on
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the following equivalent definition, which holds for q ≥ 0:

τ(q) = inf

{
α : lim

δ→0+

1

δd+α

∫
X
µ(Bδ(x))q dx > 0

}
. (1.1)

(see [11,12] and [13, Proposition 3.1]).

Let µ be a self-similar measure defined by a finite type IFS (see [10,15,21]) on Rd. In Section 2,

we define the set of all level-k islands Ik (see Definition 2.6). Intuitively, each level-k island

corresponds to a connected component of the level-k iterates of some fixed open set Ω; moreover,

two islands I1 and I2 are of the same measure type (with respect to µ) if µ|I2 = cµ|I1 ◦ S−1

for some constant c > 0 and some similitude S : I1 → I2, where Ij (j = 1, 2) is the component

corresponding to Ij , and µ|F denotes the restriction of the measure µ to F ⊆ Rd.

To compute τ(q) we divide level-k iterates of some fixed bounded open set Ω under the IFS

into connected components called level-k islands, and classify them into measure types. Our

main assumption is Condition (B) introduced in [22], which, loosely speaking, holds if there

exists some k ≥ 1 such that there is a uniform bound on those level-m (m > k) islands whose

measure types, as well the measure types of their ancestors up to level k+ 1, are different from

that of any level-k island. If k =: kb is the smallest integer satisfying this condition, we call the

corresponding Ikb =: Ib the basic set of islands (see Definition 2.15).

Assume {Si}i∈Λ is a finite type IFS on Rd (see [15]) with Ω being a finite type condition set

and assume that Condition (B) holds with Ib being the basic set of islands. Let I := {I1,`}`∈Γ ⊆
Ib be a minimal subset such that the measure type of any island in Ib equals that of some island

in I. Fix q ≥ 0, define

ϕ`(δ) :=

∫
I1,`

µ(Bδ(x))q dx and Φ
(α)
` (δ) :=

1

δd+α
ϕ`(δ) for ` ∈ Γ,

where I1,` := SI1,`(Ω). Then we can derive renewal equations for Φ
(α)
` (δ), and express them in

vector form as:

f = f ∗Mα + z,

where α ∈ R, and

f = f (α)(x) = [f
(α)
` (x)]`∈Γ, x ∈ R;

f
(α)
` (x) := Φ

(α)
` (e−x) for ` ∈ Γ;

Mα = [µ
(α)
m` ]`,m∈Γ is a finite matrix of Borel measures on R;

z = z(α)(x) = [z
(α)
` (x)]`∈Γ is a vector of error functions.

(1.2)

Let

Mα(∞) :=
[
µ

(α)
m` (R)

]
`,m∈Γ

. (1.3)

For each ` ∈ Γ and α ∈ R, define

F`(α) :=
∑
m∈Γ

µ
(α)
m` (R) and D` := {α ∈ R : F`(α) <∞}. (1.4)
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If the error functions decay exponentially to 0 as x→∞, then the Lq-spectrum of µ is given by

the unique α such that the spectral radius of Mα(∞) is equal to 1. The following is our main

result.

Theorem 1.1. Let µ be a self-similar measure defined by a finite type IFS {Si}i∈Λ on Rd.
Assume that µ satisfies Condition (B). Let Mα(∞) and F`(α) be defined as in (1.3) and (1.4).

(a) There exists a unique α ∈ R such that the spectral radius of Mα(∞) is equal to 1.

(b) If we assume, in addition, that for the unique α in (a), there exists ε > 0 such that for

all i ∈ Γ, z
(α)
` (x) = o(e−εx) as x→∞ . Then τ(q) = α for q ≥ 0.

In Section 4, we illustrate Theorem 1.1 by the following family of IFSs on R:

S1(x) = ρx, S2(x) = rx+ ρ(1− r), S3(x) = rx+ 1− r, (1.5)

where the contraction ratios ρ, r ∈ (0, 1) satisfy

ρ+ 2r − ρr ≤ 1, (1.6)

i.e., S2(1) ≤ S3(0) (see Figure 1). This family of IFSs is first studied by Lau and Wang [16],

and is used to illustrate the (general) finite type condition in [10, 15]. For a probability vector

(pi)
3
i=1, we define

w1(k) := p1

k∑
j=0

pk−j2 pj3, k ≥ 0. (1.7)

Theorem 1.2. Let µ be a self-similar measure defined by an IFS in (1.5) together with a

probability vector (pi)
3
i=1, and w1(k) be defined as in (1.7). Then for q ≥ 0, there exists a

unique real number α := α(q) satisfying

ρ−α(1− pq2r
−α)(1− pq3r

−α)

∞∑
k=0

w1(k)q(r−α)k + r−α(pq2 + pq3) = 1. (1.8)

Hence τ(q) = α. Moreover, τ is differentiable on (0,∞) and

dimH(µ) = τ ′(1) =(( 3∑
i=2

pi ln pi − p2p3

3∑
i=2

ln pi
) ∞∑
k=0

w1(k)−
( 3∏
i=2

(1− pi)
) ∞∑
k=0

w1(k) lnw1(k)−
3∑
i=2

pi ln pi

)
×
((
p2 + p3 − 2p2p3

) ∞∑
k=0

w1(k) ln r −
( 3∏
i=2

(1− pi)
) ∞∑
k=0

w1(k) ln(ρrk)−
3∑
i=2

pi ln r
)−1

.

Remark 1.3. Substituting q = 0 in (1.8) gives ρ−τ(0) + 2r−τ(0) − (ρr)−τ(0) = 1. Hence −τ(0)

is the Hausdorff dimension of the corresponding self-similar set (see [10, 15, 16]).

In Section 4, we illustrate Theorem 1.1 by the following family of IFSs on R2:

S1(x) = ρx, S2(x) = rx + (ρ− ρr, 0),

S3(x) = rx + (1− r, 0), S4(x) = rx + (0, 1− r),
(1.9)
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where the contraction ratios ρ, r ∈ (0, 1) satisfy

ρ+ 2r − ρr ≤ 1, (1.10)

i.e., S2(1, 0) ≤ S3(0, 0) (see Figure 2(a)). For any probability vector (pi)
4
i=1, define

w2(k) := p1

k∑
j=0

pk−j2 pj3, k ≥ 0. (1.11)

Theorem 1.4. Let µ be a self-similar measure defined by any IFS in (1.9) together with a

probability vector (pi)
4
i=1, and w2(k) be defined as in (1.11). For q ≥ 0, there exists a unique

real number α := α(q) satisfying

ρ−α
(
1− pq2r

−α)(1− pq3r−α) ∞∑
k=0

w2(k)q(r−α)k + r−α
4∑
i=2

pqi = 1. (1.12)

Hence τ(q) = α. Moreover, τ is differentiable on (0,∞) and

dimH(µ) = τ ′(1) =(( 3∑
i=2

pi ln pi − p2p3

3∑
i=2

ln pi
) ∞∑
k=0

w2(k)−
( 3∏
i=2

(1− pi)
) ∞∑
k=0

w2(k) lnw2(k)−
4∑
i=2

pi ln pi

)
×
((
p2 + p3 − 2p2p3

) ∞∑
k=0

w2(k) ln r −
( 3∏
i=2

(1− pi)
) ∞∑
k=0

w2(k) ln(ρrk)−
4∑
i=2

pi ln r
)−1

.

Remark 1.5. Substituting q = 0 into (1.12), we get ρ−τ(0) + 3r−τ(0) − (ρr)−τ(0) = 1. Again,

−τ(0) is the Hausdorff dimension of the corresponding self-similar set (see [15, Example 5.2]).

We use the vector-valued renewal theorem of Lau, Wang and Chu [18] to derive the stated

formulas for τ(q); the classical renewal theorem used in [12] and [14] is not sufficient, as a

finite number of renewal equations arise in our derivations. New techniques are also used in

estimating the error terms and in proving the differentiability of τ(q).

This paper is organized as follows. In Section 2, we briefly recall the definition of Condition

(B). In Section 3 we derive renewal equations and prove Theorem 1.1. Section 4 illustrates

Theorem 1.1 by the class of one-dimensional IFSs (1.5) and prove Theorem 1.2. Section 5

studies IFSs in higher dimension and prove Theorem 1.4. Finally we state some comments and

open questions in Section 6.

2. Self-similar measures of bounded measure type

In this section, we recall the definition of Condition (B) and then prove that it is satisfied by

the self-similar measures defined by the IFSs in (1.9).

LetX be a compact subset of Rd with nonempty interior, and {Si}i∈Λ be an IFS of contractive

similitudes on X with attractor K ⊆ Rd. To each probability vector (pi)i∈Λ (i.e., pi > 0 and∑
i∈Λ pi = 1), let µ be the associated self-similar measure, which satisfies the self-similar identity

µ =
∑
i∈Λ

piµ ◦ S−1
i .
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Moreover, supp(µ) = K.

2.1. Finite type condition and measure type. For k ≥ 1, define

Λk := {(i1, . . . , ik) : ij ∈ Λ for j = 1, . . . , k},

where we call i ∈ Λk a word of length k, and denote its length by |i|. If k = 0, we define Λ0 :=

{∅}. Also, we let Λ∗ :=
⋃
k≥0 Λk. We frequently write i := i1 · · · ik instead of i = (i1, . . . , ik) if

no confusion is possible; in particular, we write i =: ik1, if ij = i1 for all j = 1, . . . , k. For k ≥ 0

and i = i1 · · · ik ∈ Λk, we use the standard notation

Si := Si1 ◦ · · · ◦ Sik , ri := ri1 · · · rik , pi := pi1 · · · pik ,

with S∅ := id, r∅ = p∅ := 1, where id is the identity map on Rd.

For two indices i, j ∈ Λ∗, we write i 4 j if i is a prefix of j or i = j, and denote by i 64 j if

i 4 j does not hold. Let {Mk}∞k=1 be a sequence of index sets, where Mk ⊆ Λ∗. Let

mk = mk(Mk) := min{|i| : i ∈Mk} and mk = mk(Mk) := max{|i| : i ∈Mk}.

We also let M0 := {∅}.

Definition 2.1. We say that {Mk}∞k=0 is a sequence of nested index sets if it satisfies the

following conditions:

(1) both {mk} and {mk} are nondecreasing, and limk→∞mk = limk→∞mk =∞;

(2) for each k ≥ 1, Mk is an antichain in Λ∗;

(3) for each j ∈ Λ∗ with |j| > mk or j ∈Mk+1, there exists i ∈Mk such that i 4 j;

(4) for each j ∈ Λ∗ with |j| < mk or j ∈Mk−1, there exists i ∈Mk such that j 4 i;

(5) there exists a positive integer L0, independent of k, such that for all i ∈ Mk and

j ∈Mk+1 with i 4 j, we have |j| − |i| ≤ L0.

To define neighborhood types, we fix a sequence of nested index sets {Mk}∞k=0.

Notation 2.2. (1) For each integer k ≥ 0, let Vk be the set of level-k vertices (with respect

to {Mk}) defined as

V0 :=
{

(id, 0)
}

and Vk :=
{

(Si, k) : i ∈Mk

}
for all k ≥ 1.

We call (id, 0) the root vertex and denote it by vroot.

(2) Let V :=
⋃
k≥0 Vk be the set of all vertices.

(3) For v = (Si, k) ∈ Vk, we use the convenient notation Sv := Si and rv := ri. It is

possible to have v = (Si, k) = (Sj , k) with i 6= j.

(4) More generally, for any k ≥ 0 and any subset A ⊂ Vk, we use the notation

SA(Ω) :=
⋃
v∈A

Sv(Ω). (2.1)

Let Ω ⊆ X be a nonempty bounded open set which is invariant under {Si}i∈Λ, i.e.,
⋃
i∈Λ Si(Ω) ⊆

Ω. Such an Ω exists by our assumption; in particular, X◦ is such a set.

Next, we recall the definitions of neighbors and neighborhoods.
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Definition 2.3. We say that two level-k vertices v,v′ ∈ Vk (allowing v = v′) are neighbors

(with respect to Ω and {Mk}) if Sv(Ω) ∩ Sv′(Ω) 6= ∅. We call the set of vertices

NΩ(v) := {v′ : v′ ∈ Vk is a neighbor of v}

the neighborhood of v (with respect to Ω and {Mk}).

Obviously v ∈ NΩ(v). If no confusion is possible, we omit the subscript Ω in NΩ(v).

Let S := {SjS−1
i : i, j ∈ Λ∗}. We define an equivalence relation on the set of vertices V.

Definition 2.4. Two vertices v ∈ Vk and v′ ∈ Vk′ are said to be equivalent, denoted by v ∼σ v′

(or simply v ∼ v′), if for σ := Sv′S
−1
v (∈ S ) :

⋃
u∈N(v) Su(X) → X, the following conditions

hold:

(1)
{
Su′ : u′ ∈ N(v′)

}
=
{
σSu : u ∈ N(v)

}
; in particular, σSu is defined for all u ∈ N(v).

(2) for u ∈ N(v) and u′ ∈ N(v′) such that Su′ = σSu, and for any positive integer ` ≥ 1, an

index i ∈ Λ∗ satisfies (SuSi, k+`) ∈ Vk+` if and only if it satisfies (Su′Si, k
′+`) ∈ Vk′+`.

It is direct to check that ∼ is an equivalence relation. We denote the equivalence class

containing v by [v] and call it the (neighborhood) type of v (with respect to Ω and {Mk}).

We define an infinite graph G with vertex set V and directed edges defined as follows. Let

v ∈ Vk and u ∈ Vk+1. Suppose there exists i ∈Mk, j ∈Mk+1, and l ∈ Λ∗ such that

v = (Si, k), u = (Sj , k + 1), j = (i, l).

Then we connect a directed edge l : v → u. We call v a parent of u and u an offspring of v.

We write G = (V, E), where E is the set of all directed edges defined above.

Definition 2.5. Let {Si}i∈Λ be an IFS of contractive similitudes on a compact subset X ⊆ Rd.
We say that {Si}i∈Λ is of finite type (or that it satisfies the finite type condition) if there exists

a sequence of nested index sets {Mk}∞k=0 and a nonempty bounded invariant open set Ω ⊆ X

such that, with respect to Ω and {Mk}, the set of equivalence classes V/∼ :=
{

[v] : v ∈ V
}

is

finite. We call such an Ω a finite type condition set (or FTC set).

Definition 2.6. A subset I ⊆ Vk is called a level-k island (with respect to Ω and {Mk}) if

SI(Ω) is a connected component of SVk(Ω).

Remark 2.7. (1) For each v ∈ Vk, there exists a unique island, denoted by I(v), contain-

ing v and, moreover, N(v) ⊆ I(v).

(2) If {Si}i∈Λ satisfies (OSC) with Ω being an OSC set, then I(v) = {v} for all v ∈ V.

Notation 2.8. (1) Let

Ik := {I : I is a level-k island} and I :=
⋃
k≥0

Ik

be the collection of all level-k islands and the collection of all islands, respectively.
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(2) Generalizing (2.1), for any k ≥ 0 and any subset B ⊂ Ik, we use the notation

SB(Ω) :=
⋃
I∈B

SI(Ω).

Definition 2.9. We say that two islands I ∈ Ik and I ′ ∈ Ik′ are equivalent, and denote it by

I ≈σ I ′ (or simply, I ≈ I ′), if there exists some σ ∈ S such that {Sv′ : v′ ∈ I ′} = {σSv : v ∈
I} and, moreover, v ∼σ v′ for any v ∈ I and v′ ∈ I ′ satisfying Sv′ = σSv.

Notation 2.10. (1) We denote the equivalence class of I by [I] and we call [I] the (island)

type of I.

(2) For I ∈ Ik, I ′ ∈ Ik+1, I is said to be a parent of I ′ and I ′ an offspring of I if for any

v ∈ I ′, I contains some parent of v. For any k ≥ 0 and I ∈ Ik, let

O(I) := {J : J is an offspring of I} (2.2)

be the collection of all offspring of I.

Definition 2.11. Let µ be a self-similar measure defined by an IFS {Si}i∈Λ of finite type with

Ω being an FTC set. Two equivalent vertices v ∈ Vk and v′ ∈ Vk′ are µ-equivalent, denoted by

v ∼µ,σ,w v′ (or simply v ∼µ v′) if for σ = Sv′ ◦ S−1
v , there exists a number w > 0 such that

µ|SN(v′)(Ω) = w · µ|SN(v)(Ω) ◦ σ−1.

As ∼ is an equivalence relation, so is ∼µ. Denote the µ-equivalence class of v by [v]µ and call

it the (neighborhood) measure type of v (with respect to Ω, {Mk} and µ). Intuitively, v ∼µ v′

means that the measures µ|SN(v)(Ω) and µ|SN(v′)(Ω) have the same structure. The following

proposition shows that µ-equivalent vertices generate the same number of offspring of each

neighborhood measure type. The proof can be found in [22].

Proposition 2.12. For two equivalent vertices v ∈ Vk and v′ ∈ Vk′, let {ui}i∈Λ1 and {u′i}i∈Λ′1

be the offspring of v and v′ in G, respectively. If [v]µ = [v′]µ, then, counting multiplicity,

{[ui]µ : i ∈ Λ1} = {[u′i]µ : i ∈ Λ′1}.

Definition 2.13. Let µ be a self-similar measure defined by a finite type IFS {Si}i∈Λ on Rd

with Ω being an FTC set. Two islands I ∈ Ik and I ′ ∈ Ik′ are said to be µ-equivalent, denoted

I ≈µ,σ,w I ′ (or simply I ≈µ I ′), if I ≈σ I ′ and there exists some w > 0 such that

µ|SI′ (Ω) = w · µ|SI(Ω) ◦ σ−1. (2.3)

We remark that (2.3) holds if and only if v ∼µ,σ,w v′ for any v ∈ I and v′ ∈ I ′ satisfying

Sv′ = σSv. We note that ≈µ is an equivalence relation. We denote the µ-equivalence class of I
by [I]µ, and call [I]µ the (island) measure type of I (with respect to Ω, {Mk} and µ). From the

definition of ≈µ, we obtain an analog of Proposition 2.12 concerning ≈µ. That is, µ-equivalent

islands generate the same number of offspring of each island measure type.

Definition 2.14. Let µ be a self-similar measure defined by a finite type IFS. Let B ⊆ Ik for

k ≥ 0 and Bµ := {[I]µ : I ∈ B}. We call I a level-2 nonbasic island with respect to B if
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I ∈ O(J ) for some J ∈ B and [I]µ /∈ Bµ. Inductively, for ` ≥ 3, we call I a level-` nonbasic

island with respect to B if I is an offspring of some level-(` − 1) nonbasic island with respect

to B and [I]µ /∈ Bµ.

We remark that, by definition, for any ` ≥ 2, I is a level-` nonbasic island with respect to

B if and only if there exists a finite sequence of {Ik}`k=1 such that I1 ∈ B, I` = I, [Ii]µ /∈ Bµ,

and Ii is an offspring of Ii−1 for all i = 2, . . . , `. In particular, Ii is a level-i nonbasic island

with respect to B for all i = 2, . . . , `.

Definition 2.15. Let µ be a self-similar measure defined by a finite type IFS on Rd. We say

that µ satisfies Condition (B) if there exists some k ≥ 1 such that the number of level-` nonbasic

islands with respect to Ik is uniformly bounded for all ` > k. If k =: kb is the minimum non-

negative integer satisfying this condition, then we call the corresponding Ikb =: Ib the basic set

of islands.

The following two classes of examples for Condition (B) are proved in [22].

Example 2.16. Let µ be a self-similar measure defined by an IFS {Si}i∈Λ in Rd satisfying

(OSC). Then µ satisfies Condition (B).

Let {Si}3i=1 be defined as in (1.5) and µ be the self-similar measure associated with a prob-

ability vector (pi)
3
i=1. Let w1(k), k ≥ 0, be defined as in (1.7). We remark that for k ≥ 0,

p1p
k+1
3 + p2w1(k) = p1p

k+1
2 + p3w1(k) = w1(k + 1) and w1(k + 1) ≤ w1(k) ≤ p1. (2.4)

Example 2.17. Let µ be the self-similar measure defined by any of the IFSs {Si}3i=1 in (1.5)

together with a probability vector (pi)
3
i=1. Then µ satisfies Condition (B).

0 1

S1 S2
S3

Figure 1. The first iteration of {Si}3i=1 defined in (1.5). The figure is drawn
with ρ = 1/3 and r = 2/7.

2.2. Condition (B) for a class of IFSs on R2. In this subsection, we prove that any self-

similar measure defined by an IFS in (1.9) satisfies Condition (B).

Let {Si}4i=1 be defined as in (1.9) and µ be the self-similar measure associated with a prob-

ability vector (pi)
4
i=1. Let w2(k), k ≥ 0, be defined as in (1.11). We remark that for k ≥ 0,

p1p
k+1
3 + p2w2(k) = p1p

k+1
2 + p3w2(k) = w2(k + 1), w2(k + 1) ≤ w2(k) ≤ p1. (2.5)
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Throughout this subsection we let X = [0, 1]× [0, 1],

Ω = X◦ and Wn := {2n−i13i : i = 0, 1, . . . , n}, n ≥ 1. (2.6)

To simplify notation we let

γk := 1− rk, k ≥ 0. (2.7)

Define

I1,1 := {(S1, 1), (S2, 1)}, I1,2 := {(S3, 1)}, I1,3 := {(S4, 1)} (2.8)

(see Figure 2(a)) and

I1,1 := SI1,1(Ω) = S1(Ω) ∪ S2(Ω) = (0, ργ1)× (0, ρ) ∪ (ργ1, ργ1 + r)× (0, r),

I1,2 := SI1,2(Ω) = S3(Ω) = (γ1, 1)× (0, r),

I1,3 := SI1,3(Ω) = S4(Ω) = (0, r)× (γ1, 1),

(2.9)

where I1,i, i = 1, 2, 3, are defined in (2.8).

Example 2.18. Let µ be a self-similar measure defined by an IFS {Si}4i=1 in (1.9) together

with a probability vector (pi)
4
i=1. Let Ω and Wn be as in (2.6). Then µ satisfies Condition (B).

To prove Example 2.18, we first summarize without proof some elementary properties.

Proposition 2.19. Let {Si}4i=1 be as in (1.9) and {I1,i}3i=1 be as in (2.8). The following

relations hold:

(a) S13 = S21. Moreover, for any i, j ∈Wn, Si = Sj.

(b) I1 = {I1,1, I1,2, I1,3}.

Proposition 2.20. Assume the hypotheses of Example 2.18 and {I1,i}3i=1 defined as in (2.9).

Then (a)–(c) below hold, and (d)–(f) hold for all k ≥ 0:

(a)

S3(I1,1) =(γ1, (1 + ρr)γ1)× (0, ρr) ∪ ((1 + ρr)γ1, (1 + ρr)γ1 + r2)× (0, r2),

S4(I1,1) =(0, ρrγ1)× (γ1, γ1 + ρr) ∪ (ρrγ1, ρrγ1 + r2)× (γ1, γ1 + r2).

(b)

S1(I1,2) = (ργ1, ρ)× (0, ρr),

S3(I1,2) = (γ2, 1)× (0, r2),

S4(I1,2) = (rγ1, r)× (γ1, γ1 + r2).

(c) S3(I1,3) = (γ1, γ1 + r2)× (rγ1, r) and S4(I1,3) = (0, r2)× (γ2, 1).

(d)

S2k1(I1,1) =(ργk, ργk + ρ2rkγ1)× (0, ρ2rk)∪

(ργk + ρ2rkγ1, ργk + ρ2rkγ1 + ρrk+1)× (0, ρrk+1),

S2k1(I1,3) =(ργk, ργk + ρrk+1)× (ρrkγ1, ρr
k).
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(e)

S2k(I1,1) =(ργk, ργk+1)× (0, ρrk) ∪ (ργk+1, ργk+1 + rk+1)× (0, rk+1),

S2k(I1,2) =(rkγ1 + ργk, r
k + ργk)× (0, rk+1),

S2k(I1,3) =(ργk, ργk + rk+1)× (rkγ1, r
k).

(f) S2k1(Ω) = (ργk, ρ)× (0, ρrk) and S2k(Ω) = (ργk, ργk + rk)× (0, rk).

Proof. (a)–(c) follow from (2.9), and (d)–(f) can be proved directly by induction; we omit the

details. �

Lemma 2.21. Assume the hypotheses of Proposition 2.20. Then

µ(S1(Ω) ∩ S2k(Ω)) = µ
( 3⋃
i=1

S1(I1,i) ∩ S2k(Ω)
)

= µ(S2k1(Ω)) for k ≥ 1. (2.10)

Proof. First, we prove the first equality in (2.10). Since µ(S1(Ω)) = µ(∪3
i=1S1(I1,i)), we have

µ(S1(Ω) ∩A) = µ((∪3
i=1S1(I1,i)) ∩A) = µ

(
∪3
i=1 S1(I1,i) ∩ S2k(Ω)

)
for any A ⊆ Ω.

Next, we show that

3⋃
i=1

S1(I1,i) ∩ S2k(Ω) = S2k1(Ω) for all k ≥ 1. (2.11)

By Proposition 2.20(b,d,f), we have

S1(I1,1) = (0, ρ2γ1)× (0, ρ2) ∪ (ρ2γ1, ρ
2γ1 + ρr)× (0, ρr),

S1(I1,2) = (ργ1, ρ)× (0, ρr), S1(I1,3) = (0, ρr)× (ργ1, ρ),

and S2(Ω) = (ργ1, ργ1 + r) × (0, r). It follows from (1.10) that ρr + ρ2γ1 ≤ ργ1 and hence

S1(I1,1)∩ S2(Ω) = ∅. Since ρ < r+ ργ1, we have S1(I1,2)∩ S2(Ω) = (ργ1, ρ)× (0, ρr) = S21(Ω),

where in the last equality we use Proposition 2.20(f). Since r < γ1, we have ρr < ργ1, and thus

S1(I1,3)∩S2(Ω) = ∅. Hence
⋃3
i=1 S1(I1,i)∩S2(Ω) = S21(Ω). Assume that the stated inequality

holds for k = m, i.e.,
⋃3
i=1 S1(I1,i)∩S2m(Ω) = S2m1(Ω). Then S1(I1,2)∩S2m(Ω) = S2m1(Ω) and

S1(I1,i)∩S2m(Ω) = ∅ for i = 1, 3. For k = m+ 1, since S1(I1,i)∩S2m+1(Ω) ⊆ S1(I1,i)∩S2m(Ω),

we have S1(I1,i) ∩ S2m+1(Ω) = ∅ for i = 1, 3. By (2.9) and Proposition 2.19(a), we have

S1(I1,2) ∩ S2m+1(Ω)

= S13(Ω) ∩ S2m+1(Ω) = S21(Ω) ∩ S2m+1(Ω)

= S2(S1(Ω) ∩ S2m(Ω)) = S2((∪3
i=1S1(I1,i)) ∩ S2m(Ω))

= S2

( 3⋃
i=1

S1(I1,i) ∩ S2m(Ω)
)

= S2(S2m1(Ω)) = S2m+11(Ω).

This proves (2.11). Hence the second inequality in (2.10) holds. �

Part (a) of the following lemma explains the meaning of the factor w2(k).

Lemma 2.22. Assume the hypotheses of Proposition (2.20) and let w2(k) be defined as in

(1.11). Then
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(a) for k ≥ 0 and i = 1, 3, µ|S
2k1

(I1,i) = w2(k)µ ◦ S−1
2k1

;

(b) for k ≥ 1, µ|S
2k

(I1,1) = w2(k − 1)µ ◦ S−1
2k−11

+ pk2µ ◦ S
−1
2k

;

(c) for k ≥ 1 and i = 2, 3, µ|S
2k

(I1,i) = pk2µ ◦ S
−1
2k

;

(d) for i = 1, 2, 3 and j = 3, 4, µ|Sj(I1,i) = pj ◦ µ|I1,i.

Proof. We only prove (a) for i = 1 as an example. By Proposition 2.20(d), we have

S1(I1,1) = (0, ρ2γ1)× (0, ρ2) ∪ (ρ2γ1, ρr + ρ2γ1)× (0, ρr).

Note that S2(Ω) = (ργ1, ργ1+r)×(0, r). Moreover, ργ1−(ρ2γ1+ρr) = ρ(1−2r−ρ+ρr) ≥ 0, we

have S1(I1,1) ⊆ S1(Ω)\S2(Ω). Hence µ(A) = p1µ◦S−1
1 (A) for anyA ⊆ S1(I1,1). Assume that the

stated equality holds for k = m, i.e., µ|S2m1(I1,1) = w2(m)µ◦S−1
2m1. For k = m+1, by Proposition

2.19(a), we have S2m+11(I1,1) = S13m+1(I1,1). Then S−1
1 (A) ⊆ S3m+1(I1,1) and S−1

2 (A) ⊆
S2m1(I1,1) for any A ⊆ S2m+11(I1,1). It follows that µ(S−1

1 (A)) = pm+1
3 µ ◦ S−1

3m+1(S−1
1 (A)) and

µ(S−1
2 (A)) = w2(m)µ ◦ S−1

2m1(S−1
2 (A)). Thus

µ(A) = p1µ ◦ S−1
1 (A) + p2µ ◦ S−1

2 (A)

= p1p
m+1
3 µ ◦ S−1

3m+1(S−1
1 (A)) + p2w2(m)µ ◦ S−1

2m1(S−1
2 (A))

= p1p
m+1
3 µ ◦ S−1

13m+1(A) + p2w2(m)µ ◦ S−1
2m+11

(A)

= (p1p
m+1
3 + p2w2(m))µ ◦ S−1

2m+11
(A)

= w2(m+ 1)µ ◦ S−1
2m+11

(A).

The last equality follows from (2.5). This proves part (a) for i = 1. For the proof of part (c) in

the case i = 3, we use Lemma 2.21. �

Proof of Example 2.18. By (2.6), we have Ω = (0, 1) × (0, 1). For each k ≥ 0, let Mk =

{1, 2, 3, 4}k. We show that µ satisfies Condition (B) with Ib := I1 being the basic set of islands.

Let I1,i be defined as in (2.8). Thus Ib = {I1,1, I1,2, I1,3}. Let Ib,µ := {[I1,1]µ, [I1,2]µ, [I1,3]µ}.
It suffices to show that Ik,1,3 := {(S2k−11, k), (S2k , k)} is the only level-k nonbasic island with

respect to Ib for any k ≥ 2 (see Figure 2(b)). For i = 2, 3, since [I(vroot)]µ = [I1,i]µ, none of

the I ∈ O(I1,i) is a nonbasic island with respect to Ib (see Figure 4). Upon iterating the IFS

once, I1,1 generates the following five islands:

I2,1,1 := {(S11, 2), (S12, 2)}, I2,1,2 := {(S14, 2)},

I2,1,3 := {(S21, 2), (S22, 2)}, I2,1,4 := {(S23, 2)}, I2,1,5 := {(S24, 2)}

(see Figure 3). Lemma 2.22 implies that I2,1,i ∈ [I1,i]µ for i = 1, 2, 4, 5, and [I2,1,3]µ /∈ Ib,µ.

Thus I2,1,3 is the only level-2 nonbasic island with respect to Ib. Assume that Ik,1,3 :=

{(S2k−11, k), (S2k , k)} is the only level-k nonbasic island with respect to Ib. Similarly, Ik,1,3
generates five islands, namely,

Ik+1,1,1 := {(S2k−111, k + 1), (S2k−112, k + 1)}, Ik+1,1,2 := {(S2k−114, k + 1)},

Ik+1,1,3 := {(S2k1, k + 1), (S2k+1 , k + 1)}, Ik+1,1,4 := {(S2k3, k + 1)},

Ik+1,1,5 := {(S2k4, k + 1)}.
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Lemma 2.22 again implies that Ik+1,1,i ∈ [I1,i]µ for i = 1, 2, 4, 5, and [Ik+1,1,3]µ /∈ Ib,µ. Thus,

Ik+1,1,3 is the only level-(k + 1) nonbasic island with respect to Ib, completing the proof. �

�I1,1

- I1,2

�I1,3

(a) level-1 islands {I1,`}

�{I2,1,i}5i=1

-{I2,2,i}3i=1

�{I2,3,i}3i=1

(b) level-2 islands {I2,`,i}

Figure 2. (a) First level iterations containing {I1,`}3`=1. (b) Second level iter-
ations containing {I2,1,i}5i=1 and {I2,`,i}3i=1 for ` = 2, 3. The figures are drawn
with ρ = 1/4 and r = 7/20.

(a) I1,1

�I2,1,1

�I2,1,2
6

I2,1,3

- I2,1,4

�I2,1,5

(b) {I2,1,i}5i=1

Figure 3. I1,1 and its offspring {I2,1,i}5i=1.

(a) I2,`

�I2,`,1
-I2,`,2

�I2,`,3

(b) {I2,`,i}3i=1

Figure 4. I2,` and its offspring {I2,`,i}3i=1 for ` = 2, 3.
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3. Renewal equation and proof of Theorem 1.1

Let {Si}i∈Λ be a finite type IFS on a compact subset X ⊆ Rd with FTC set Ω ⊆ X and let

µ be the self-similar measure defined by {Si}i∈Λ together with a probability vector (pi)i∈Λ. To

compute τ(q) for q ≥ 0, we will use the equivalent definition in (1.1). We show in this section

that for the class of self-similar measures under consideration and for each q ≥ 0, there exists

α := α(q) such that

0 < lim
δ→0+

1

δd+α

∫
X
µ(Bδ(x))q dx <∞. (3.1)

In the rest of this section, we assume that µ satisfies Condition (B). Let Ib := Ikb be the

basic set of islands and Ib,µ :=
{

[I]µ : I ∈ Ib
}

. We choose a subset I := {I1,`}`∈Γ ⊆ Ib such

that for any I ∈ Ib, there exists a unique ` ∈ Γ satisfying I ∈ [I1,`]µ. Define

ϕ`(δ) :=

∫
I1,`

µ(Bδ(x))q dx, Φ
(α)
` (δ) :=

1

δd+α
ϕ`(δ) for ` ∈ Γ, (3.2)

where I1,` := SI1,`(Ω).

Proposition 3.1. Let q ≥ 0. If

0 < lim
δ→0+

Φ
(α)
` (δ) <∞ for all ` ∈ Γ, (3.3)

then τ(q) = α.

Proof. To find τ(q), it suffices to look for α such that (3.1) holds. Since SI1,`(Ω) is a connected

component of Ω, we have

lim
δ→0+

1

δd+α

∫
X
µ(Bδ(x))q dx ≤

∑
`∈Γ

lim
δ→0+

1

δd+α

∫
I1,`

µ(Bδ(x))q dx

=
∑
`∈Γ

lim
δ→0+

Φ
(α)
` (δ). (3.4)

Combining (3.3) and (3.4) yields (3.1), and hence the proposition follows. �

For I ∈ I, let SI(Ω) and O(I) be defined as in (2.1) and (2.2), respectively. We denote

the contraction ratio of a contractive similitude σ by rσ. In view of Proposition 3.1, to find α

satisfying (3.1), it suffices to study Φ
(α)
` (δ) for ` ∈ Γ.

Step 1. Derivation of a functional equation for Φ
(α)
` (δ) for ` ∈ Γ. For ` ∈ Γ, define

I2,` := {I ∈ O(I1,`) : [I]µ ∈ Ib,µ} and I′2,` := {I ∈ O(I1,`) : [I]µ /∈ Ib,µ}.

Thus O(I1,`) = I2,` ∪ I′2,`. For k ≥ 3, if I′k−1,` 6= ∅, we define

Ik,` :=
{
I ∈

⋃
J∈I′k−1,`

O(J ) : [I]µ ∈ Ib,µ

}
and I′k,` :=

{
I ∈

⋃
J∈I′k−1,`

O(J ) : [I]µ /∈ Ib,µ

}
.

We remark that for any k ≥ 2,
⋃
`∈Γ I′k,` is the set of all level-k nonbasic islands with respect

to I.
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Without loss of generality, we assume that Γ can be partitioned into two sub-collections, Γ∗

and Γ′∗, defined as follows. For ` ∈ Γ, we say ` ∈ Γ∗ if there exists some κ` ≥ 2, depending on

`, such that κ` is the smallest number satisfying I′κ`,` = ∅; otherwise, ` ∈ Γ′∗. Define κ` := ∞
for ` ∈ Γ′∗.

Condition (B) implies that
∑

`∈Γ #I′k,` is uniformly bounded for any k ≥ 2. Fix ` ∈ Γ. Then

for any 2 ≤ k ≤ κ`, we use two finite disjoint subsets Gk,`, G
′
k,` ⊆ Z to label the elements of Ik,`

and I′k,`; more precisely,

Ik,` = {Ik,`,i : i ∈ Gk,`} and I′k,` = {Ik,`,i : i ∈ G′k,`}.

Condition (B) implies that 0 ≤ #G′k,` ≤ M , where M > 0 is a constant. We remark that

G′κ`,` = ∅. Define

Ik,`,i := SIk,`,i(Ω) for 2 ≤ k ≤ κ` and i ∈ Gk,` ∪G′k,`.

Then for all ` ∈ Γ∗ we have

ϕ`(δ) =

κ∑̀
j=2

∑
i∈Gj,`

∫
Ij,`,i

µ(Bδ(x))q dx, (3.5)

while for all ` ∈ Γ′∗ and n ≥ 2,

ϕ`(δ) =
n∑
j=2

∑
i∈Gj,`

∫
Ij,`,i

µ(Bδ(x))q dx+
∑
`∈G′n,`

∫
In,`,i

µ(Bδ(x))q dx. (3.6)

For ` ∈ Γ, 2 ≤ k ≤ κ`, i ∈ Gk,` and δ > 0, let Ĩk,`,i(δ) be the largest subset of Ik,`,i satisfying

Bδ(x) ⊆ Ik,`,i for any x ∈ Ĩk,`,i(δ). We denote Îk,`,i(δ) := Ik,`,i\Ĩk,`,i(δ). So for ` ∈ Γ∗ (3.5) can

be written as

ϕ`(δ) =

κ∑̀
j=2

∑
i∈Gj,`

∫
Ĩj,`,i(δ)

µ(Bδ(x))q dx+

κ∑̀
j=2

∑
i∈Gj,`

∫
Îj,`,i(δ)

µ(Bδ(x))q dx,

while for ` ∈ Γ′∗ and n ≥ 2, (3.6) can be expressed as

ϕ`(δ) =

n∑
j=2

∑
i∈Gj,`

∫
Ĩj,`,i(δ)

µ(Bδ(x))q dx+

n∑
j=2

∑
i∈Gj,`

∫
Îj,`,i(δ)

µ(Bδ(x))q dx

+
∑
i∈G′n,`

∫
In,`,i

µ(Bδ(x))q dx.

For ` ∈ Γ, 2 ≤ k ≤ κ` and i ∈ Gk,`, there exist unique σ(k, `, i) ∈ S , w(k, `, i) > 0 and

c(k, `, i) ∈ Γ such that I1,c(k,`,i) ≈µ,σ(k,`,i),w(k,`,i) Ik,`,i. By Definition 2.13, we have

µ|SIk,`,i (Ω) = w(k, `, i) ◦ µ|SI1,c(k,`,i) (Ω) ◦ σ(k, `, i)−1.

For Ĩk,`,i(δ) ⊆ Ik,`,i, let Ĩ1,c(k,`,i)(δ/rσ(k,`,i)) be the largest subset of I1,c(k,`,i) satisfyingBδ/rσ(k,`,i)(x) ⊆
I1,c(k,`,i) for any x ∈ Ĩ1,c(k,`,i)(δ/rσ(k,`,i)). Thus

µ|
Ĩk,`,i(δ)

= w(k, `, i) ◦ µ|
Ĩ1,c(k,`,i)(δ/rσ(k,`,i))

◦ σ(k, `, i)−1.
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We denote Î1,c(k,`,i)(δ/rσ(k,`,i)) = I1,c(k,`,i)\Ĩ1,c(k,`,i)(δ/rσ(k,`,i)). Hence for ` ∈ Γ∗,

ϕ`(δ) =

κ∑̀
j=2

∑
i∈Gj,`

w(j, `, i)qrσ(j,`,i)
d

∫
I1,c(j,`,i)

µ(Bδ/rσ(j,`,i)(x))q dx +

κ∑̀
j=2

(e`j(δ)− ẽ`j(δ)), (3.7)

where

e`j(δ) =
∑
i∈Gj,`

∫
Îj,`,i(δ)

µ(Bδ(x))q dx,

ẽ`j(δ) =
∑
i∈Gj,`

w(j, `, i)qrσ(j,`,i)
d

∫
Î1,c(j,`,i)(δ/rσ(k,`,i))

µ(Bδ/rσ(j,`,i)(x))q dx,

while for ` ∈ Γ′∗ and n ≥ 2,

ϕ`(δ) =
n∑
j=2

∑
i∈Gj,`

w(j, `, i)qrσ(j,`,i)
d

∫
I1,c(j,`,i)

µ(Bδ/rσ(j,`,i)(x))q dx

+

n∑
j=2

(e`j(δ)− ẽ`j(δ)) +
∑
i∈G′n,`

∫
In,`,i

µ(Bδ(x))q dx, (3.8)

where

e`j(δ) =
∑
i∈Gj,`

∫
Îj,`,i(δ)

µ(Bδ(x))q dx,

ẽ`j(δ) =
∑
i∈Gj,`

w(j, `, i)qrσ(j,`,i)
d

∫
Î1,c(j,`,i)(δ/rσ(k,`,i))

µ(Bδ/rσ(j,`,i)(x))q dx.

Multiply both sides of (3.7) and (3.8) by δ−(d+α), and using (3.2), we have for ` ∈ Γ∗,

Φ
(α)
` (δ) :=

κ∑̀
j=2

∑
i∈Gj,`

w(j, `, i)qrσ(j,`,i)
−αΦ

(α)
c(j,`,i)(δ/rσ(j,`,i)) + E

(α)
` (δ), (3.9)

where

E
(α)
` (δ) =

κ∑̀
j=2

δ−(d+α)(e`j(δ)− ẽ`j(δ))

and

Φ
(α)
` (δ) :=

n∑
j=2

∑
i∈Gj,`

w(j, `, i)qrσ(j,`,i)
−αΦ

(α)
c(j,`,i)(δ/rσ(j,`,i)) +

n∑
j=2

δ−(d+α)(e`j(δ)− ẽ`j(δ))

+δ−(d+α)
∑
i∈G′n,`

∫
In,`,i

µ(Bδ(x))q dx for ` ∈ Γ′∗ and n ≥ 2. (3.10)

Let N be the largest number of n satisfying δ ≤ rσ(n,`,i) for ` ∈ Γ′∗, i ∈ Gn,`. Taking n := N in

(3.10), we have

Φ
(α)
` (δ) :=

∞∑
j=2

∑
i∈Gj,`

w(j, `, i)qrσ(j,`,i)
−αΦ

(α)
c(j,`,i)(δ/rσ(j,`,i))

+E
(α)
` (δ)− E(α)

`,∞(δ) for ` ∈ Γ′∗ and N ≥ 2, (3.11)
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where

E
(α)
` (δ) =

N∑
j=2

δ−(d+α)(e`j(δ)− ẽ`j(δ)) + δ−(d+α)
∑

i∈G′N,`

∫
IN,`,i

µ(Bδ(x))q dx

E
(α)
`,∞(δ) =

∞∑
j=N+1

∑
i∈Gj,`

w(j, `, i)qrσ(j,`,i)
−αΦ

(α)
c(j,`,i)(δ/rσ(j,`,i)).

Step 2. Derivation of the vector-valued equation. For each ` ∈ Γ, define

f`(x) = f
(α)
` (x) := Φ

(α)
` (e−x).

If we let δ = e−x, then Φ
(α)
` (βδ) = f`(x− lnβ) for any β > 0. Combining (3.9) and (3.11), we

have, for ` ∈ Γ∗,

f`(x) =

κ∑̀
j=2

∑
i∈Gj,`

w(j, `, i)qr−ασ(j,`,i)fc(j,`,i)(x+ ln(rσ(j,`,i))) + z
(α)
` (x), (3.12)

where z
(α)
` (x) = E

(α)
` (e−x) and for ` ∈ Γ′∗ and N ≥ 2,

f`(x) =

∞∑
j=2

∑
i∈Gj,`

w(j, `, i)qr−ασ(j,`,i)fc(j,`,i)(x+ ln(rσ(j,`,i))) + z
(α)
` (x), (3.13)

where z
(α)
` (x) = E

(α)
` (e−x)− E(α)

`,∞(e−x).

For `,m ∈ Γ, let µ
(α)
m` be the discrete measure such that

µ
(α)
m` (− ln(rσ(j,`,i))) := w(j, `, i)qr−ασ(j,`,i) for 2 ≤ j ≤ κ`, i ∈ Gj,`, c(j, `, i) = m. (3.14)

We summarize the above derivations in the following theorem.

Theorem 3.2. Let µ be a self-similar measure defined by an IFS {Si}i∈Λ of finite type. Assume

that µ satisfies Condition (B). Let f , Mα, and z be defined as in (1.2). Then f satisfies the

vector-valued renewal equation f = f ∗Mα + z.

Proof of Theorem 1.1. We use a similar argument as that in [20, Theorem 1.1]. (a) We observe

that each Fi(α) is a strictly increasing continuous positive function of α and

F`(−∞) = 0 and F`(∞) =∞. (3.15)

Thus there exists a unique α such that the spectral radius of Mα(∞) is 1.

(b) Let α be the unique number in part (a). Let m := [m
(α)
k` ] = [

∫∞
0 x dµ

(α)
k` ] be the moment

matrix. Following the proof of [20, Theorem 1.1(b)], we need to show that some moment

condition holds, and it suffices to show that

0 <
∑
k∈Γ

m
(α)
k` <∞.

It is easy to check that for ` ∈ Γ,
∑

k∈Γm
(α)
k` takes the following values:

κ∑̀
j=2

∑
i∈Gj,`

w(j, `, i)qr−ασ(j,`,i)

∣∣ ln(rσ(j,`,i))
∣∣.
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(3.15) implies that there exists ε > 0, such that 0 < Fi(α+ ε) <∞. Then

0 <

κ∑̀
j=2

∑
i∈Gj,`

w(j, `, i)qr−ασ(j,`,i)

∣∣ ln(rσ(j,`,i))
∣∣

=

κ∑̀
j=2

∑
i∈Gj,`

w(j, `, i)qr
−(α+ε)
σ(j,`,i) r

ε
σ(j,`,i)

∣∣ ln(rσ(j,`,i))
∣∣ <∞.

Moreover, it follows from (3.14), we have
∑

m∈Γ µ
(α)
m` (0) = 0 <

∑
m∈Γ µ

(α)
m` (∞), i.e., each column

of Mα is nondegenerate at 0. From Theorem 3.2, we have f = f ∗Mα+z. By (3.14), µ
(α)
ji (R) > 0

and hence Mα(∞) is irreducible. It follows from [20, Theorem 4.1] that there exist positive

constants C1, C2 such that C1 ≤ f
(α)
` (x) ≤ C2 for all x. Proposition 3.1 now implies that

τ(q) = α. �

4. A class of finite IFSs with overlaps on R

In this section, we derive renewal equations and compute the Lq-spectrum of self-similar

measures µ defined by the IFSs in (1.5). Let X := [0, 1] and Ω = (0, 1). Define

I1,1 = {(S1, 1), (S2, 1)}, I1,2 = {(S3, 1)}.

It follows from Example 2.17 that µ satisfies Condition (B) with Ib = {I1,1, I1,2} being the basic

set of islands. Moreover, I = Ib,µ = {[I1,1]µ, [I1,2]µ},Γ = {1, 2},Γ∗ = {2},Γ′∗ = {1}, κ1 = ∞
and κ2 = 2. For ` ∈ Γ and 2 ≤ k ≤ κ`, let Ik,`, I

′
k,`, Gk,`, G

′
k,` be defined as in Section 3. Define

Ik,1,1 := {(S2k−211, k), (S2k−212, k)},

Ik,1,2 := {(S2k−11, k), (S2k , k)}, Ik,1,3 := {(S2k−13, k)}

for k ≥ 2. Let I2,2,1 := {(S31, 2), (S32, 2)} and I2,2,2 := {(S33, 2)} (see Figure 5). Using [22,

Lemma 2.14], we have Ik,1 = {Ik,1,1, Ik,1,3}, I′k,1 = {Ik,1,2}, I2,2 = {I2,2,1, I2,2,2}, I′2,2 = ∅. Hence

Gk,1 = {1, 3}, G′k,1 = {2}, G2,2 = {1, 2}, G′2,2 = ∅. Define I1,` := SI1,`(Ω) for ` ∈ Γ. Let

Ik,1,1 := SIk,1,1(Ω) = S2k−21(I1,1), Ik,1,2 := SIk,1,2(Ω) = S2k−1(I1,1),

Ik,1,3 := SIk,1,3(Ω) = S2k−1(I1,2),
(4.1)

for k ≥ 2 and

I2,2,i := SI2,2,i(Ω) = S3(I1,i), for i = 1, 2. (4.2)

In the rest of this section, fix q ≥ 0 and let w1(k) be defined as in (1.7).

First, we derive functional equations for Φ
(α)
` (δ) for ` = 1, 2. Combining (3.5), (3.6), (4.1)

and (4.2), we have

ϕ1(δ) =
n∑
j=2

(∫
Ij,1,1

+

∫
Ij,1,3

)
µ(Bδ(x))q dx+

∫
In,1,2

µ(Bδ(x))q dx

and

ϕ2(δ) =
(∫

I2,2,1

+

∫
I2,2,2

)
µ(Bδ(x))q dx.
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0 1

I1,1 I1,2

I2,1,1 I2,1,2
I2,1,3

I2,2,1 I2,2,2

I3,1,1
� I3,1,2

-

I3,1,3
-

Figure 5. First, second and third levels of iterations containing {I1,`}, {I2,`,i}
and {I3,1,i}. The figure is drawn with ρ = 1/3 and r = 2/7.

For ` ∈ Γ, 2 ≤ k ≤ κ`, i ∈ Gk,` and δ > 0, let Ĩk,`,i(δ), Îk,`,i(δ), Ĩ1,c(k,`,,i)(δ/rσ(k,`,i)) and

Î1,c(k,`,i)(δ/rσ(k,`,i)) be defined as in Section 3. Combining (4.1) and (4.2), we have for j ≥ 2,

Ĩj,1,1(δ) = (S2j−211(0) + δ, S2j−212(1)− δ),

Îj,1,1(δ) = (S2j−211(0), S2j−211(0) + δ) ∪ (S2j−212(1)− δ, S2j−212(1)),

Ĩj,1,3(δ) = (S2j−13(0) + δ, S2j−13(1)− δ),

Îj,1,3(δ) = (S2j−13(0), S2j−13(0) + δ) ∪ (S2j−13(1)− δ, S2j−13(1)),

Ĩ2,2,1(δ) = (S31(0) + δ, S32(1)− δ),

Î2,2,1(δ) = (S31(0), S31(0) + δ) ∪ (S32(1)− δ, S32(1)),

Ĩ2,2,2(δ) = (S33(0) + δ, S33(1)− δ),

Î2,2,2(δ) = (S33(0), S33(0) + δ) ∪ (S33(1)− δ, S33(1)).

(4.3)

(See Figures 6 and 7.)

I2,1,1 = (S11(0), S12(1))
r r r r6

6S11(0)
S12(1)

S11(0) + δ
S12(1)− δ

Ĩ2,1,1(δ) = (S11(0)− δ, S12(1) + δ)
r r

Î2,1,1(δ) = (S11(0), S11(0) + δ)

∪ (S12(1)− δ, S12(1))

r r r r
Figure 6. Figure showing the sets I2,1,1, Ĩ2,1,1(δ) and Î2,1,1(δ).
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I2,1,3 = (S11(0), S12(1))S23(0) S23(1)

S23(0) + δ S23(1)− δ
6 6r r r r

Ĩ2,1,3(δ) = (S23(0)− δ, S23(1) + δ)
r r

Î2,1,3(δ) = (S23(0), S23(0) + δ)

∪ (S23(1)− δ, S23(1))

r r r r

Figure 7. Figure showing the sets I2,1,3, Ĩ2,1,3(δ) and Î2,1,3(δ).

It follows from (4.1), (4.2) and in [22, Lemma 2.14] that for j ≥ 2,

µ(Ij,1,1) = w1(j − 2)µ(I1,1) and µ(Ij,1,2) = pj−1
2 µ(I1,2).

Thus

w(j, 1, 1) = w1(j − 2), c(j, 1, 1) = 1, σ(j, 1, 1) = S2j−21, rσ(j,1,1) = ρrj−2,

w(j, 1, 2) = pj−1
2 , c(j, 1, 2) = 2, σ(j, 1, 2) = S2j−1 , rσ(j,1,2) = rj−1,

and
Ĩ1,1(δ/ρrj−2) = (S1(0) + δ/ρrj−2, S2(1)− δ/ρrj−2),

Ĩ1,2(δ/rj−1) = (S3(0) + δ/rj−1, S3(1)− δ/rj−1),

Î1,1(δ/ρrj−2) = (S1(0), S1(0) + δ/ρrj−2) ∪ (S2(1)− δ/ρrj−2, S2(1)),

Î1,2(δ/rj−1) = (S3(0), S3(0) + δ/rj−1) ∪ (S3(1)− δ/rj−1, S3(1)).

Since µ|S3(I1,i) = p3µ ◦ S−1
3 on S3(I1,i) for i = 1, 2, by using (4.2), we have µ(I2,2,i) = p3µ(I1,i).

Hence w(2, 2, i) = p3, c(2, 2, i) = i, σ(2, 2, i) = S3, rσ(2,2,i) = r and

Ĩ1,1(δ/r) = (S1(0) + δ/r, S2(1)− δ/r),

Ĩ1,2(δ/r) = (S3(0) + δ/r, S3(1)− δ/r),

Î1,1(δ/r) = (S1(0), S1(0) + δ/r) ∪ (S2(1)− δ/r, S2(1)),

Î1,2(δ/r) = (S3(0), S3(0) + δ/r) ∪ (S3(1)− δ/r, S3(1)).

By (3.7) and (3.8), we have

ϕ1(δ) =

n∑
j=2

(
w1(j − 2)qρrj−2

∫
I1,1

µ(Bδ/ρrj−2(x))q dx+ (pq2r)
j−1

∫
I1,2

µ(Bδ/rj−1(x))q dx
)

+

n∑
j=2

(e1
j (δ)− ẽ1

j (δ)) +

∫
In,1,2

µ(Bδ(x))q dx, (4.4)

and

ϕ2(δ) = pq3r
(∫

I1,1

+

∫
I1,2

)
µ(Bδ/r(x))q dx+ e2

2(δ)− ẽ2
2(δ), (4.5)
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where

e1
j (δ) =

(∫
Îj,1,1(δ)

+

∫
Îj,1,3(δ)

)
µ(Bδ(x))q dx,

ẽ1
j (δ) =w1(j − 2)qρrj−2

∫
Î1,1(δ/ρrj−2)

µ(Bδ/ρrj−2(x))q dx

+ (pq2r)
j−1

∫
Î1,2(δ/rj−1)

µ(Bδ/rj−1(x))q dx,

e2
2(δ) =

(∫
Î2,2,1(δ)

+

∫
Î2,2,2(δ)

)
µ(Bδ(x))q dx,

ẽ2
2(δ) =pq3r

(∫
Î1,1(δ/r)

+

∫
Î1,2(δ/r)

)
µ(Bδ/r(x))q dx.

(4.6)

Multiplying both sides of (4.4) and (4.5) by δ−(1+α) and using (3.2), we have

Φ
(α)
1 (δ) =

n∑
j=2

(
w1(j − 2)q(ρrj−2)−αΦ

(α)
1 (δ/ρrj−2) + (pq2r

−α)j−1Φ
(α)
2 (δ/rj−1)

)
+

n∑
j=2

δ−1−α(e1
j (δ)− ẽ1

j (δ)) + δ−1−α
∫
In,1,2

µ(Bδ(x))q dx (4.7)

and

Φ
(α)
2 (δ) = pq3r

−α(Φ(α)
1 (δ/r) + Φ

(α)
2 (δ/r)

)
+ δ−1−α(e2

2(δ)− ẽ2
2(δ)).

Let N be the largest integer satisfying δ ≤ min{ρrN−2, rN−1}. Taking n = N in (4.7), we have

Φ
(α)
1 (δ) =

∞∑
j=2

(
w1(j − 2)q(ρrj−2)−αΦ

(α)
1 (δ/ρrj−2) + (pq2r

−α)j−1Φ
(α)
2 (δ/rj−1)

)
+E

(α)
1 (δ)− E(α)

1,∞(δ), (4.8)

where

E
(α)
1 (δ) =

N∑
j=2

δ−1−α(e1
j (δ)− ẽ1

j (δ)) + δ−1−α
∫
IN,1,2

µ(Bδ(x))q dx,

E
(α)
1,∞(δ) =

∞∑
j=N+1

(
w1(j − 2)q(ρrj−2)−αΦ

(α)
1 (δ/ρrj−2) + (pq2r

−α)j−1Φ
(α)
2 (δ/rj−1)

)
.

Let

Φ
(α)
2 (δ) = pq3r

−α(Φ(α)
1 (δ/r) + Φ

(α)
2 (δ/r)

)
+ E

(α)
2 (δ), (4.9)

where

E
(α)
2 (δ) = δ−1−α(e2

2(δ)− ẽ2
2(δ)).

Next, we derive a vector-valued equation. It follows from (3.12), (3.13), (4.8) and (4.9) that

f1(x) =

∞∑
j=2

(
w1(j − 2)q(ρrj−2)−αf1

(
x+ ln(ρrj−2)

)
+ (pq2r

−α)j−1f2(x+ ln(rj−1))
)

+ z
(α)
1 (x)
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and

f2(x) = pq3r
−α

2∑
i=1

fi
(
x+ ln r

)
+ z

(α)
2 (x),

where z
(α)
1 (x) = E

(α)
1 (e−x) − E(α)

1,∞(e−x), z
(α)
2 (x) = E

(α)
2 (e−x). For `,m = 1, 2, let µ

(α)
m` be the

discrete measures such that for j ≥ 2,

µ
(α)
11 (− ln(ρrj−2)) = (w1(j − 2))q(ρrj−2)−α,

µ
(α)
21 (− ln(rj−1)) = (pq2r

−α)j−1,

µ
(α)
12 (− ln r) = µ

(α)
22 (− ln r) = pq3r

−α.

Then

µ
(α)
11 (R) =

∞∑
j=2

w1(j − 2)q(ρrj−2)−α, µ
(α)
21 (R) =

∞∑
j=2

(pq2r
−α)j−1,

µ
(α)
12 (R) = µ

(α)
22 (R) = pq3r

−α.

(4.10)

For fixed q ≥ 0, let

F1(α) :=
∞∑
j=2

w1(j − 2)q(ρrj−2)−α +
∞∑
j=2

(pq2r
−α)j−1, F2(α) := 2pq3r

−α

D` := {α ∈ R : F`(α) <∞}, ` = 1, 2.

(4.11)

and

Mα(∞) =

( ∑∞
j=2w1(j − 2)q(ρrj−2)−α pq3r

−α∑∞
j=2(pq2r

−α)j−1 pq3r
−α

)
.

Finally, we show that the error terms z
(α)
` (x) = o(e−εx) as x→∞, i.e., E

(α)
` (δ) = o(δε) and

E
(α)
1,∞(δ) = o(δε) as δ→0 for some ε > 0 and ` = 1, 2.

Proposition 4.1. (a) Φ
(α)
1 (δ/ρrk) ≤ 1 for any k ≥ N − 1.

(b) Φ
(α)
2 (δ/rk) ≤ 1 for any k ≥ N .

Proof. (a) It follows from the definition of N that δ ≥ ρrk for any k ≥ N − 1. Hence

Φ
(α)
1 (δ/ρrk) =

1

(δ/ρrk)1+α

∫
I1,1

µ
(
Bδ/ρrk(x)

)q
dx ≤ (ρrk/δ)1+α ≤ 1.

Hence Φ
(α)
1 (δ/ρrk) ≤ 1 for any k ≥ N .

(b) The proof is similar to that of (a). �

The following proposition can be proved directly by using induction; we omit the details.

Proposition 4.2. (a) S2k(1) = rk + ρ(1− rk) for any k ≥ 1.

(b) S2k−11(0) = ρ(1− rk−1) for any k ≥ 1.

Proposition 4.3. For q ≥ 0, let F1(α) and D1 be defined as in (4.11). Then D1 is open.
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Proof. Let p := max{p2, p3}. In view of (1.7), we consider the following two cases for w1(k).

Case 1. p2 = p3. Then w1(k) = (k + 1)p1p
k
2; moreover,

p1p
k ≤ w1(k) = (k + 1)p1p

k. (4.12)

Thus,

lim
k→∞

k

√
w1(k)q(ρrk)−α = lim

k→∞
k

√
((k + 1)p1pk)q(ρrk)−α

= lim
k→∞

k

√
(k + 1)qpq1ρ

−α · pq/rα

= pq/rα. (4.13)

Case 2. p2 6= p3. Assume p2 > p3. Then

w1(k) = p1p
k
2

k∑
j=0

(p3/p2)j = p1p
k
2

1− (p3/p2)k+1

1− p3/p2
.

Note that

1 ≤ 1− (p3/p2)k+1

1− p3/p2
<

1

1− p3/p2
=

p2

p2 − p3
=: c.

Thus p1p
k
2 ≤ w1(k) ≤ cp1p

k
2. Similarly, if p3 > p2, we have p1p

k
3 ≤ w1(k) ≤ cp1p

k
3. So if p2 6= p3,

we have

p1p
k ≤ w1(k) ≤ cp1p

k. (4.14)

Hence

lim
k→∞

k

√
w1(k)q(ρrk)−α = pq/rα if p2 6= p3. (4.15)

Combining (4.13) and (4.15), we have limk→∞
k
√
w1(k)q(ρrk)−α = pq/rα. By the root test, the

series
∑∞

k=0w1(k)q(ρrk)−α is convergent if pq/rα < 1, i.e.,
∑∞

k=0w1(k)q(ρrk)−α and
∑∞

k=0(pq/rα)k

have the same radius of convergence. If pq/rα = 1, then
∑∞

k=0(pq/rα)k = ∞. It follows from

(4.12) and (4.14) that (p1p
k)q ≤ w1(k)q for q ≥ 0. For k ≥ 0, we have (p1p

k)q(ρrk)−α ≤
w1(k)q(ρrk)−α. Thus

∞ = pq1ρ
−α

∞∑
k=0

(pq/rα)k ≤
∞∑
k=0

w1(k)q(ρrk)−α.

Hence D1 is open. �

Proposition 4.4. For q ≥ 0, assume that α ∈ D` for ` = 1, 2. Then there exists ε > 0 such

that

(a)
∑∞

j=N+1w1(j − 2)q(ρrj−2)−αΦ
(α)
1 (δ/ρrj−2) = o(δε);

(b)
∑∞

j=N+1(pq2r
−α)j−1Φ

(α)
2 (δ/rj−1) = o(δε);

(c)
∑N

j=2 δ
−1−α(e1

j (δ)− ẽ1
j (δ)) = o(δε);

(d) δ−1−α ∫
IN,1,2

µ(Bδ(x))q dx = o(δε);

(e) δ−1−α(e2
2(δ)− ẽ2

2(δ)) = o(δε).
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Proof. (a) By Proposition 4.3, D1 = {α ∈ R : F1(α) < ∞} is open. Thus there exists ε > 0

sufficiently small such that F1(α+ ε) ∈ D1. So there exists a positive constant C such that

∞∑
j=N+1

w1(j − 2)q(ρrj−2)−α−ε +
∞∑

j=N+1

(pq2r
−α−ε)j−1 ≤ C.

Since

(ρrN−1)−ε
∞∑

j=N+1

w1(j − 2)q(ρrj−2)−α ≤
∞∑

j=N+1

w1(j − 2)q(ρrj−2)−α−ε,

we have
∑∞

j=N+1w1(j − 2)q(ρrj−2)−α ≤ C(ρrN−1)ε ≤ Cδε, where the last inequality follows

from the definition of N . Combining these with Proposition 4.1(a), we have
∑∞

j=N+1w1(j −
2)q(ρrj−2)−αΦ

(α)
1 (δ/ρrj−2) = o(δε).

(b) The proof is similar to that of (a).

(c) It suffices to show that e1
j (δ) = o(δ1+α+ε) and ẽ1

j (δ) = o(δ1+α+ε) for 2 ≤ j ≤ N . It follows

from (4.6) and (4.3) that

e1
j (δ) =

(∫ S
2j−211

(0)+δ

S
2j−211

(0)
+

∫ S
2j−212

(1)

S
2j−212

(1)−δ
+

∫ S
2j−13

(0)+δ

S
2j−13

(0)
+

∫ S
2j−13

(1)

S
2j−13

(1)−δ

)
µ(Bδ(x))q dx.

As an example we only prove
∫ S

2j−211
(0)+δ

S
2j−211

(0) µ(Bδ(x))q dx = o(δ1+α+ε). It follows from (a) and

(b) that

w1(N − 1)q ≤ Cδα+ε and pNq2 ≤ Cδα+ε. (4.16)

Since Bδ(x) ⊆ B2δ(S2j−211(0)) for any x ∈ (S2j−211(0), S2j−211(0) + δ) and

µ(B2δ(S2j−211(0))) = p1w1(j − 2)µ(B2δ/ρ2rj−2(0)) ≤ p1w1(j − 2),

we have ∫ S
2j−211

(0)+δ

S
2j−211

(0)
µ(Bδ(x))q dx ≤ (µ(B2δ(S2j−211(0))))qδ ≤ pq1w1(j − 2)qδ

≤ (p1p
1−N
2 )qw1(N − 1)qδ ≤ C(p1p

1−N
2 )qδ1+α+ε,

where the third inequality holds because for 0 ≤ k ≤ N − 2

w1(k) =
p1(pN−1

2 + pN−2
2 p3 + · · ·+ pN−1

3 )(pk2 + pk−1
2 p3 + · · ·+ pk3)

(pN−1
2 + pN−2

2 p3 + · · ·+ pN−1
3 )

≤ w1(N − 1)(p2 + p3)k

pN−1
2 + pN−2

2 p3 + · · ·+ pN−1
3

≤ p1−N
2 w1(N − 1), (4.17)

and the last inequality follows from (4.16). The estimate ẽ2
2(δ) = o(δ1+α+ε) can be established

as that for e2
2(δ) = o(δ1+α+ε).

(d) By (4.1), we have∫
IN,1,2

µ(Bδ(x))q dx =
(∫ S

2N−11
(0)+δ

S
2N−11

(0)
+

∫ S
2N

(1)−δ

S
2N−11

(0)+δ
+

∫ S
2N

(1)

S
2N

(1)−δ

)
µ(Bδ(x))q dx

=: (I) + (II) + (III).
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We first show that δ−1−α(I) = o(δε/2). For any x ∈ (S2N−11(0), S2N−11(0) + δ), we have

Bδ(x) ⊆ B2δ(S2N−11(0)) and µ(B2δ(S2N−11(0))) = w1(N − 1)µ(B2δ/ρrN−1(0)) ≤ w1(N − 1).

Combining these with (4.16) we have

(I) ≤ µ(B2δ(S2N−11(0)))qδ ≤ w1(N − 1)qδ ≤ Cδ1+α+ε.

It follows that δ−1−α(I) = o(δε/2).

Next, we show that δ−1−α(II) = o(δε/2). It follows from [22, Lemma 2.14] that

µ|S
2N−1 (I1,1) = w1(N − 1)µ ◦ S−1

2N−11
+ pN2 µ ◦ S−1

2N
on S2N−1(I1,1).

Thus µ(Bδ(x)) ≤ w1(N − 1) + pN2 for x ∈ (S2N−11(0) + δ, S2N (0)− δ). Combining Proposition

4.2, (4.16) and (1.6), we have

(II) ≤ (S2N (1)− S2N−11(0)− 2δ)(w1(N − 1) + pN2 )q

≤ rN−1(2r + ρ(1− r))((Cδα+ε)1/q + (Cδα+ε)1/q)q

≤ C ′rN−1δα+ε ≤ C ′r−1δ1+α+ε,

i.e., δ−1−α(II) = o(δε/2).

The proof of δ−1−α(III) = o(δε/2) is similar to that for δ−1−α(I) = o(δε/2). Hence δ−1−α ∫
S
2N−1 (I1,1) µ(Bδ(x))q dx =

o(δε/2).

(e) The proof is similar to that of (c). �

Proof of Theorem 1.2. Combining Theorem 1.1 and Proposition 4.4 yields τ(q) = α. Let

G(q, α) := (1− pq2r
−α)(1− pq3r

−α)
∞∑
k=0

w1(k)q(ρrk)−α + r−α(pq2 + pq3)− 1. (4.18)

We show that G(q, α) is C1. It follows from Proposition 4.3 that
∑∞

k=0w1(k)q(ρrk)−α <∞ for

any (q, α) ∈ (0,∞)×D1. Since w1(k) ≤ p1 < 1,
∑∞

k=0w1(k)q(ρrk)−α is strictly decreasing in q

and strictly increasing in α. Thus for any (q0, α0) ∈ (0,∞)×D1, the series converges uniformly

on {(q, α) : q ≥ q0, α ≤ α0}. Moreover, it follows from (4.12) and (4.14) that

lim
k→∞

w1(k) = 0. (4.19)

Hence, for any (q, α) ∈ (0,∞)×D1,

Gq(q, α) =
(
− pq2r

−α(1− pq3r
−α) ln p2 − pq3r

−α(1− pq2r
−α) ln p3

) ∞∑
k=0

w1(k)q(ρrk)−α

+ (1− pq2r
−α)(1− pq3r

−α)

∞∑
k=0

w1(k)q(ρrk)−α lnw1(k) + r−α
3∑
i=2

pqi ln pi

and

Gα(q, α) =
(
pq2(1− pq3r

−α) + pq3(1− pq2r
−α)
)
r−α ln r

∞∑
k=0

w1(k)q(ρrk)−α

+ (1− pq2r
−α)(1− pq3r

−α)

∞∑
k=0

w1(k)q(ρrk)−α ln(ρrk)−1 + r−α
3∑
i=2

pqi ln r−1.
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A similar argument as above shows that G(q, α) is C1.

We now show that Gα(q̃, α̃) 6= 0 for any (q̃, α̃) ∈ (0,∞)×D1 satisfying G(q̃, α̃) = 0. Since τ(q)

is convex, we can let {qn} be an increasing sequence of positive numbers such that limn→∞ qn = q̃

and that τ is differentible at each qn. Then (1.8) implies that

Gq(qn, αn) +Gα(qn, αn) · α′(qn) = 0 for all n, and thus Gq(q̃, α̃) +Gα(q̃, α̃) · α′−(q̃) = 0,

where α′−(q̃) denotes left-hand derivative of α(q)(= τ(q)) at q̃.

Suppose, on the contrary, that Gα(q̃, α̃) = 0. Then Gq(q̃, α̃) = 0. So Gα(q̃, α̃)−Gq(q̃, α̃) = 0.

It follows from G(q̃, α̃) = 0 that
∞∑
k=0

w1(k)q̃(ρrk)−α̃ =
1− (pq̃2 + pq̃3)r−α̃

(1− pq̃2r−α̃)(1− pq̃3r−α̃)
. (4.20)

Substituting (4.20) into the above expressions for Gq and Gα, simplifying the result, and using

the fact that 0 < pq̃i r
−α̃ < 1 for i = 2, 3, we get

0 = Gα(q̃, α̃)−Gq(q̃, α̃)

= pq̃2r
−α̃(ln r−1 − ln p2)

pq̃3r
−α̃

1− pq̃2r−α̃
+ pq̃3r

−α̃(ln r−1 − ln p3)
pq̃2r
−α̃

1− pq̃3r−α̃

+ (1− pq̃2r
−α̃)(1− pq̃3r

−α̃)

∞∑
k=0

w1(k)q̃(ρrk)−α̃
(

ln(ρrk)−1 − lnw1(k)
)
> 0,

a contradiction. Hence Gα(q, α) 6= 0 for any (q, α) ∈ (0,∞) ×D1 satisfying G(q, α) = 0. The

implicit function theorem now implies that τ is differentiable on (0,∞) and the stated formula

for dimH(µ) follows by computing τ ′(1) = −Gq(1, 0)Gα(1, 0)−1 (see [9,19]). This completes the

proof. �

Figure 8 shows the graphs of τ(q) and f(α), q ≥ 0, for some measure in the family. For this

example, we have dimH(µ) = τ ′(1) ≈ 0.720268 and dimH(K) = −τ(0) ≈ 0.797012, where K is

the self-similar set corresponding to the IFS in (1.5).
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(b) f(α)

Figure 8. Graphs of τ(q) and f(α) for the self-similar measure in Example 2.17
with ρ = 1/3, r = 2/7, p1 = 1/2, p2 = 1/4, and p3 = 1/4.
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5. A class of finite IFSs with overlaps on R2

In this section, we derive renewal equations and compute the Lq-spectrum of self-similar

measure µ defined by the IFSs in (1.9) together with a probability vector (pi)
4
i=1. Let X :=

[0, 1]× [0, 1],Ω = (0, 1)× (0, 1). Define

I1,1 = {(S1, 1), (S2, 1)}, I1,2 = {(S3, 1) I1,3 = {(S4, 1)}.

It follows from Example 2.18 that µ satisfies Condition (B) with Ib = {I1,1, I1,2, I1,3} being the

basic set of islands. Moreover, I = Ib,µ = {[I1,1]µ, [I1,2]µ, [I1,3]µ},Γ = {1, 2, 3},Γ∗ = {2, 3},Γ′∗ =

{1}, κ1 = ∞ and κ2 = κ3 = 2. Let Ik,`, I
′
k,`, Gk,`, G

′
k,` be defined as in Section 3 for ` ∈ Γ and

2 ≤ k ≤ κ`. Define

Ik,1,1 := {(S2k−211, k), (S2k−212, k)}, Ik,1,2 := {(S2k−214, k)},

Ik,1,3 := {(S2k−11, k), (S2k , k)}, Ik,1,4 := {(S2k−13, k)},

Ik,1,5 := {(S2k−14, k)},

for k ≥ 2, and

I2,`,1 = {(S(`+1)1, 2), (S`+12, 2)}, I2,`,2 = {(S(`+1)3, 2)}, I2,`,3 = {(S(`+1)4, 2)},

for ` = 2, 3 (see Figure 2). It follows from Lemma 2.22 that Ik,1 = {Ik,1,i : i = 1, 2, 4, 5},
I′k,1 = {Ik,1,3}, I2,` = {I2,`,i : i = 1, 2, 3}, and I′2,` = ∅. Hence Gk,1 = {1, 2, 4, 5}, G′k,1 = {3},
G2,` = {1, 2, 3}, and G′2,` = ∅ for k ≥ 2 and ` = 2, 3. Define I1,` := SI1,`(Ω) for ` ∈ Γ. Let

Ik,1,1 := SIk,1,1(Ω) = S2k−21(I1,1), Ik,1,2 := SIk,1,2(Ω) = S2k−21(I1,3),

Ik,1,3 := SIk,1,3(Ω) = S2k−1(I1,1), Ik,1,4 := SIk,1,4(Ω) = S2k−1(I1,2),

Ik,1,5 := SIk,1,5(Ω) = S2k−1(I1,3),

(5.1)

for k ≥ 2 and

I2,`,i := SI2,`,i(Ω) = S`+1(I1,i) for ` = 2, 3 and i = 1, 2, 3. (5.2)

In the rest of this section, let w2(k) be defined as in (1.11).

First, we derive functional equations for Φ
(α)
` (δ) for ` = 1, 2, 3. Combining (3.5), (3.6), (5.1)

and (5.2), we have

ϕ1(δ) =

( n∑
j=2

(∫
Ij,1,1

+

∫
Ij,1,2

+

∫
Ij,1,4

+

∫
Ij,1,5

)
+

∫
In,1,3

)
µ(Bδ(x))q dx,

and

ϕ`(δ) =

3∑
i=1

∫
I2,`,i

µ(Bδ(x))q dx for ` = 2, 3.

For ` ∈ Γ, 2 ≤ k ≤ κ`, i ∈ Gk,`, and δ > 0, let Ĩk,`,i(δ), Îk,`,i(δ), Ĩ1,c(k,`,i)(δ/rσ(k,`,i)) and

Î1,c(k,`,i)(δ/rσ(k,`,i)) be defined as in Section 3. Recall from (2.7) that γk := 1− rk. Combining
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(5.1), (5.2) and Proposition 2.20, we have for j ≥ 2,

Ĩj,1,1(δ) =(ργj−2 + δ, ργj−2 + ρ2rj−2γ1 + δ)× (δ, ρ2rj−2 − δ)∪

(ργj−2 + ρ2rj−2γ1 + δ, ργj−2 + ρ2rj−2γ1 + ρrj−1 − δ)× (δ, ρrj−1 − δ),

Îj,1,1(δ) =(ργj−2, ργj−2 + ρ2rj−2γ1 + ργj−1)× (0, δ)∪

(ργj−2, ργj−2 + ρ2rj−2γ1 + δ)× (ρ2rj−2 − δ, ρ2rj−2)∪

(ργj−2 + ρ2rj−2γ1, ργj−2 + ρ2rj−2γ1 + ρrj−1)× (ρrj−1 − δ, ρrj−1)∪

(ργj−2, ργj−2 + δ)× (δ, ρ2rj−2 − δ)∪

(ργj−2 + ρ2rj−2γ1, ργj−2 + ρ2rj−2γ1 + δ)× (ρ2rj−2, ρrj−1 − δ)∪

(ργj−2 + ρ2rj−2γ1 + ρrj−1 − δ, ργj−2 + ρ2rj−2γ1 + ρrj−1)× (δ, ρrj−1 − δ),

Ĩj,1,2(δ) =(ργj−2 + δ, ργj−2 + ρrj−1 − δ)× (ρrj−2γ1 + δ, ρrj−2 − δ),

Îj,1,2(δ) =(ργj−2, ργj−2 + ρrj−1)×
(
(ρrj−2γ1, ρr

j−2γ1 + δ) ∪ (ρrj−2 − δ, ρrj−2)
)
∪(

(ργj−2, ργj−2 + δ) ∪ (ργj−2 + ρrj−1 − δ, ργj−2 + ρrj−1)
)

× (ρrj−1γ1 + δ, ρrj−2 − δ),

Ĩj,1,4(δ) =(rj−1γ1 + ργj−1 + δ, rj−1 + ργj−1 + δ)× (δ, rj − δ),

Îj,1,4(δ) =(rj−1γ1 + ργj−1, r
j−1 + ργj−1)×

(
(0, δ) ∪ (rj − δ, rj)

)
∪(

(rj−1γ1 + ργj−1, r
j−1γ1 + ργj−1 + δ) ∪ (rj−1 + ργj−1 − δ, rj−1 + ργj−1)

)
× (δ, rk − δ),

Ĩj,1,5(δ) =(ργj−1 + δ, rj + ργj−1 − δ)× (rj−1γ1 + δ, rj−1 − δ),

Îj,1,5(δ) =(ργj−1, r
j + ργj−1)×

(
(rj−1γ1, r

j−1γ1 + δ)× (rj−1 − δ, rj−1)
)
∪(

(ργj−1, ργj−1 + δ) ∪ (rj−1 + ργj−1 − δ, rj + ργj−1)
)
× (rj−1γ1 + δ, rj−1 − δ),

Ĩ2,2,1(δ) =(γ1 + δ, (1 + ρr)γ1 + δ)× (δ, ρr − δ)∪

((1 + ρr)γ1 + δ, (1 + ρr)γ1 + r2 − δ)× (δ, r2 − δ),

Î2,2,1(δ) =(γ1, (1 + ρr)γ1 + r2)× (0, δ) ∪ (γ1, (1 + ρr)γ1 + δ)× (ρr − δ, ρr)∪

((1 + ρr)γ1, (1 + ρr)γ1 + r2)× (r2 − δ, r2) ∪ (γ1, γ1 + δ)× (δ, ρr − δ)∪

((1 + ρr)γ1, (1 + ρr)γ1 + δ)× (ρr, r2 − δ)∪

((1 + ρr)γ1 + r2 − δ, (1 + ρr)γ1)× (δ, r2 − δ),

Ĩ2,2,2(δ) =(γ2 + δ, 1− δ)× (δ, r2 − δ),

Î2,2,2(δ) =(γ2, 1)×
(
(0, δ) ∪ (r2 − δ, r2)

)
∪ ((γ2, γ2 + δ) ∪ (1− δ, 1))× (δ, r2 − δ),

Ĩ2,2,3(δ) =(γ1 + δ, r2 + γ1 − δ)× (rγ1 + δ, r − δ),

Î2,2,3(δ) =
(
(γ1, γ1 + δ) ∪ (r2 + γ1 − δ, r2 + γ1)

)
× (rγ1 + δ, r − δ) ∪ (γ1, r

2 + γ1)×(
(rγ1, rγ+δ) ∪ (r − δ, r)

)
,
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- Ĩ2,1,1(δ)

- Î2,1,1(δ)

- δ

Figure 9. The middle part and shaded region are Ĩ2,1,1(δ) and Î2,1,1(δ), respec-
tively, the union is I2,1,1.

- Ĩ2,1,2(δ)

- Î2,1,2(δ)

- δ

Figure 10. The middle part and shaded region are Ĩ2,1,2(δ) and Î2,1,2(δ), re-
spectively, the union is I2,1,2.

Ĩ2,3,1(δ) =(δ, ρrγ1 + δ)× (γ1 + δ, ρr + γ1 − δ)∪

(ρrγ1 + δ, ρrγ1 + r2 − δ)× (γ1 + δ, r2 + γ1 − δ),

Î2,3,1(δ) =(0, ρrγ1 + r2)× (γ1, γ1 + δ) ∪ (0, ρrγ1 + δ)× (ρr + γ1 − δ, ρr + γ1)∪

(ρrγ1, ρrγ1 + r2)× (r2 + γ1 − δ, r2 + γ1) ∪ (0, δ)× (γ1 + δ, ρr + γ1 − δ)∪

(ρrγ1, ρrγ1 + δ)× (ρr + γ1, r
2 + γ1 − δ)∪

(ρrγ1 + r2 − δ, ρrγ1 + r2)× (γ1 + δ, r2 + γ1 − δ),

Ĩ2,3,2(δ) =(rγ1 + δ, r − δ)× (γ1 + δ, r2 + γ1 − δ),

Î2,3,2(δ) =(rγ1, r)×
(
(γ1, γ1 + δ) ∪ (r2 + γ1 − δ, r2 + γ1)

)
∪ (γ1 + δ, r2 + γ1 − δ)×(

(rγ1, rγ1 + δ) ∪ (r − δ, r)
)
,

Ĩ2,3,3(δ) =(δ, r2 − δ)× (γ2 + δ, 1− δ),

Î2,3,3(δ) =(0, r2)× ((γ2, γ2 + δ) ∪ (1− δ, 1)) ∪
(
(0, δ) ∪ (r2 − δ, r2)

)
× (γ2 + δ, 1− δ).

(See Figures 9 and 10)
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It follows from (5.1), (5.2) and Lemma 2.22 that for i = 1, 2, 3 and j ≥ 2,

µ(Ij,1,1) = w2(j − 2)µ(I1,1), µ(Ij,1,2) = w2(j − 2)µ(I1,3),

µ(Ij,1,4) = p2(j − 1)µ(I1,2), µ(Ij,1,5) = p2(j − 1)µ(I1,3),

µ(I2,2,i) = p3µ(I1,i), µ(I2,3,i) = p4µ(I1,i).

Thus

w(j, 1, 1) = w2(j − 2), c(j, 1, 1) = 1, σ(j, 1, 1) = S2j−21, rσ(j,1,1) = ρrj−2,

w(j, 1, 2) = w2(j − 2), c(j, 1, 2) = 3, σ(j, 1, 2) = S2j−21, rσ(j,1,2) = ρrj−2,

w(j, 1, 4) = pj−1
2 , c(j, 1, 4) = 2, σ(j, 1, 4) = S2j−1 , rσ(j,1,1) = rj−1,

w(j, 1, 5) = pj−1
2 , c(j, 1, 5) = 3, σ(j, 1, 5) = S2j−1 , rσ(j,1,2) = rj−1,

w(2, 2, i) = p3, c(2, 2, i) = i, σ(2, 2, i) = S3, rσ(2,2,i) = r,

w(2, 3, i) = p4, c(2, 3, i) = i, σ(2, 3, i) = S4, rσ(2,3,i) = r,

Ĩ1,1(δ/ρrj−2) =(δ/ρrj−2, ργ1 + δ/ρrj−2)× (δ/ρrj−2, ρ− δ/ρrj−2)∪

(ργ1 + δ/ρrj−2, ργ1 + r − δ/ρrj−2)× (δ/ρrj−2, r − δ/ρrj−2),

Î1,1(δ/ρrj−2) =(0, ργ1 + r)× (0, δ/ρrj−2)∪

(0, ργ1 + δ/ρrj−2)× (ρ− δ/ρrj−2, ρ)∪

(ργ1, ργ1 + r)× (r − δ/ρrj−2, r)∪

(0, δ/ρrj−2)× (δ/ρrj−2, ρ− δ/ρrj−2)∪

(ργ1, ργ1 + δ/ρrj−2)× (ρ, r − δ/ρrj−2)∪

(ργ1 + r − δ/ρrj−2, ργ1 + r)× (δ/ρrj−2, r − δ/ρrj−2),

Ĩ1,3(δ/ρrj−2) =(δ/ρrj−2, r − δ/ρrj−2)× (1− r + δ/ρrj−2, 1− δ/ρrj−2),

Î1,3(δ/ρrj−2) =(0, r)×
(
(1− r + δ/ρrj−2) ∪ (1− δ/ρrj−2, 1)

)
∪(

(0, δ/ρrj−2) ∪ (r − δ/ρrj−2, r)
)
× (1− r + δ/ρrj−2, 1− δ/ρrj−2),

Ĩ1,2(δ/rj−1) =(γ1 + δ/rj−1, 1− δ/rj−1)× (δ/rj−1, r − δ/rj−1),

Î1,2(δ/rj−1) =(γ1, 1)×
(
(0, δ/rj−1) ∪ (r − δ/rj−1, r)

)
∪(

(γ1, γ1 + δ/rj−1) ∪ (1− δ/rj−1, 1)
)
× (δ/rj−1, r − δ/rj−1),

Ĩ1,3(δ/rj−1) =(δ/rj−1, r − δ/rj−1)× (1− r + δ/rj−1, 1− δ/rj−1),

Î1,3(δ/rj−1) =(0, r)×
(
(1− r + δ/rj−1) ∪ (1− δ/rj−1, 1)

)
∪(

(0, δ/rj−1) ∪ (r − δ/rj−1, r)
)
× (1− r + δ/rj−1, 1− δ/rj−1),

Ĩ1,1(δ/r) =(δ/r, ργ1 + δ/r)× (δ/r, ρ− δ/r)∪

(ργ1 + δ/r, ργ1 + r − δ/r)× (δ/r, r − δ/r),

Î1,1(δ/r) =(0, ργ1 + r)× (0, δ/r) ∪ (0, ργ1 + δ/r)× (ρ− δ/r, ρ)∪

(ργ1, ργ1 + r)× (r − δ/r, r) ∪ (0, δ/r)× (δ/r, ρ− δ/r)∪

(ργ1, ργ1 + δ/r)× (ρ, r − δ/r)∪

(ργ1 + r − δ/r, ργ1 + r)× (δ/r, r − δ/r),
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Ĩ1,2(δ/r) =(γ1 + δ/r, 1− δ/r)× (δ/r, r − δ/r),

Î1,2(δ/r) =(γ1, 1)×
(
(0, δ/r) ∪ (r − δ/r, r)

)
∪(

(γ1, γ1 + δ/r) ∪ (1− δ/r, 1)
)
× (δ/r, r − δ/r),

Ĩ1,3(δ/r) =(δ/r, r − δ/r)× (1− r + δ/r, 1− δ/r),

Î1,3(δ/r) =(0, r)×
(
(1− r + δ/r) ∪ (1− δ/r, 1)

)
∪(

(0, δ/r) ∪ (r − δ/r, r)
)
× (1− r + δ/r, 1− δ/r).

By (3.7) and (3.8), we have

ϕ1(δ) =

n∑
j=2

w2(j − 2)q(ρrj−2)2
(∫

I1,1

+

∫
I1,3

)
µ(Bδ/ρrj−2(x))q dx

+
n∑
j=2

(pq2r
2)j−1

(∫
I1,2

+

∫
I1,3

)
µ(Bδ/rj−1(x))q dx

+
n∑
j=2

(e1
j (δ)− ẽ1

j (δ)) +

∫
In,1,3

µ(Bδ(x))q dx (5.3)

and

ϕ`(δ) = pq`+1r
2

3∑
i=1

∫
I1,i

µ(Bδ/r(x))q dx + e`2(δ)− ẽ`2(δ) for ` = 2, 3, (5.4)

where

e1
j (δ) =

(∫
Îj,1,1(δ)

+

∫
Îj,1,2(δ)

+

∫
Îj,1,4(δ)

+

∫
Îj,1,5(δ)

)
µ(Bδ(x))q dx,

ẽ1
j (δ) =w2(j − 2)q(ρrj−2)2

(∫
Î1,1(δ/ρrj−2)

+

∫
Î1,3(δ/ρrj−2)

)
µ(Bδ/ρrj−2(x))q dx

+ (pq2r
2)j−1

(∫
Î1,2(δ/rj−1)

+

∫
Î1,3(δ/rj−1)

)
µ(Bδ/rj−1(x))q dx,

e`2(δ) =
3∑
i=1

∫
Î2,`,i(δ)

µ(Bδ(x))q dx,

ẽ`2(δ) =pq`+1r
2

3∑
i=1

∫
Î1,i(δ/r)

µ(Bδ/r(x))q dx for ` = 2, 3.

(5.5)

Multiplying both sides of (5.3) and (5.4) by δ−(2+α), and using (3.2), we have

Φ
(α)
1 (δ) =

n∑
j=2

w2(j − 2)q(ρrj−2)−α
∑
i=1,3

Φ
(α)
i (δ/ρrj−2)

+

n∑
j=2

(pq2r
−α)j−1

∑
i=2,3

Φ
(α)
i (δ/rj−1)

+

n∑
j=2

δ−2−α(e1
j (δ)− ẽ1

j (δ)) + δ−2−α
∫
In,1,3

µ(Bδ(x))q dx, (5.6)
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and

Φ
(α)
` (δ) = pq`+1r

−α
3∑
i=1

Φ
(α)
i (δ/r) + δ−2−α(e`2(δ)− ẽ`2(δ)) for ` = 2, 3.

Let N be the largest integer such that δ ≤ min{ρrN−2, rN−1}. Taking n = N in (5.6), we have

Φ
(α)
1 (δ) =

∞∑
j=2

w2(j − 2)q(ρrj−2)−α
∑
i=1,3

Φ
(α)
i (δ/ρrj−2)

+

∞∑
j=2

(pq2r
−α)j−1

∑
i=2,3

Φ
(α)
i (δ/rj−1) + E

(α)
1 (δ)− E(α)

1,∞(δ),

(5.7)

where

E
(α)
1 (δ) :=

N∑
j=2

δ−2−α(e1
j (δ)− ẽ1

j (δ)) + δ−2−α
∫
IN,1,3

µ(Bδ(x))q dx,

E
(α)
1,∞(δ) :=

∞∑
j=N+1

w2(j − 2)q(ρrj−2)−α
∑
i=1,3

Φ
(α)
i (δ/ρrj−2)

+
∞∑

j=N+1

(pq2r
−α)j−1

∑
i=2,3

Φ
(α)
i (δ/rj−1).

Let

Φ
(α)
` (δ) = pq`+1r

−α
3∑
i=1

Φ
(α)
i (δ/r) + E

(α)
` (δ) for ` = 2, 3, (5.8)

where

E
(α)
` (δ) := δ−2−α(e`2(δ)− ẽ`2(δ)).

Next, we derive a vector-valued renewal equation. It follows from (3.12), (3.13), (5.7) and

(5.8) that

f1(x) =
∞∑
j=2

w2(j − 2)q(ρrj−2)−α
∑
i=1,3

fi(x+ ln(ρrj−2))

+

∞∑
j=2

(pq2r
−α)j−1

∑
i=2,3

fi(x+ ln(rj−1)) + z
(α)
1 (x),

and

f`(x) = pq`+1r
−α

3∑
i=1

fi(x+ ln(r)) + z
(α)
` (x) for ` = 2, 3,

where

z
(α)
1 (x) = E

(α)
1 (e−x)− E(α)

1,∞(e−x), z
(α)
` (x) = E

(α)
` (e−x).

For `,m = 1, 2, let µ
(α)
m` be the discrete measures such that for j ≥ 2,

µ
(α)
m1(− ln(ρrj−2)) = w2(j − 2)q(ρrj−2)−α for m = 1, 3,

µ
(α)
m1(− ln(rj−1)) = (pq2r

−α)j−1 for m = 2, 3,

µ
(α)
m` (− ln(r)) = pq`+1r

−α, for m = 1, 2, 3 and ` = 2, 3.
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Then

µ
(α)
11 (R) =

∞∑
j=2

w2(j − 2)q(ρrj−2)−α, µ
(α)
21 (R) =

∞∑
j=2

(pq2r
−α)j−1,

µ
(α)
31 (R) =

∞∑
j=2

w2(j − 2)q(ρrj−2)−α +
∞∑
j=2

(pq2r
−α)j−1,

µ
(α)
m` (R) = pq`+1r

−α, for m = 1, 2, 3 and ` = 2, 3.

For fixed q ≥ 0,

F1(α) = 2
( ∞∑
j=2

w2(j − 2)q(ρrj−2)−α +
∞∑
j=2

(pq2r
−α)j−1

)
,

F`(α) = 3pq`+1r
−α for ` = 2, 3,

D` = {α ∈ R : F`(α) <∞} for ` = 1, 2, 3,

(5.9)

and

Mα(∞) =

 a pq3r
−α pq4r

−α

b pq3r
−α pq4r

−α

a+ b pq3r
−α pq4r

−α

 ,

where a :=
∑∞

j=2w2(j − 2)q(ρrj−2)−α and b :=
∑∞

j=2(pq2r
−α)j−1.

Finally, we want to show that the error terms z
(α)
` (x) = o(e−εx) as x→∞, i.e., E

(α)
` (δ) = o(δε)

and E
(α)
1,∞(δ) = o(δε) as δ→0 for some ε > 0 and ` = 1, 2, 3.

Proposition 5.1. (a) Φ
(α)
i (δ/ρrk) ≤ 1 for i = 1, 3 and any k ≥ N − 1.

(b) Φ
(α)
i (δ/rk) ≤ 1 for i = 2, 3 and any k ≥ N .

Proof. (a) It follows from the definition of N that δ ≥ ρrk for any k ≥ N − 1. Thus

Φ
(α)
i (δ/ρrk) =

ϕi(δ/ρr
k)

(δ/ρrk)2+α
≤
∫
I1,i

µ(Bδ/ρrk(x))q dx ≤
∫
I1,i

dx ≤ 1 for i = 1, 3.

This proves part (a).

(b) The proof is similar to that of (a). �

Proposition 5.2. For q ≥ 0, let F1(α), D1 be defined as in (5.9). Then D1 is open.

Proof. The proof is similar to that of Proposition 4.3. �

Proposition 5.3. For q ≥ 0, assume that α ∈ D` for ` = 1, 2, 3. Then there exists ε > 0 such

that

(a)
∑∞

j=N+1w2(j − 2)q(ρrj−2)−α
∑

i=1,3 Φ
(α)
i (δ/ρrj−2) = o(hε);

(b)
∑∞

j=N+1(pq2r
−α)j−1

∑
i=2,3 Φ

(α)
i (δ/rj−1) = o(δε);

(c)
∑N

j=2 δ
−2−α(e1

j (δ)− ẽ1
j (δ)) = o(δε);

(d) δ−2−α ∫
IN,1,3

µ(Bδ(x))q dx = o(δε);

(e) δ−2−α(e`2(δ)− ẽ`2(δ)) = o(δε) for ` = 2, 3.
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Proof. (a) By Proposition 5.2, we have D1 = {α ∈ R : F1(α) < ∞} is open. Thus there exists

ε > 0 such that F1(α+ ε) ∈ D1. So there exists a positive constant C such that

∞∑
j=N+1

w2(j − 2)q(ρrj−2)−α−ε +

∞∑
j=N+1

(pq2r
−α−ε)j−1 ≤ C.

Since

(ρrN−1)−ε
∞∑

j=N+1

w2(j − 2)q(ρrj−2)−α ≤
∞∑

j=N+1

w2(j − 2)q(ρrj−2)−α−ε,

we have
∑∞

j=N+1w2(j − 2)q(ρrj−2)−α ≤ C(ρrN−1)ε ≤ Cδε, where the last inequality follows

from the definition of N . Combining this with Proposition 5.1(a), we have

∞∑
j=N+1

w2(j − 2)q(ρrj−2)−α
∑
i=1,3

Φ
(α)
i (δ/ρrj−2) ≤ 2Cδε.

This proves part (a).

(b) The proof is similar to that of (a).

(c) It suffices to show that e1
j (δ) = o(δ2+α+ε) and ẽ1

j (δ) = o(δ2+α+ε) for 2 ≤ j ≤ N . In order

to estimate the remaining error terms, we will need the following facts. It follows from (a) and

(b) that

w2(N − 1)q ≤ 2Cδα+ε and pNq2 ≤ 2Cδα+ε. (5.10)

By (5.5), we have

e1
j (δ) =

∑
i=1,2,4,5

∫
Îj,1,i(δ)

µ(Bδ(x, y))q dx dy.

As an example we only prove that
∫
Îj,1,1(δ)

µ(Bδ(x, y))q dx dy = o(δ2+α+ε). Note that∫
Îj,1,1(δ)

µ(Bδ(x, y))q dx dy

=
(∫ ργj−2+ρ2rj−2γ1+ργj−1

ργj−2

∫ δ

0
+

∫ ργj−2+ρ2rj−2γ1+δ

ργj−2

∫ ρ2rj−2

ρ2rj−2−δ

+

∫ ργj−2+ρ2rj−2γ1+ρrj−1

ργj−2+ρ2rj−2γ1

∫ ρrj−1

ρrj−1−δ
+

∫ ργj−2+δ

ργj−2

∫ ρ2rj−2−δ

δ

+

∫ ργj−2+ρ2rj−2γ1+δ

ργj−2+ρ2rj−2γ1

∫ ρrj−1−δ

ρ2rj−2

+

∫ ργj−2+ρ2rj−2γ1+ρrj−1

ργj−2+ρ2rj−2γ1+ρrj−1−δ

∫ ρrj−1−δ

δ

)
µ(Bδ(x, y))q dx dy

=: E1 + E2 + E3 + E4 + E5 + E6.

For E1, since
√

(ρ2rj−2γ1 + ργj−1)2 + δ2 ≤ 2ρ, we have Bδ(x, y) ⊆ B2ρ+δ(S2j−211(0, 0)) for

(x, y) ∈ (ργj−2, ργj−2 + ρ2rj−2γ1 + ργj−1)× (0, δ). Note that

µ(B2ρ+δ(S2j−211(0, 0))) = p1w2(j − 2)µ(B(2ρ+δ)/ρ2rj−2(0, 0)) ≤ p1w2(j − 2)
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and for 0 ≤ k ≤ N − 2,

w2(k) =
p1(pN−1

2 + pN−2
2 p3 + · · ·+ pN−1

3 )(pk2 + pk−1
2 p3 + · · ·+ pk3)

(pN−1
2 + pN−2

2 p3 + · · ·+ pN−1
3 )

≤ w1(N − 1)(p2 + p3)k

pN−1
2 + pN−2

2 p3 + · · ·+ pN−1
3

≤ p1−N
2 w2(N − 1). (5.11)

Combining these with the definition of N , we have

E1 ≤ (p1w2(j − 2))q(ρ2rj−2γ1 + ργj−1)δ ≤ 2ρpq1w2(j − 2)qδ

≤ 2pq1p
(1−N)q
2 w2(N − 1)qρrN−1r1−N ≤ 2(p1p

1−N
2 )qr1−Nδ2+α+ε.

The proofs for E2 ≤ Cδ2+α+ε and E3 ≤ Cδ2+α+ε are similar.

For E4, since

E4 ≤
∫ ργj−2+δ

ργj−2

∫ ρ2rj−2−δ

0
µ(Bδ(x, y))q dx dy

and
√

(δ2 + (ρ2rj−2 − δ)2 ≤ ρ2rj−2 ≤ ρ2, we have Bδ(x, y) ⊆ Bρ2+δ(S2j−212(0, 0)) for (x, y) ∈
(ργj−2, ργj−2 +δ)×(0, ρ2rj−2−δ). Note that µ(Bρ2+δ(S2j−212(0, 0))) ≤ p2w2(j−2). Combining

these with (5.10), (5.11) and the definition of N , we have

E4 ≤ (p2w2(j − 2))q(ρ2rj−2 − δ)δ ≤ pq2w2(j − 2)qρ2δ

≤ p
(2−N)q
2 w2(N − 1)qρr1−NρrN−1δ

≤ 2Cρr1−Np
(2−N)q
2 δ2+α+ε.

The proofs for E5 ≤ Cδ2+α+ε and E6 ≤ Cδ2+α+ε are similar.

Combining the estimates for E1, . . . , E6, we have
∫
Îj,1,1(δ)

µ(Bδ(x, y))q dx dy ≤ Cδ2+α+ε.

Next, we will show that ẽ1
j (δ) = o(δ2+α+ε). By (5.5), we have

ẽ1
j (δ) = w2(j − 2)q(ρrj−2)2

(∫
Î1,1(δ/ρrj−2)

+

∫
Î1,3(δ/ρrj−2)

)
µ(Bδ/ρrj−2(x))q dx

+(pq2r
2)j−1

(∫
Î1,2(δ/rj−1)

+

∫
Î1,3(δ/rj−1)

)
µ(Bδ/rj−1(x))q dx.

As an example we only prove

w2(j − 2)q(ρrj−2)2

∫
Î1,1(δ/ρrj−2)

µ(Bδ/ρrj−2(x))q dx = o(δ2+α+ε).
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Note that

w2(j − 2)q(ρrj−2)2

∫
Î1,1(δ/ρrj−2)

µ(Bδ/ρrj−2(x))q dx

= w2(j − 2)q(ρrj−2)2
(∫ ργ1+r

0

∫ δ/ρrj−2

0
+

∫ ργ1+δ/ρrj−2

0

∫ ρ

ρ−δ/ρrj−2

+

∫ ργ1+r

ργ1

∫ r

r−δ/ρrj−2

+

∫ δ/ρrj−2

0

∫ ρ−δ/ρrj−2

δ/ρrj−2

+

∫ ργ1+δ/ρrj−2

ργ1

∫ r−δ/ρrj−2

ρ

+

∫ ργ1+r

ργ1+r−δ/ρrj−2

∫ r−δ/ρrj−2

δ/ρrj−2

)
µ(Bδ/ρrj−2(x, y)q dx dy

=: Ẽ1 + Ẽ2 + Ẽ3 + Ẽ4 + Ẽ5 + Ẽ6.

Since
√

(ργ1 + r)2 + (δ/ρrj−2)2 ≤ ρ+ r + δ/ρrj−2, we have

Bδ/ρrj−2(x, y) ⊆ Bρ+r+2δ/ρrj−2(S1(0, 0)).

Note that µ(Bρ+r+2δ/ρrj−2)(S1(0, 0)) ≤ p1. Thus

Ẽ1 ≤ w2(j − 2)q(ρrj−2)2pq1(ργ1 + r)δ/ρrj−2 ≤ w2(j − 2)qρrj−2pq1(ρ+ r)δ

≤ pq1p
(1−N)q
2 w2(N − 1)qρ(ρ+ r)δ ≤ r1−N (p1p

1−N
2 )qw2(N − 1)qρ(ρrN−1 + rN )δ

≤ 2Cρr1−N (p1p
1−N
2 )qδ2+α+ε.

The proofs for Ẽ2 ≤ Cδ2+α+ε and Ẽ3 ≤ Cδ2+α+ε are similar. For Ẽ4, we have

Ẽ4 ≤ w2(j − 2)q(ρrj−2)2

∫ δ/ρrj−2

0

∫ ρ−δ/ρrj−2

0
µ(Bδ/ρrj−2(x, y)q dx dy

≤ w2(j − 2)q(ρrj−2)2µ(Bρ+δ/ρrj−2(S1(0, 0)))q(ρ− δ/ρrj−2)δ/ρrj−2

≤ pq1p
(1−N)q
2 w2(N − 1)q(ρ2rj−2 − δ)δ

≤ (p1p
1−N
2 )qw2(N − 1)qρrN−1ρr1−Nδ

≤ 2Cρr1−N (p1p
1−N
2 )qδ2+α+ε.

The proofs for Ẽ5 ≤ Cδ2+α+ε and Ẽ6 ≤ Cδ2+α+ε are similar. Hence,

w2(j − 2)q(ρrj−2)2

∫
Î1,1(δ/ρrj−2)

µ(Bδ/ρrj−2(x))q dx = o(δ2+α+ε).

Similarly, we can derive analogous results for the second, third and fourth terms of ẽ1
j (δ). Thus

ẽ1
j (δ) = o(δ2+α+ε). This proves part (c).
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(d) It suffices to show that
∫
IN,1,3

µ(Bδ(x))q dx ≤ Cδ2+α+ε. It follows from (5.1) and Propo-

sition 2.20(d) that ∫
IN,1,3

µ(Bδ(x))q dx

=
(∫ ργN

ργN−1

∫ ρrN−1

0
+

∫ ργN+rN

ργN

∫ rN

0

)
µ(Bδ(x, y))q dx dy

=
(∫ ργN+δ

ργN−1+δ

∫ ρrN−1−δ

δ
+

∫ ργN+rN−δ

ργN+δ

∫ rN−δ

δ

+

∫ ργN+rN

ργN−1

∫ δ

0
+

∫ ργN+δ

ργN−1

∫ ρrN−1

ρrN−1−δ

+

∫ ργN+rN

ργN

∫ rN

rN−δ
+

∫ ργN−1+δ

ργN−1

∫ ρrN−1−δ

δ

+

∫ ργN+δ

ργN

∫ rN−δ

ρrN−1

+

∫ ργN+rN

ργN+rN−δ

∫ rN−δ

δ

)
µ(Bδ(x, y))q dx dy

=: EN1 + EN2 + EN3 + EN4 + EN5 + EN6 + EN7 + EN8 .

By Lemma 2.22(c), we have µ|S
2N−1 (I1,1) = w2(N − 2)µ ◦ S−1

2N−21
+ pN−1

2 µ ◦ S−1
2N−1 , and hence

µ(S2N−1(I1,1)) ≤ w2(N −2) +pN−1
2 . Since Bδ(x, y) ⊆ S2N−1(I1,1) for (x, y) ∈ (ργN−1 + δ, ργN +

δ)× (δ, ρrN−1 − δ) ∪ (ργN + δ, ργN + rN − δ)× (δ, rN − δ), (5.10) implies

EN1 + EN2 ≤ (w2(N − 2) + pN−1
2 )q

(
(ργN − ργN−1)(ρrN−1 − 2δ) + (rN − 2δ)2

)
≤ (p1−N

2 w2(N − 1) + p−1
2 pN2 )((ρrN−1)2 + r2N )

≤ 2C(p1−N
2 + p−1

2 )δ2+α+ε.

For the other six terms, we have

EN3 ≤ µ(Bρr+2δ(S2N−11(0, 0)))q(ργN + rN − ργN−1)δ

≤ w2(N − 1)q(rN + ρrN−1)δ ≤ 2Cδ2+α+ε.

The proofs for EN4 ≤ Cδ2+α+ε and EN5 ≤ Cδ2+α+ε are similar. For EN6 , we have

EN6 ≤
∫ ργN−1+δ

ργN−1

∫ ρrN−1−δ

0
µ(Bδ(x, y))q dx dy

≤ µ(Bρr+δ(S1(0, 0)))q(ρrN−1 − δ)δ ≤ pq1ρr
N−1δ

≤ pq1p
−Nq
2 pNq2 δ2 ≤ 2C(p1p

−N
2 )qδ2+α+ε.

The proofs for EN7 ≤ Cδ2+α+ε and EN8 ≤ Cδ2+α+ε are similar. This proves part (d); part (e)

can be proved similarly. �

Proof of Theorem 1.4. Combining Theorem 1.1 and Proposition 5.3, we have τ(q) = α. Let

G(q, α) :=
(
1− pq2r

−α)(1− pq3r−α) ∞∑
k=0

w2(k)q(ρrk)−α + r−α
4∑
i=2

pqi − 1.
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Similar to the proof of Theorem 1.2, we can show that G(q, α) is C1 and that Gα(q, α) 6= 0 for

any (q, α) satisfying G(a, α) = 0. The implicit function theorem now implies that τ is differen-

tiable on (0,∞) and the formula for dimH(µ) follows by computing τ ′(1) = −Gq(1, 0)Gα(1, 0)−1.

This completes the proof. �

Figure 11 shows graphs of τ(q) and f(α) for one of the measures. For this example, dimH(µ) =

τ ′(1) ≈ 1.13748 and dimH(K) = −τ(0) ≈ 1.18726, where K is the self-similar set.
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Figure 11. Graphs of τ(q) and f(α) for a self-similar measure in Example 2.18,
with r = 7/20 and ρ = pi = 1/4 for i = 1, 2, 3, 4.

6. Comments and questions

The spectral dimension of certain infinite IFSs has been computed in [22]. The method in

this paper can be applied to those IFSs to obtain τ(q).

It is interesting to compute τ(q) for q < 0 and see whether there is any phase transition. Our

method cannot be applied to this case.

Infinite Bernoulli convolutions associated with Pisot numbers (and have overlaps) do not sat-

isfy Condition (B), and second-order identities are satisfied only by the one associated with the

golden ratio. It is of interest to compute the spectral dimension of infinite Bernoulli convolutions

associated with other Pisot numbers; new techniques are perhaps needed.
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