LI-SPECTRUM OF SELF-SIMILAR MEASURES WITH OVERLAPS IN
THE ABSENCE OF SECOND-ORDER IDENTITIES

SZE-MAN NGAI AND YUANYUAN XIE

ABSTRACT. For a self-similar measure in R? with overlaps but satisfies the so-called “bounded
measure type condition” introduced by Tang and the authors, we set up a framework for
deriving a closed formula for the L7-spectrum of the measure for ¢ > 0. The framework allows
us to include iterated function systems that have different contraction ratios and those in higher
dimension. For self-similar measures with overlaps, closed formulas for 7(¢) have only been
obtained earlier for measures satisfying Strichartz second-order identities. We illustrate how
to use our results to prove the differentiability of the L?-spectrum, obtain the multifractal
dimension spectrum, and compute the Hausdorff dimension of the measure.
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1. INTRODUCTION

Let i be a positive finite Borel measure on R? whose support supp(u) is compact. For g € R,
the Li-spectrum 7(q) of p is defined as

| u(Bgs(x;))?
) =t PP Z A Bale)!,
5—0+ n

where Bj(z;) is a disjoint family of d-balls with center x; € supp(u) and the supremum is taken

over all such families. The function 7(gq) arises in the theory of multifractal decomposition of

Date: January 23, 2017.

2010 Mathematics Subject Classification. Primary: 28A80, 28A78.

Key words and phrases. Fractal, Li-spectrum, multifractal formalism, self-similar measures with overlaps,
bounded measure type condition.

The authors are supported in part by the National Natural Science Foundation of China, Grant 11271122 and
Construct Program of the Key Discipline in Hunan Province. The first author is also supported by the Center
of Mathematical Sciences and Applications (CMSA) of Harvard University and the Hunan Province Hundred
Talents Program.

1



2 S.-M. NGAI AND Y. XIE

measures. A major goal of the theory is to compute the following dimension spectrum:

| Inp(Bs(@))
=d € :lim ——— =
f(@) = dimy {x supp(u) : lim ——— ar,
where dimp denotes Hausdorff dimension. The multifractal formalism, a heuristic principle
first proposed by physicists (see [7,[8] and the references therein), asserts that the dimension

spectrum is equal to the Legendre transform of 7(q), i.e.,
fla) =7"(a) :=inf{ga — 7(q) : ¢ € R}.

We are mainly interested in self-similar measures. For such measures, the multifractal for-
malism has been verified rigorously for those satisfying the separated open set condition [1},3].
For self-similar measures defined by iterated function systems satisfying the weak separation
condition, Lau and the first author [13] proved that if 7(¢) is differentiable at ¢ > 0, then
the multifractal formulism at the corresponding point holds. Feng and Lau [5| removed the
differentiability condition; they also studied the validity of the multiformal formalism in the

region g < 0.

The L4-spectrum also encodes other important information of the measure. For example,
7(0) is the negative of the box dimension of u; if 7 is differentiable at ¢ = 1, then 7/(1) is
equal to the Hausdorff dimension of p (see [9,[13}/19,23] and the references therein); for ¢ > 1,
7(q)/(q — 1) is the Li-dimension of u (see [24]).

The computation of Li-spectrum thus plays a key role in the theory of multifractal measures.
For self-similar and graph-directed self-similar measures satisfying the open set condition, 7(q)
is computed by Cawley and Mauldin [1] and Edgar and Mauldin [3]. For self-similar measures
with overlaps, the computation is much more difficult. Lau and the first author obtained 7(q),
g > 0, for the infinite Bernoulli convolution associated with the golden ratio [12] and a class of
convolutions of Cantor measures [14]. Feng [4] computed 7(g) for infinite Bernoulli convolutions
associated with a class of Pisot numbers. The graph of 7(¢q) for ¢ < 0 has been studied by Lau,
Wang, Feng and Olivier [4,6,17].

The computation of 7(¢) in [12] and [14] makes use of Strichartz second-order self-similar
identities. Unfortunately, very few self-similar measures satisfy these identities. Thus, closed
formulas for 7(¢) have been obtained for only a few classes of measures that are defined by
iterated function systems on R with the same contraction ratio. The main objective of this paper
is to derive a closed formula for 7(q), ¢ > 0, for self-similar measures satisfying the so-called
bounded measure type condition (Condition (B)) introduced in [22]. It is worth mentioning
that recently G. Deng and the first author [2] used a infinite matrix method to obtain the
differentiability of the L9-spectrum for a class if IF'Ss that includes some of those studies in this

paper; however, the method does not yield a closed formula for 7(q).

Throughout this paper an iterated function system (IFS) refers to a finite family of contrac-

tions defined on a compact subset X of R%. The derivation of 7(¢) in this paper is based on
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the following equivalent definition, which holds for g > 0:

(q) :inf{a: Fm Miy/xu(zaé(a:))qczx >o}. (1.1)

d—0*t
(see |11,/12] and |13, Proposition 3.1]).

Let u be a self-similar measure defined by a finite type IFS (see [10,15,21]) on R?. In Section
we define the set of all level-k islands Jj (see Definition . Intuitively, each level-k island
corresponds to a connected component of the level-k iterates of some fixed open set €; moreover,
two islands Z; and Zy are of the same measure type (with respect to p) if p|r, = culy, o S71
for some constant ¢ > 0 and some similitude S : Iy — I5, where I; (j = 1,2) is the component

corresponding to Z;, and p|r denotes the restriction of the measure p to F' C R7.

To compute 7(q) we divide level-k iterates of some fixed bounded open set 2 under the IFS
into connected components called level-k islands, and classify them into measure types. Our
main assumption is Condition (B) introduced in [22], which, loosely speaking, holds if there
exists some k > 1 such that there is a uniform bound on those level-m (m > k) islands whose
measure types, as well the measure types of their ancestors up to level k + 1, are different from
that of any level-k island. If k =: k; is the smallest integer satisfying this condition, we call the
corresponding Jj, =: Ij the basic set of islands (see Definition .

Assume {S;};ca is a finite type IFS on R? (see [15]) with © being a finite type condition set
and assume that Condition (B) holds with I, being the basic set of islands. Let I := {Z; s}¢er C
I, be a minimal subset such that the measure type of any island in I, equals that of some island
in I. Fix ¢ > 0, define

1
0u(6) == /I p(Bs(x))?dr  and  ®{(5) = srraped)  for (€T,
1,4

where I ¢ := Sz, ,(€2). Then we can derive renewal equations for <I>§a) (0), and express them in

vector form as:

f=1f«M,+z,
where a € R, and
£ =) = [ @)er, zER;
fe(a) (x) := @éa) (e7*) for £ eT;

(1.2)
M, = [uffi‘g lemer is a finite matrix of Borel measures on R;
z =12z z) = éa) (x)]eer is a vector of error functions.
Let
Mo (o0) = [l ®)] (13)
mé Lmel
For each £ € I and a € R, define
Fila) := Z uggg(R) and Dy:={a€R: Fyla) < oo}. (1.4)

mel
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If the error functions decay exponentially to 0 as  — oo, then the Li-spectrum of y is given by
the unique « such that the spectral radius of M, (o0) is equal to 1. The following is our main

result.

Theorem 1.1. Let p be a self-similar measure defined by a finite type IFS {S}ie,\ on R?,
Assume that p satisfies Condition (B). Let My (00) and Fy(a) be defined as in and (L.4).

(a) There exists a unique oo € R such that the spectral radius of My (00) is equal to 1.
(b) If we assume, in addition, that for the unique « in (a), there exists e > 0 such that for
alliel, zé“) () =o0(e™*) as v — oo . Then 7(q) = a for ¢ > 0.

In Section [4] we illustrate Theorem by the following family of IFSs on R:
Si(x) = pz, So(z) =re+ p(l —r), S3(x) =rx+1-—r, (1.5)
where the contraction ratios p,r € (0, 1) satisfy
p+2r—pr<1, (1.6)

i.e., S5(1) < S5(0) (see Figure [1). This family of IFSs is first studied by Lau and Wang [16],
and is used to illustrate the (general) finite type condition in [10,15]. For a probability vector

(pi)3_;, we define
k

wy (k) == Zpg_jpé, k>0. (1.7)
§=0

Theorem 1.2. Let p be a self-similar measure defined by an IFS in (1.5) together with a
probability vector (p;)3_,, and wi(k) be defined as in (L.7). Then for ¢ > 0, there exists a
unique real number o := «(q) satisfying

(1 = phrT)(1 = plr~ Zwl VT (pd 4 pd) = 1. (1.8)

Hence 7(q) = a. Moreover, 7 is differentiable on (0,00) and

dimy) = (1) =

3 0o 3
( sz Inp; — p2p32hlpz Zw1 (H(l —p¢)> > wi(k) Inwi(k) - Zpi lnpi)
k=0 i=2 k=0 '
3 o)
X ((Pz + p3 — 2]?2]?3) Zwl(kz) Inr — (H(l —pi)) Zwl( In( pr Zpl lnr) !
i=2 k=0

k=0

Remark 1.3. Substituting ¢ = 0 in (1.8) gives p~ 7O + 2r=70) — (pr)=7) = 1. Hence —7(0)
is the Hausdorff dimension of the corresponding self-similar set (see [10,|15,16]).

In Section {4} we illustrate Theorem by the following family of IFSs on R?:
S1(x) = px, Sa(x) = rx + (p — pr,0),

(1.9)
S3(x) =rx+ (1 —r,0), Si(x) =rx+ (0,1 —r),



L4-SPECTRUM OF SELF-SIMILAR MEASURES 5

where the contraction ratios p,r € (0, 1) satisfy
p+2r—pr<1, (1.10)
i.e., S2(1,0) < S5(0,0) (see Figure (a)). For any probability vector (p;)i_;, define

k
k) :=m Zpg_jpé, k>0. (1.11)

Theorem 1.4. Let pu be a self-similar measure defined by any IFS in (1.9) together with a
probability vector (p;)i_;, and wa(k) be defined as in (L.11]). For q > 0, there exists a unique

real number o := a(q) satisfying

)(1 - plr— ZwQ ey pl=1. (1.12)

Hence 7(q) = a. Moreover, T is dzﬁerentmble on (0,00) and
dimp (p) = 7'(1) =

3 3 00 3 o) 4
(( > pilnp; —pops > Inpi) Y wa(k) - (H(l - pi)) > wa(k) Inws(k) — Zpi lnpi)
i—2 i—2 k=0 i=2 k=0 ;
00 3 o)
X ((pz + p3 — 2pap3) Zw2(/€) Inr — <H(1 —pi)) ng( ) In(pr*) sz lnr> -
k=0 i=2 k=0

Remark 1.5. Substituting ¢ = 0 into (1.12), we get p~™O) + 3r=7) — (pr)=70) = 1. Again,
—7(0) is the Hausdorff dimension of the corresponding self-similar set (see [15, Example 5.2]).

Oé

p (1 —phr~

We use the vector-valued renewal theorem of Lau, Wang and Chu [18] to derive the stated
formulas for 7(q); the classical renewal theorem used in [12] and |14] is not sufficient, as a
finite number of renewal equations arise in our derivations. New techniques are also used in

estimating the error terms and in proving the differentiability of 7(q).

This paper is organized as follows. In Section [2, we briefly recall the definition of Condition
(B). In Section [3| we derive renewal equations and prove Theorem Section {4 illustrates
Theorem by the class of one-dimensional IFSs and prove Theorem Section
studies IF'Ss in higher dimension and prove Theorem Finally we state some comments and

open questions in Section [6]

2. SELF-SIMILAR MEASURES OF BOUNDED MEASURE TYPE

In this section, we recall the definition of Condition (B) and then prove that it is satisfied by
the self-similar measures defined by the IFSs in (|1.9).

Let X be a compact subset of R? with nonempty interior, and {S;};ca be an IFS of contractive
similitudes on X with attractor K C RY. To each probability vector (p;)iea (i-e., p; > 0 and
Y ica Pi = 1), let pu be the associated self-similar measure, which satisfies the self-similar identity

p=> piposS;".

€A
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Moreover, supp(u) = K.

2.1. Finite type condition and measure type. For k£ > 1, define
A* = {(iy, ..., ix) vije AMor j=1,...,k},
where we call i € A¥ a word of length k, and denote its length by |i|. If k = 0, we define A? :=
{0}. Also, we let A* := |J,> A¥. We frequently write 4 := iy - - - i), instead of 4 = (i1,..., i) if
no confusion is possible; in particular, we write ¢ =: ¥, if ij =141 forall j =1,... k. For k>0
and ¢ =iy - - i, € A¥, we use the standard notation
S’i = Silo"'OSik, Tq =Ty Ty, Di = Diy " DPig»

with Sy :=id, 7y = py := 1, where id is the identity map on R

For two indices %, € A*, we write ¢ < 7 if 4 is a prefix of § or ¢ = j, and denote by ¢ £ j if
1 < g does not hold. Let {M}2°, be a sequence of index sets, where M, C A*. Let

my, = my(My) :=min{|¢| : 4 € M} and Mg = mEp(My) := max{|i| : 1 € My}.

We also let Mg := {0}.

Definition 2.1. We say that { M} is a sequence of nested index sets if it satisfies the

following conditions:

(1) both {m;} and {my} are nondecreasing, and limy_, oo my, = limg_, o Mg = 00;

(2) for each k> 1, My, is an antichain in A*;

(3) for each 3 € A* with |j| > my or j € Mpyy1, there exists i € My, such that i < j;
(4) for each 3 € A* with |j| < my, or j € Mg_1, there exists i € My, such that j < 1;
(5) there exists a positive integer Lo, independent of k, such that for all i € My and

J € Myy1 with © < 3, we have |j] —|t| < Lo.

To define neighborhood types, we fix a sequence of nested index sets { My }72,.

Notation 2.2. (1) For each integer k > 0, let Vi, be the set of level-k vertices (with respect
to {My}) defined as
Vo := {(id, 0)} and Vi :={(Si,k) 11 € My} forallk > 1.

We call (id,0) the root vertex and denote it by Vyoot-
(2) Let V := Uy Vi be the set of all vertices.
(3) For v = (S;,k) € Vi, we use the convenient notation Sy, = S; and 1y := 1. It is
possible to have v = (S;, k) = (S5,k) with © # j.
(4) More generally, for any k > 0 and any subset A C Vi, we use the notation
Sa(9) = Su(Q). (2.1)
veA
Let  C X be a nonempty bounded open set which is invariant under {S; }ien, i-e., [J;ep Si(22) €

Q. Such an ) exists by our assumption; in particular, X° is such a set.

Next, we recall the definitions of neighbors and neighborhoods.
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Definition 2.3. We say that two level-k vertices v,v’' € V} (allowing v = v’) are neighbors
(with respect to Q and {My}) if Su(2) NSy (Q) # 0. We call the set of vertices

Na(v) = {v' : v € Vi is a neighbor of v}

the neighborhood of v (with respect to Q and { My} ).

Obviously v € 9g(v). If no confusion is possible, we omit the subscript © in Ng(v).

Let .7 := {S;S; 14,5 € A*}. We define an equivalence relation on the set of vertices V.

Definition 2.4. Two vertices v € Vi, and v’ € Vi are said to be equivalent, denoted by v ~, v’
(or simply v ~ V'), if for o = Sy Syl (€ .¥) : Unenw) Su(X) = X, the following conditions
hold:

(1) {Sw :u' €NW)} = {0Su: u € N(v)}; in particular, 5S, is defined for all u € N(v).
(2) foru € N(v) andu' € N(V') such that Sy = 0Su, and for any positive integer £ > 1, an
index i € N* satisfies (SuSi, k+0) € Viiy if and only if it satisfies (SySi, k' +0) € Vi iy

It is direct to check that ~ is an equivalence relation. We denote the equivalence class

containing v by [v] and call it the (neighborhood) type of v (with respect to Q and {My}).

We define an infinite graph G with vertex set V and directed edges defined as follows. Let
v €V and u € Vj41. Suppose there exists ¢ € My, 3 € My41, and I € A* such that

v=(5;k), u=(S5,k+1), Jj=(3,1).

Then we connect a directed edge I : v — u. We call v a parent of w and w an offspring of v.
We write G = (V, ), where £ is the set of all directed edges defined above.

Definition 2.5. Let {S;}icn be an IFS of contractive similitudes on a compact subset X C R%,
We say that {S;}ica is of finite type (or that it satisfies the finite type condition) if there exists
a sequence of nested index sets { My}, and a nonempty bounded invariant open set & C X
such that, with respect to Q and {My}, the set of equivalence classes V/~ := {[v] : v € V} is
finite. We call such an € a finite type condition set (or FTC set).

Definition 2.6. A subset Z C V, is called a level-k island (with respect to Q and {My}) if
S7(82) is a connected component of Sy, (£2).

Remark 2.7. (1) For each v € V, there exists a unique island, denoted by Z(v), contain-
ing v and, moreover, N(v) C Z(v).
(2) If {Si}ien satisfies (OSC) with 2 being an OSC set, then Z(v) = {v} for allv € V.

Notation 2.8. (1) Let

Ok :=A{T: T is a level-k island} ~ and  3:= | %
k>0

be the collection of all level-k islands and the collection of all islands, respectively.
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(2) Generalizing (2.1), for any k > 0 and any subset B C Ty, we use the notation

Sp(Q) == | 52(%).
ZeB
Definition 2.9. We say that two islands T € Jj, and ' € Ty are equivalent, and denote it by
I =e T (or simply, T =T'), if there exists some o € . such that {Sy :v' € T'} = {05, : v €

T} and, moreover, v ~, v’ for any v € T and v' € T’ satisfying Sy = 0S,.

Notation 2.10. (1) We denote the equivalence class of Z by [Z] and we call [Z] the (island)
type of L.
(2) ForZ € 3, T' € Jgs1, I is said to be a parent of ' and I' an offspring of T if for any
v €', T contains some parent of v. For any k >0 and Z € Jy, let

O):={J : TJ is an offspring of T} (2.2)
be the collection of all offspring of I.

Definition 2.11. Let p be a self-similar measure defined by an IFS {S;}ica of finite type with
Q being an FTC set. Two equivalent vertices v € Vi, and v’ € Vyy are u-equivalent, denoted by

V ~pow U (or simply v ~, V') if for 0 = Sy 0 Sy 1, there exists a number w > 0 such that

-1
1] Sy (@) = W Ky @) 00

As ~ is an equivalence relation, so is ~,. Denote the p-equivalence class of v by [v], and call
it the (neighborhood) measure type of v (with respect to , {My} and p). Intuitively, v ~,, v’
means that the measures p| Sor(o) () and | Soncory () have the same structure. The following
proposition shows that p-equivalent vertices generate the same number of offspring of each

neighborhood measure type. The proof can be found in [22].

Proposition 2.12. For two equivalent vertices v € Vi, and v’ € Vi, let {u;}icp, and {u;}ieA/l
be the offspring of v and v’ in G, respectively. If [v], = [v'],, then, counting multiplicity,
{lwily i€ A} ={[uf], :ie AP}

Definition 2.13. Let p be a self-similar measure defined by a finite type IFS {S;}icn on R?
with Q being an FTC set. Two islands T € T and I’ € Ty are said to be p-equivalent, denoted
T Ryow (orsimplyZ =, T'), if T =, 1" and there exists some w > 0 such that

pls, @) = w- s,y 00 (2.3)

We remark that holds if and only if v ~ 5, v’ for any v € Z and v’ € 7’ satisfying
Sy = 0S5,. We note that ~, is an equivalence relation. We denote the p-equivalence class of 7
by [Z],, and call [Z],, the (island) measure type of Z (with respect to Q, {My} and p). From the
definition of ~,, we obtain an analog of Proposition @ concerning ~,. That is, p-equivalent

islands generate the same number of offspring of each island measure type.

Definition 2.14. Let p be a self-similar measure defined by a finite type IFS. Let B C Jy for
k>0 and B, :== {[Z], : T € B}. We call Z a level-2 nonbasic island with respect to B if
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T € O(J) for some J € B and [, ¢ B,. Inductively, for £ > 3, we call Z a level-¢ nonbasic
island with respect to B if T is an offspring of some level-(¢ — 1) nonbasic island with respect
to B and (1], ¢ B,.

We remark that, by definition, for any £ > 2, 7 is a level-£ nonbasic island with respect to
B if and only if there exists a finite sequence of {Z;,}{_, such that Z; € B, Z, = Z, [Z;], ¢ By,
and Z; is an offspring of Z; 1 for all ¢ = 2,..., ¢. In particular, Z; is a level-i nonbasic island
with respect to B for allt =2,... /.

Definition 2.15. Let p be a self-similar measure defined by a finite type IFS on R%. We say
that 1 satisfies Condition (B) if there exists some k > 1 such that the number of level-¢ nonbasic
islands with respect to Ty is uniformly bounded for all £ > k. If k =: ky is the minimum non-
negative integer satisfying this condition, then we call the corresponding Ji, =: I, the basic set
of islands.

The following two classes of examples for Condition (B) are proved in [22].

Example 2.16. Let u be a self-similar measure defined by an IFS {S;}ica in R satisfying
(0SC). Then u satisfies Condition (B).

Let {S;}?_, be defined as in (L.5) and p be the self-similar measure associated with a prob-
ability vector (p;)3_;. Let wi(k), k > 0, be defined as in (1.7). We remark that for k& > 0,
pips T+ powr (k) = piph ™ + pawi (k) = wi(k+1) and wi(k+1) <wi(k) <pi.  (2.4)

Example 2.17. Let u be the self-similar measure defined by any of the IFSs {S;}3_; in (L.5))
together with a probability vector (p;)}_,. Then u satisfies Condition (B).

Sl 53

Sa

FIGURE 1. The first iteration of {S;}3_; defined in (L.5). The figure is drawn
with p=1/3 and r = 2/7.

2.2. Condition (B) for a class of IFSs on R2. In this subsection, we prove that any self-
similar measure defined by an IFS in (1.9) satisfies Condition (B).

Let {Si}le be defined as in (1.9 and p be the self-similar measure associated with a prob-
ability vector (p;)i_;. Let wa(k), k > 0, be defined as in (L.11)). We remark that for k > 0,

p1p1§+1 + powa (k) = p1p§+1 + pswa(k) = wa(k + 1), wa(k + 1) < wa(k) < pr1. (2.5)
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Throughout this subsection we let X = [0,1] x [0, 1],
Q=X° and W, :={2""13":i=0,1,...,n}, n>1. (2.6)
To simplify notation we let
v =1 — 1k k> 0. (2.7)
Define
T =A{(51,1), (52, 1)}, Tiz:={(531)},  Zig:={(51)} (2.8)
(see Figure[2(a)) and
I = 57,,(Q)

S1(92) U S2(€2) = (0, p71) x (0, ) U (py1, pm1 + 1) % (0,7),
I o = 81, ,(2) = 93(Q) = (91,1) x (0,7), (2.9)
I3 := 51, 5(Q) = S4(Q) = (0,7r) x (71,1),

where 7; ;,7 = 1,2, 3, are defined in .

Example 2.18. Let u be a self-similar measure defined by an IFS {S;}}_; in (1.9) together
with a probability vector (p;)}_,. Let Q and W,, be as in ([2.6). Then u satisfies Condition (B).

To prove Example we first summarize without proof some elementary properties.

Proposition 2.19. Let {S;}}, be as in (1.9) and {Z1,;}?_, be as in [2.8). The following

relations hold:

(a) Siz = Sa1. Moreover, for any i,j € W,, S; = Sj.
(b) 31 ={T11,Z12, 71 3}.

Proposition 2.20. Assume the hypotheses of Example and {1, ;}3_, defined as in (2.9).
Then (a)—(c) below hold, and (d)-(f) hold for all k > 0:

(a)
S3(I1,1) =(n, (L4 pr)y) x (0, pr) U (1 + pr)m, (1 + pr)m +12) x (0,77),
Sa(Ia) =(0, pry1) x (vi,71 + pr) U (pron, pryn +72) x (y,m + 7).
(b)
Si(L12) = (py1.p) x (0, pr),
S3(I12) = (72,1) x (0,72),
(I12) = (ry1,7) x (v, +77).
(c) S3(I1,3) = (vi,m1 +77) x (ry1,7) and Sy(I13) = (0,7%) x (72, 1).
(d)

I

Sor1(I11) =(pvk, ok + pry1) x (0, p*rF)u
(pvk + P2rFyn, pyie + P2y + prfth) x (0, pri T,

Sor1(I1,3) =(pVk, pw + pr™) x (prFay, pr®).
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Sor (11,1) =(pVks pYk41) X (0, 07%) U (01, pyigr + rFT1) x (0,71,
Sor(I1,2) =(r* 71 + pye, 7% + pyi) x (0,751,
Sor(I1,3) =(pve, pis + 7Y x (rFyq, 7).

() Sok1(2) = (pyk, p) % (0, pr*) and Sy () = (pyk, pyx + %) x (0,7%).

Proof. (a)—(c) follow from ({2.9)), and (d)—(f) can be proved directly by induction; we omit the
details. 0

Lemma 2.21. Assume the hypotheses of Proposition[2.20. Then

3
p(S1(Q) NS5 () = o [ S1(1) N1 86(Q)) = (S () fork =1 (2.10)
=1

Proof. First, we prove the first equality in (2.10). Since u(S1(Q)) = u(Ui_;S1(11,)), we have
uw(S1(Q)NA)= M((U;”:lSl(Il,i)) NA)= ,u( U?:l 51(1171') N Sok (Q)) for any A C Q.

Next, we show that
3
U Sl(Il,i) N SQk(Q) = Szkl(Q) for all £ > 1. (2.11)

i=1
By Proposition [2.20(b,d,f), we have

Si(Ii1) = (0, *11) % (0,0%) U (p*y1, p* 11 + pr) x (0, pr),

S1(L1,2) = (pn1,p) % (0, pr), Si(L1,3) = (0, pr) x (p71.p),
and S2(Q) = (py1,py1 + 1) x (0,7). It follows from (1.10) that pr 4+ p?>y1 < py1 and hence
S1(11,1) N S2(Q) = 0. Since p < r+ py1, we have Si(I12) N S2(Q2) = (py1,p) X (0, pr) = S21(Q),
where in the last equality we use Proposition (f) Since r < 71, we have pr < pvi, and thus
S1(I1.3) N S2(Q) = 0. Hence |J2_, S1(114) N S2(2) = S91(Q). Assume that the stated inequality
holds for k = m, i.e., U?:l Sl(llﬂ') ﬂSQm (Q) = ngl(Q). Then Sl (11,2) ﬁSQm (Q) = ngl(Q) and
S (Il,i) N Sgm (Q) = fori= 1,3. For kK = m+1, since 51(1172') N Som+1 (Q) - Sl(Il,i) N Sgm (Q),
we have S1(I1;) N Som+1(Q2) =0 for i = 1,3. By (2.9) and Proposition a), we have

S (11,2) N Som+1 (Q)
= 513(9) N 52m+1(Q) = 591 (Q) N Som+1 (Q)
= 55(S1(2) NS () = S2 (U1 S1(114)) N Sam ()

) =
) =

3
= 5(USi013) N 82() = Sa(Sm1 () = Symeny ().
i=1

This proves (2.11)). Hence the second inequality in (2.10f) holds. O
Part (a) of the following lemma explains the meaning of the factor ws(k).

Lemma 2.22. Assume the hypotheses of Proposition (2.20) and let wo(k) be defined as in
(1.11). Then
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(a) for k>0 andi=1,3, pls, (1, =w2(k)po S;kll;

(b) for k> 1, plg , (1,,) = walk — Do Syt + phpo Syt
(c) for k>1 andi=2,3, plg, (1,,) = P5poSy';

(d) fori=1,2,3 and j = 3,4, pls,1,,) = pj o pln -

Proof. We only prove (a) for i = 1 as an example. By Proposition d), we have
S1(I1,1) = (0, p*y1) x (0, p°) U (01, pr + p*m) x (0, pr).

Note that So(2) = (py1, py1+7) x (0,7). Moreover, py; — (p>y1+pr) = p(1—2r—p+pr) > 0, we
have S1(I1.1) C S1(2)\S2(). Hence u(A) = pruoS;(A) for any A C Sy(I1). Assume that the
stated equality holds for k = m, i.e., il gy, (1,1) = ws(m)poSym ;. For k = m+1, by Proposition
2.19(&), we have 52m+11(11’1) = S13m+1 (1171). Then 51_1(14) g S3m+1 (1171) and 52_1(14) Q
Som1(I11) for any A C Soms1q(I11). It follows that p(S7"(A)) = p§' o Spnyi (ST (A)) and
u(S3(A)) = wa(m)pwo S5y (S51(A)). Thus

W(A) = piuo STHA) +papo S71(A)
= PP o S5 (STH(A) + prwa(m)p o Sy (S (A))
= iy o Sipia (A) + powa(m)p o Syt (A)
= (p1py ™ + pawa(m))po Syniyy (A)
= wa(m+ 1)po Sy, (A).
The last equality follows from . This proves part (a) for i = 1. For the proof of part (c) in

the case i = 3, we use Lemma [2.21 Il

Proof of Example[2.18, By (2.6), we have Q = (0,1) x (0,1). For each k > 0, let M;, =
{1,2,3,4}*. We show that yu satisfies Condition (B) with I := J; being the basic set of islands.
Let Z; ; be defined as in . Thus I = {Z11,Z1,2,Z13}. Let Iy, := {[Z1,1] 4. [T1 2], 11,3}
It suffices to show that Zj 1 3 := {(Sor-11, k), (Sgx, k)} is the only level-k nonbasic island with
respect to I for any k > 2 (see Figure [(b)). For i = 2,3, since [Z(vro0t)]p = [Z1,i], none of
the Z € O(Z; ) is a nonbasic island with respect to I, (see Figure . Upon iterating the IFS

once, 7 1 generates the following five islands:
Toa = {(511,2),(512,2)}, Zoi2:={(514,2)},
To1,3 :={(521,2),(522,2)}, Zo14:={(523,2)}, Zois:={(524,2)}

(see Figure [3). Lemma implies that Zp1,; € [Z1,], for i = 1,2,4,5, and [Zy13], ¢ Ly -
Thus 75713 is the only level-2 nonbasic island with respect to I. Assume that Zj ;3 :=
{(Sgr-11,k), (Sor, k)} is the only level-k nonbasic island with respect to I. Similarly, Z 1 3

generates five islands, namely,
L1 = {111,k + 1), (Sge-119, b + 1)}, Tiyr.2 := {(Sor-114, K + 1)},
Tit1,1,3 = {(Sor1, b + 1), (Sor+1, b+ 1)}, Tit1,1,0 = {(Sar3, k + 1)},
Ti1,1,5 = {(Sarg, K+ 1)}
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Lemma again implies that 11, € [Z1,4], for i = 1,2,4,5, and [Zy11,13], ¢ Ipu. Thus,
Tj+1,1,3 is the only level-(k 4 1) nonbasic island with respect to I, completing the proof. Il

*************************

,,,,,,,,,,,,,,,,,,,,,

T3 - | {12,3&'}?:1“%@ D

i P §_>1172 i:] D i iD i {I }3
s 1 I | 1 - - 2,20 fi=
1 N AT~ 1 '

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a) level-1 islands {Z; ¢} (b) level-2 islands {Zs 0}

FIGURE 2. (a) First level iterations containing {Z; ¢};_;. (b) Second level iter-
ations containing {Zo1;}?_; and {Zo,;};_, for £ = 2,3. The figures are drawn
with p = 1/4 and r = 7/20.

== = a

| |
To1 5% \
22! | _
| I ===
T2 Das
fffff S
e [ |
I H L Ly
1271,1 | H L | 12:1»4
5
(a) Tha (0) {Z21,iti1

FIGURE 3. Z;, and its offspring {Z51,}2_;.

*****

(a) Ioyp (b) {Zopi}3

FIGURE 4. Ty, and its offspring {Zo,,;}?_, for £ =2, 3.
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3. RENEWAL EQUATION AND PROOF OF THEOREM

Let {S;}ica be a finite type IFS on a compact subset X C R? with FTC set Q C X and let
p be the self-similar measure defined by {S;};ca together with a probability vector (p;)ica. To
compute 7(q) for ¢ > 0, we will use the equivalent definition in . We show in this section
that for the class of self-similar measures under consideration and for each ¢ > 0, there exists

a := a(q) such that

— 1
0< 51—1>%1+ Sata /X w(Bs(x))? dr < oo. (3.1)

In the rest of this section, we assume that p satisfies Condition (B). Let I := Ji, be the
basic set of islands and I, := {[I]u 17 ¢ Ib}. We choose a subset I := {Z; s}¢er C I, such
that for any 7 € I, there exists a unique £ € I satisfying 7 € [Z; ¢],,. Define

o0 = [ uBsta))dn, @0 = grzpld) for €T, (3.2)
Lo
where Iy o := Sz, ,(€2).
Proposition 3.1. Let ¢ > 0. If
0< Tim ®”(5) <o forallL €T, (3.3)

§—0t

then 7(q) = a.

Proof. To find 7(q), it suffices to look for a such that (3.1)) holds. Since Sz, ,(f2) is a connected

component of €2, we have

— 1 — 1
T /X p(Bs@) e < 3 Tm /1 (B ()" da
lter 1.e
= Tim_ @™ (5) (3.4)
rer 0—0
Combining (3.3)) and (3.4)) yields (3.1]), and hence the proposition follows. O

For 7T € 7, let Sz(©2) and O(Z) be defined as in (2.1) and (2.2)), respectively. We denote
the contraction ratio of a contractive similitude o by r,. In view of Proposition to find «
satisfying (3.1)), it suffices to study @éa) (0) for £ € T.

Step 1. Derivation of a functional equation for q)éa) (6) for £ € T. For ¢ € T', define
Ly ={Z €0 [Z]p €Lt and L, :={T€O0(Zi,): [I]u ¢ Lu}-
Thus O(Z1 ) = Iz U I’u. For k > 3, if I;c—u # (), we define

I, = {I e |J o)z, e Ib’u} and T}, := {I e |J oWz, ¢ Ib,u}.

VLS TEL, 1,

We remark that for any k > 2, [, I, is the set of all level-k nonbasic islands with respect
to L.
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Without loss of generality, we assume that I' can be partitioned into two sub-collections, I,
and I",, defined as follows. For £ € I, we say ¢ € I, if there exists some k; > 2, depending on
£, such that k; is the smallest number satisfying I:_%e = (); otherwise, ¢ € T",. Define ky := 0o
for 0 €T

Condition (B) implies that >, #1I} , is uniformly bounded for any k > 2. Fix £ € I'. Then
for any 2 < k < ry, we use two finite disjoint subsets Gy ¢, G}, , C Z to label the elements of Ij

and I) ,; more precisely,
Ik’g = {Ik,é,i 11 E Gk’g} and I;f,é = {Ik,é,z' 11 E Gz’g}.

Condition (B) implies that 0 < #G} , < M, where M > 0 is a constant. We remark that
(). Define

Hzf_

Iy = S1,.,,(Q) for 2 <k < kg and i € Gy UG,
Then for all ¢ € T, we have
Z > )4 di, (3.5)
J=21i€Gj J“

while for all £ € T, and n > 2,

Z Z/ w(Bs(x)dz + ) )7 d. (3.6)

J=21€Gjy teq, , Intsi

For 0 € I',2 < k < ky,i € Gy and § > 0, let .ffkyg,i(é) be the largest subset of I}, s ; satisfying
Bs(x) C I 0, for any x € fk’g,i(d). We denote fk,g’i(d) = Ik7g7i\fk7g’i<5). So for £ € T, (3.5)) can
be written as

SDID N ERNTEIEIRES oy ) ds
J=2i€G;, Tjyes(6 J=2i€G;, “(6

while for £ € T, and n > 2, m can be expressed as

Z Z w(Bs(x qda:—i—z Z )4 dx

Jj=21i€Gj, J“ j=21i€Gj, J“

+Z/ )9 da.

GG/ nZz

For £ € T2 < k < k¢ and i € Gy, there exist unique o(k,¢,i) € %, w(k,£,i) > 0 and
c(k,£,i) € T such that Zy .4 04) R0k 0i)w(k.0,i) Lkei- By Definition we have

Hlsg, @ =wlk, bi)oplsy @ oo(k (i)

For Thg,i(é) C i, let ch(k’g’i)(cS/ro.(kM)) be the largest subset of I} .1 ¢;) satisfying B(;/Ta(k o (z) C

I} e(hiiy for any @ € Iy o 0.0y (6/To(keay)- Thus

= w(k,l,i) o o(k,t,3)7"

~ = o
’U"Ik,z,i(fs) H|f1,c(k,e,z'>(5/7“a(k,z,i>)
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We denote Ty o(k.1)(0/To(k,e.0) = Tt.e(ht) \1,e(k,t0) (6/To(r00))- Hence for £ € Ty,

S5 S Wb L By @) e+ DG - 6. 61)
I e g0, Jj=2

Jj=21i€Gj

where

G0 = X [ sy

Z‘EG]"[ j,Z,i(é)
&) = Z w(j’gai)qra(j,é,i)d/\ 1(Bsjr ;.00 (2)) da,
i€Gj . Iy e ,e,i) 0/ 7o (k,0,5))

while for £ € T, and n > 2,

3

plo) = D0 3wl L) 0 [ B, @) de
24€Gy 0 Iy c(5,e,9)
+) (eh(8) - + > ) da, (3.8)
j=2 lEG/ n £,

where

40 = 3 [ uBs)ds,

i€Gjy I.0,:(5)

) R d

A0 = 3wt | B0 ) o
i€Gj Iy e 5,e,i) 0/ 7o (k,0,5))

Multiply both sides of (3.7) and (3:8) by 64+, and using (3.2)), we have for £ € T,

(") (5 Z S w( ) o0 O 1 (/7)) + B (), (3.9)
Jj=21i€G;
where
Ke
B (0) = Y 67 (eh(8) - &(9))
j=2
and
o (8) = Z S Wl D) T T o 0/ Taan) + Y 6T (EL(D) — ()
Jj=21i€Gj =2
~(d+a) Z )dr  for £ €T, and n > 2. (3.10)
EGI nZ'L

Let N be the largest number of n satisfying § < 74,0 for £ € T, i € G p. Taking n:= N in

(3.10)), we have
(I)(a Z Z ‘]7€ L JZ’) ]Ez)((s/r J’gl))

Jj=21ie€G;,

+E(6) — B

4,00

(§) for £ €T’ and N > 2, (3.11)



L4-SPECTRUM OF SELF-SIMILAR MEASURES 17

where

N
EM(@8) = Y ole)(e &(8)) + 0~ 3 / ) da
7j=2

ZEG/ NEZ

Elg,oé)o((s) = Z Z ]7€ i U(j,E z)_a i(]éz (5/ra(j€z )
Jj=N+1 ZEGJZ

Step 2. Derivation of the vector-valued equation. For each £ € T', define

fo(@) = £ (@) = o (™).
If we let 6 = e~ %, then @Ea) (86) = fe(x —InB) for any S > 0. Combining (3.9)) and -, we
have, for ¢ € Ty,

Z S w( )8 e (@ W) + 2 (@), (3.12)
Jj=21i€Gj,
where zé )(:r) = Eéa)(e*‘”) and for £ € T, and N > 2,
Z S w(G )8 o Feen (@ I(raGe) + 2 (@), (3.13)
Jj=2 ’LGGJ ¢
where zé“) (x) = Eéa) (e7*) — Eﬁl(e—w).

For £,m €T, let u(a) be the discrete measure such that

ml

,ugrcfg( (7)) = w(g, ¥, i)qr;&&i) for 2 <j <Ky, i€ Gy, c(j,l,i)=m. (3.14)
We summarize the above derivations in the following theorem.

Theorem 3.2. Let u be a self-similar measure defined by an IFS {S;}icn of finite type. Assume
that u satisfies Condition (B). Let f, My, and z be defined as in (1.2). Then f satisfies the

vector-valued renewal equation f = f x Mg, + z.

Proof of Theorem[1.1. We use a similar argument as that in [20, Theorem 1.1]. (a) We observe

that each Fj(«) is a strictly increasing continuous positive function of « and
Fy(—00) =0 and  Fj(o0) = o0. (3.15)
Thus there exists a unique « such that the spectral radius of M, (c0) is 1.

(b) Let v be the unique number in part (a). Let m := [m,(goz)] =[/;° a:du,(;z)] be the moment
matrix. Following the proof of |20, Theorem 1.1(b)], we need to show that some moment

condition holds, and it suffices to show that
0< ngz) < 0.
kel
It is easy to check that for £ € T, >, - m,(;z) takes the following values:

Z Z j’gz _]Zl‘ln (jvf:i))"

J= ZZGG]g
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(3.15)) implies that there exists € > 0, such that 0 < F;(« + €) < co. Then

0 < ZZ (G )75 G iy | I0(a)|

= ZZ (4, 4,3)r ]h))ejh‘lnrg(]h))‘<oo.

Moreover, it follows from (3.14)), we have ) ,u(a)( 0)=0<> er ,ume( 00), i.e., each column

ml

of M,, is nondegenerate at 0. From Theorem we have f = f«M,+z. By (3.14), ,ug.?) (R) >0
and hence M, (o0) is irreducible. It follows from [20, Theorem 4.1] that there exist positive
constants C7,Cs such that C7 < fz(a) () < Cy for all z. Proposition now implies that
7(q) = . 0

4. A cLASS OF FINITE IFSS WITH OVERLAPS ON R

In this section, we derive renewal equations and compute the L9-spectrum of self-similar
measures /4 defined by the IFSs in (1.5). Let X :=[0,1] and £ = (0,1). Define

Zin ={(51,1),(S2, 1)}, Tia=A{(Ss 1)}
It follows from Example[2.17] that x satisfies Condition (B) with I = {Zy,1, 71 2} being the basic
set of islands. Moreover, I =1, = {[Z11],, [Z1 2]}, T = {1,2}, T = {2},T, = {1}, k1 =
and kg = 2. For £ € T"and 2 < k < Ky, let Iy, Im, G G;c,f be defined as in Section Define
Ti,1,1 = {(Sak-211, k), (Sor—219,k)},
Tip2 = {(Sor-11,k), (S, k), Tias = {(Sar-13,k)}
for B > 2. Let Zy21 := {(531,2), (532,2)} and Za 292 = {(533,2)} (see Figure [5). Using [22,
Lemma 2.14], we have I,y = {Zy 11, Zx 13}, I;ﬁl ={Zk12}, 102 = {12,2’171-2’2,2},1/272 = (). Hence
Gr1 ={1,3}, Gy = {2}, G2 = {1,2}, G5 , = 0. Define I ¢ := Sz, ,(2) for £ € T'. Let
Ipag = 87,,,(Q) = Sop—21(I11),  Ir12:= S7,,,(2) = Soe-1(I11),
I3 = 87,1 5(8) = Sor-1(112),
for k > 2 and

(4.1)

12,2’1' = 51272,1.(9) = Sg([lﬂ'), fOI‘ 1= 1, 2. (42)
In the rest of this section, fix ¢ > 0 and let w;(k) be defined as in ((1.7)).

First, we derive functional equations for @éa) (0) for ¢ = 1,2. Combining (3.5)), (3.6), (4.1

and (4.2), we have
Z / / )9 da + / J(By(2)) da
RN I3 Ini2

- ( /I e /I )i(Bs()?

and
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0 1
AR Ty
r------- - - - - - - ----=-=-=--=--=-=-=-- 1 [777777777777771
| T ST TTTTTTTTTT-==7
L e e e e e e e e L T T - - - - - - - ————T J
Io1 To1,2 Tr21 Tr22
e | E=e=es - T2 rososooo- ety
Lo ——— Lo IR Lo |
| |
Torg — —i - Isre
' T I
== 1313

FIGURE 5. First, second and third levels of iterations containing {Z ¢}, {Zo¢}
and {Z31,}. The figure is drawn with p = 1/3 and r = 2/7.

For £ € I, 2 < k < ky, i € G and § > 0, let fk,ﬁ,i((s)yfk,[,i(é))fl,c(k,ﬁ,,i)(5/ra(k,é,i)) and
f17c(k7g7i)(5/7" (k,e,i)) be defined as in Section (3, Combining (4.1 and (4.2), we have for j > 2,

3,1,1(5) = (5%i-211(0) + 8, Spi-212(1) — 6),

Ij1,1(6) = (S25-211(0), S95-211(0) 4 0) U (Sa5-212(1) — 8, 595-212(1)),

i1 ,3(5) (S25-13(0) + 8, Sp5-13(1) — 9),

I;1,3(0) = (S2i-13(0), Sai-13(0) + 6) U (Spi-13(1) — &, Spi-13(1)), (4.3)
I521(6) = (S51(0) + 8, S52(1) — 6),

Iy21(8) = (S51(0), S51(0) + 6) U (Ss2(1) — 8, Ss2(1)),

1222(5) (S33(0) + 9, S33(1) — 4),

Ir2(8) = (S33(0), S3(0) + 8) U (Sa3(1) — 8, Ss3(1)).

(See Figures [6] and [7])

11(0) + 4 512(1> Y
t
S11(0) o L. S19(1) 1211 = (512(0), S12(1))
. - . I511(8) = (S11(0) — 6, S12(1) + 6)
T - I31,1(8) = (S11(0), S11(0) + )

U (S12(1) — 6, S12(1))

FIGURE 6. Figure showing the sets I5 1 1, f2,171((5) and ]A271,1(5).
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523(0) + 6 523(1) )
Sa3(0) So3(1) 13 = (511(0), S12(1))
: T I21.3(8) = (Sa3(0) — 8, Sa3(1) + 6)
H o I51.5(6) = (S23(0), Sa3(0) + 0)
U (823(1) — 9, 523(1))
FIGURE 7. Figure showing the sets I3 3, 72,1,3(5) and fg’l’g((s).

It follows from (4.1)), (4.2) and in |22, Lemma 2.14] that for j > 2,

p(Iiag) =wi(j—2u(Ii)  and  p(Iji0) =py  p(lis).

9

= p3p(L1,).

Thus
Wi L) =wi(—2), (L) =1 o(GL1) =Sy, Tegiy=pr >
w(j,1,2) =p ', (j,1,2) =2, 0(j,1,2) =Sp1,  Tojizy=1"
and
L11(8/pr?=2) = (81(0) +8/pri 2, 52(1) = 5/ pr! %),
I 2(3/r77Y) = (S5(0) +6/r7~1, S5(1) — 6/ri ),
I (5//)7’]'*2) = (51(0), 51(0) +8/prI72) U (Sa(1) — 6/pr? 72, S5(1)),
I 2(8/r771) = (S5(0), S3(0) + 6/r7 1) U (S5(1) — /177", S5(1)).
Since u|53(11 ) = D3jLo 5’3 on S3(Iy ;) for i = 1,2, by using , we have p(lz2,)
Hence w(2,2,1) = p3,¢(2,2,i) = i,0(2,2,1) = S3,74(2,25) = r and
L(8/r) = (S1(0) + 8/r, Sa(1) = 6/r),
I 5(6/r) = (S5(0) + 6/r, S3(1) — 6/7),
I11(0/r) = (51(0),51(0) + /) U (S2(1) — /7, S2(1)),
T15(6/7) = (S5(0), S3(0) + 6/7) U (S3(1) — §/r, S5(1)).

By (3.7) and (3.8]), we have

e10) = Y (G- 2% [ By e+ G [ By (@)1 o)

Jj=2

3

and

I 1 I 2

&(6)) + / IS

er0) = ([ [ By e +36) - 500,

(4.4)
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where

o= [ Jus)n

J J

A0 G -2 [ By () ds
T11(8/pri2)

F [ By (@) da, (46)
1172(5/7”1_1)

o=+ [ B
I2,2,1(9) I2,2,2(6)

a0 =ir( [+ [ JaBsp) s
Ii,1(6/7r) I 2(6/7)
Multiplying both sides of ([@.4) and ([.5) by 6~ 1+ and using (3.2)), we have

n

o70) = 3 (i~ 2o )R (8/pr ) + (g g (0/7)
j=2

+ 07 e (6) — & (8) + 7 / H(Bs(w))t da it
j=2

In1,2

and
) (8) = pir= (217 (3/r) + @57 (5/r)) + 671 7(c3(0) — ().
Let N be the largest integer satisfying 6 < min{pr’¥=2,7¥~11. Taking n = N in (4.7)), we have

o0) = 3 (i —2)%or )R (5/pr ) + (g0 (0/)
j=2
+E{(6) — B (0), (4.8)

where

N
E®(0) =Y 67170 (el(5) — l(8)) + 671 / j(By(x))? do,
=2

Ina2
Bio@) = Y (wi( =2 )81 (6/pr) %) + (=Y~ @5 (5/r 7).
j=N+1
Let
B4 (8) = plr= (@4 (8/r) + ©57 (5/r)) + B (0), (4.9)
where

ES(6) = 5717 (3(6) — E(9)).

Next, we derive a vector-valued equation. It follows from (3.12)), (3.13)), (4.8)) and (4.9) that

o0

hiw) = Z (wl(j —2)%(pr’ =) f1 (2 + In(pr’7?))

i=2

+ (pdr= )Y fo(z + ln(rj_l))> + z%a) (x)
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and

falw) = plr™ Zf@fv+lnr)+25 (),

(e‘z),zé )(x) = Eéa)(e_ﬂc). For {,;m = 1,2, let uggg be the
discrete measures such that for j > 2,

) (= In(pr' =) = (wi(j = 2))"(pr9 )7,

) (—In(r971)) = (pgr=oy

pi5) (—Inr) = pfs) (— ) = pr.

where zga) (x) = E%a) (e7®) — oIS

1,00

Then

S Zwlg—z i (pri ) Y R) =Y (Y
ps (4.10)

uy (R) = uéa)(R) = pire.
For fixed ¢ > 0, let
Zwlj—Z ) (pri )"+ (] Fy(a) = 2plr—
J:

Dg.—{OéER.Fg()<OO}, =1,2.

(4.11)

and

_ (5w = 2)(pri )70 pqr_a
M, (00) = < 22:;12(10%7"7&)];1 p ’ a) .

Finally, we show that the error terms zéa)(as) = o(e™") as z—00, i.e., Eéa) (6) = o(6¢) and
Bl (0) = 0(d¢) as 6—0 for some € > 0 and ¢ = 1, 2.

1,00

Proposition 4.1. (a) CIJga) (8/prk) <1 for any k> N —1.
(b) @éa)(cS/rk) <1 forany k> N.

Proof. (a) It follows from the definition of N that § > pr* for any k > N — 1. Hence
(@) ky _ 1 / ( )q ko sylda
S0/ prT) = ——p— w\ By k() ) dx < (pr/é < 1.
00m") = G [ 1 (Bt @) < (r41)

Hence (I) (5/pr ) <1 for any k > N.
(b) The proof is similar to that of (a). O
The following proposition can be proved directly by using induction; we omit the details.

Proposition 4.2. (a) 52 (1) =78 4+ p(1 — %) for any k > 1.
(b) Sor—11(0) = p(1 — r*=1) for any k > 1.

Proposition 4.3. For ¢ > 0, let Fi(«) and Dy be defined as in (4.11). Then Dy is open.
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Proof. Let p := max{pa,p3}. In view of (1.7]), we consider the following two cases for w; (k).

Case 1. py = p3. Then wi(k) = (k + 1)p1p5; moreover,

pip" <wi(k) = (k + 1)pip". (4.12)
Thus,
lim (/fwi(k)(prF)=e = Tim {/((k+1)pipk)e(prk)=
k—o0 k—o0

= lim {/(k+ 1)apip= - p?/r®

k—o0
= p?/re. (4.13)
Case 2. py # p3. Assume py > p3. Then
k
: 1— (p3/p2)*
_ k J k
wi(k) = p1p p3/p2)) =pipp——
0 =nak 3l =ik 2
Note that
1— k+1 1
| < (ps/p2)™" _ I - B
1 —p3/p2 1—p3/p2 p2—p3
Thus plpéc <wi(k) < cplplg. Similarly, if p3 > po, we have p1p§ <wi(k) < cp1p§. So if po # p3,
we have
pip® < wi(k) < epip”. (4.14)
Hence
lim /wy(k)2(prk)= = p?/r®  if pg # p3. (4.15)

k—o0
Combining (4 and (4.15)), we have limy_, /w1 (k)9(pr¥)—® = p?/r®. By the root test, the
series ) 2, wl(kz) (prk ) is convergent if p?/r® < 1,1.e., Y g qwi(k)?(pr¥) = and Y32, (p?/r)*
have the same radius of convergence. If p?/r® = 1, then > 72, (p?/r®)* = co. It follows from
(@12) and ([{14) that (p1p*)? < wi(k)? for ¢ > 0. For k > 0, we have (pip*)?(pr¥)=> <
wy (k)4(prF)~. Thus

(o] o0
o =pip™* Y (W/r)F <Y w
k=0 k=0
Hence Dy is open. O

Proposition 4.4. For ¢ > 0, assume that o € Dy for £ = 1,2. Then there exists € > 0 such

that
(8) 3202 ypy wi(F — 2)7(pr72) D1 (§/pri=2) = 0(5);
(D) 325w ga (=Y 105 (6/1971) = 0(6%);

() 2N, 67172 (el(8) — E4(9)) = o(6°);

(d) 0717 [, plBs(w))t da = 0(5°);

(e) 071(e3(8) — €3(9)) = 0(0°).
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Proof. (a) By Proposition Dy = {a € R: Fi(a) < oo} is open. Thus there exists € > 0
sufficiently small such that Fj(a + €) € D;. So there exists a positive constant C' such that

oo o
(=2 pr )+ > iy <
j=N+1 j=N+1
Since
(N7 wi(G =2 )T Y (G- 2) U (prd )T
j=N+1 j=N+1

we have > 7% v wi(j — 2)4(pri=2)=* < C(prN=1)¢ < €5, where the last inequality follows
from the definition of N. Combining these with Proposition (a), we have > 2% v wi(j —
2)7(pr7=2) @\ (8/pr772) = 0(5°).

(b) The proof is similar to that of (a).

(c) Tt suffices to show that ej(5) = o(6'T*€) and &}() = o(6'+**¢) for 2 < j < N. It follows

from (4.6 and (4.3) that
1 Spj—211(0)+0 Sgj—215(1) Szjfls(o)+‘S S2j*13(1)
e}(8) = (/ +/ +/ +/ ),u(Bg(m))qda:.
S S S S

2]’*211(0) 2]'*212(1)*6 23’*13(0) 2]’*13(1)7‘5

As an example we only prove fé:g Qj'j_2211((()0))+(S w(Bs(x))4dr = o(612F€). Tt follows from (a) and
277411
(b) that
wi (N —1)7 <05t and  p)? < Cote (4.16)

Since Bj(z) C Bas(S5i-211(0)) for any = € (Syi-211(0), Si-211(0) + 6) and

11(B26(525-211(0))) = prwi(j — 2)u(Bas ) p2ri-2(0)) < prwi(j — 2),

we have

A

‘5'2J'—211(0)'~'(S
/S p(Bs(x))dzr < (p(Ba2s(Spi-211(0))))0 < pjwi(j —2)70

2j—211(0)

A

(p1py ™)y (N — 1)%6 < C(pypy V)45t Tote,

where the third inequality holds because for 0 < k < N — 2

B L e ey M [V R A R )
wi(k) = N—1__  N-2 N1
(py — +py “p3t-+p3 )
wi(N —1)(p2 + p3)*
Py ) s+ 4 py!
and the last inequality follows from (4.16]). The estimate €3(5) = o(6'7**€) can be established
as that for e2(5) = o(s1+ate).

(d) By (4.1)), we have
‘5'21\1'711(0)41S SQN(l)fé SQN (1)
| us@ya = ([ +f [ YutBs(a)rds
In,2 S S S,

3N-1,(0) oN—1,(0)+0 oN (1)—0
— (1) + (I1) + (1),

<py Nwi (N —1), (4.17)
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We first show that 6=1=%(I) = 0(6/?). For any x € (Syn-11(0), Syn-11(0) + §), we have
Bs(x) € Bas(Sox-11(0)) and pu(Bas(Syv-11(0))) = wi(N = 1)p(Bas/pn-1(0)) < wi(N — 1).
Combining these with (4.16)) we have

(1) < s Bas(Syn—11(0)))76 < wy (N — 1% < CgHorte,
It follows that 6~ 1=*(I) = o(6</?).
Next, we show that 6~ '~%(I) = o(d¢/?). Tt follows from [22, Lemma 2.14] that
/’[/’SQN—I([LI) =wi(N—-1)po 52_1\1711 +pYpo 5’2_N1 on Sonv-1(I11).

Thus pu(Bs(x)) < wi(N — 1)+ pY for & € (Syv-11(0) + 6, Syn (0) — §). Combining Proposition
and , we have

(1) < (Spn(1) = Syvo1,(0) — 28)(wi (N — 1) + )1
< NN+ p(1 - 1)) ((C6¥T) V4 (C5te) )

< C/erl(;aJre < Clrfl(leraJre
ie., 6717(II) = o(6</?).
The proof of § 1 =*(III) = 0(d¢/?) is similar to that for 6= 1=%(I) = o(6¢/?). Hence 61~ s N1 (T) w(Bs(x))? d:
oN— ,
0(6</?).
(e) The proof is similar to that of (c). O

Proof of Theorem[1.4. Combining Theorem u and Proposition yields 7(¢q) = a. Let
G(g,a) :== (1 —pdr=*)(1 = pir~ Zwl O‘+r_a(pg+pg) - 1. (4.18)

We show that G(g, ) is C!. It follows from Proposition that S o wi(k)(pr*)=® < oo for
any (g,) € (0,00) x Dy. Since wi(k) < p1 < 1, 352, wi(k)(pr¥)~* is strictly decreasing in ¢
and strictly increasing in . Thus for any (qo, o) € (0, 00) x Dy, the series converges uniformly
on {(q,®) : ¢ > qo,a < ap}. Moreover, it follows from and that

lim w; (k) = 0. (4.19)

k—o0

Hence, for any (¢, «) € (0,00) x Dy,

Gylq.0) =(— p§r=(1 = p§r=) Inp — plr (L~ pr~*) Inps) 3 wi (k) (or*)

+ (1= pdr=)(1 — plr~ Zwl )% Inw (k) —I—T_O‘Zpglnp,-
and

Galg,@) =(p3(1 = pir®) +p§(1 — pir=*))r *Inr Z wi (k)4 (pr*) =

+ (1= pdr=)(1 — plr~ Zwl )~ In(pr*) qulnr
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A similar argument as above shows that G(¢, a) is C*.

We now show that G (g, &) # 0 for any (¢, &) € (0, 00) x Dy satisfying G(q, &) = 0. Since 7(q)
is convex, we can let {¢, } be an increasing sequence of positive numbers such that lim;,,_,cc ¢, = ¢
and that 7 is differentible at each g,. Then (1.8]) implies that

Gy(qn, an) + Galgn, an) - &' (q,) =0 for all n, and thus  G,(q,a) + Ga(q, @) - & (q) = 0,
where o/ (§) denotes left-hand derivative of a(q)(= 7(¢)) at q.

Suppose, on the contrary, that G (g, &) = 0. Then G4(q, &) = 0. So Go(q, &) —G4(q, &) = 0.
It follows from G(q, &) = 0 that
Zwl (k)3(pr*) =% = L= W +pi)r e (4.20)
(1 =p3r=®)(1 = pir=7)
Substituting into the above expressions for G, and G, simplifying the result, and using
the fact that 0 < pgr*d < 1 for i = 2,3, we get

0= Ga(da d) - Gq((j? d)

- 5 qT'_a qr—a
= pdr~%(In rt— 1111102)7])3 + pgr (lnr lnpg)ip2
1-— pg 1— pgr &

+ (1 —pg )(1 —p3r Zwl k) (prk) (ln(prk)_1 —Inwi(k)) >0,

a contradiction. Hence G, (g, ) # 0 for any (q,a) € (0,00) x Dy satisfying G(q,«) = 0. The
implicit function theorem now implies that 7 is differentiable on (0, 00) and the stated formula
for dimp (p) follows by computing 7/(1) = —G4(1,0)Ga(1,0)71 (see [9,19]). This completes the
proof. O

Figure |8 shows the graphs of 7(¢) and f(«), ¢ > 0, for some measure in the family. For this
example, we have dimy(u) = 7/(1) & 0.720268 and dimp(K) = —7(0) ~ 0.797012, where K is
the self-similar set corresponding to the IF'S in (|1.5).

T 0.9
60r 0.8f
50r 0.7¢
401 0.6y
30 0.5;
0.41
207
0.31
10 0.2
0 0.1}
B e S ——— 0 ; s ; :
0 10 20 30 40 50 60 70 80 90 100 0.55 0.6 0.65 0.7 0.75 0.8

(a) 7(q) (b) f(a)

FIGURE 8. Graphs of 7(¢) and f(«) for the self-similar measure in Example
with p=1/3,r=2/7, p1 =1/2, po = 1/4, and p3 = 1/4.
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5. A CLASS OF FINITE IFSS WITH OVERLAPS ON R2

In this section, we derive renewal equations and compute the Li-spectrum of self-similar
measure p defined by the IFSs in (1.9) together with a probability vector (pi);lzl. Let X =
[0,1] x [0,1],€22 = (0,1) x (0,1). Define

i ={(51,1), (52, 1)}, Ti2={(551) Iiz3={(Ss, 1}

It follows from Example that p satisfies Condition (B) with I, = {Z; 1,712,713} being the
basic set of islands. Moreover, I =1, , = {[Z1 1]y, [Z12]p, [Z13) ), T = {1,2,3}, T = {2,3}, T, =
{1}, k1 = 00 and ko = k3 = 2. Let Ik,g,Iz’g,Gk,g,G;’g be defined as in Sectionfor £cT and
2 < k < ky. Define

Tk = {(Sok-211, k), (Sar—212, k) }, Ti,2 = {(Sgk-214,k)},

Tk3 = {(Sak-11, k), (Sqr, k) }, Ti1a = {(Spr-13,k)},

Tk = {(Spk-14,k)},

for k£ > 2, and

Toeg = {(Se+1)1,2): (Se12,2) ), Tow2 = {(Sw11)3:2)} Tows = {(Ss1)4,2) )

for ¢ = 2,3 (see Figure [2). It follows from Lemma that Iy = {Zp1,; : @ = 1,2,4,5},
I;c,l = {Ik71’3}, Ig’g = {IQLZ' 1= 1,2,3}, and 1/273 = @ Hence Gk,l = {1,2,4,5}, G;ﬂ,l = {3},
Gay={1,2,3}, and G}, = 0 for k > 2 and ¢ = 2,3. Define I; ¢ := Sz, ,(Q) for £ € T'. Let

I’%Ll = SIk,1,1(Q) = 52’“—21([1,1)7 Ik,LQ = SIk,l,Q (Q) = S2k—21(1173)7

I3 7= 57,1 4(Q) = Sye-1(I1,1), Iipa = S7,,,(Q2) = Sor-1(112), (5.1)
Iias = S1,,.5() = Sor-1(113),
for £k > 2 and
Dygi = Sr,,,(Q) = Sps1(Ii;) for £=2,3andi=1,23. (5.2)

In the rest of this section, let wy(k) be defined as in (1.11)).

First, we derive functional equations for @éa)(é) for £ =1,2,3. Combining (3.5)), (3.6)), (5.1)
and (5.2), we have
n

e1(0) = <JZ_; (/Iﬂ’l+/Ij7172+/lj71’4+/lj,175) +/In,1,3)M(B6(X))qu’

and
3

we(0) = Z/ wu(Bs(x))? dx for £ =2,3.
i=1 712,
For £ € T, 2 < k < kgi € Gryg, and § > 0, let I ri(8), Trei(6)s T1e(rey(6/To(res) and
Ich(k’e’i)((S/ra(k’g’i)) be defined as in Section [3| Recall from (2.7)) that 7 := 1 — 7*. Combining
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(5.1)), (5.2) and Proposition we have for j > 2,

Ti11(0) =(pyj—a + 6, pyj—2 + p217 21 +8) x (8,917 % = 5)U
PYj—o PP P 4 6, pryjea + PP P pr? T = 8) X (8,17 - 6),
PYj—2, PYj—2 T+ PPy + pvi—1) % (0,8)U

Pri-2: PYj—2 + P P 4 8) x (0% = 6, p*r AU

~

Ii11(8)

=(
(
=(
(
(pvj—2 + PP 21, pryj—a + PP P 4 pr? ) x (pr? T = 6, prd U
(pj=2: PVj—2 + 8) X (8,p°r 7% = §)U

(pj—2 + P17 231, pyjma + P17 Py 4 6) x (PP 72 pri =t — §)U

(

pYj—2 + P77 P prd T = 6, pyja PP Py prd ) X (8, prT T = 5),

Ti12(8) =(pvj—2 + 8, prj—a + pr " = 8) x (pr/ "2y + 6, p17 2 = 5),

~

Ti1.2(8) =(pvj—2, pvj—z + pri 1) x ((pri =2y, pri =241 4+ 6) U (pri =2 — 6, pri=2))U
((pvj=2, pvj—2 + 6) U (pyj—a + pr? ™ = 6, pyj—a + pri ™))
X (pri =ty +6,pr7 7% = ),

T1,4(8) =(r 'y + pyjo1 + 8,077+ pyj1 +0) x (8,77 = 6),

11.4(8) =Py 4 pryjo, T pyim) x ((0,8) U (7 — 8,77))U
(77 + pvjm i+ oy + 0 U (T pyjon = 6,077+ o))
x (6,7F — §),

~

Ljn5(0) =(pyj—1+ 0,17 + pyj1 = 8) x (W Iy + 6,077 = 5),
371,5(5) :(P’Yj—lﬂ“j +pyi-1) X ((rjflryl,rjflyl +4) x (rjfl — 4, ijl))u
(V=1 pYj=1 +O) U (T + pyjmr — 6,07 + pyj—1)) x (F Iy + 6,077 = 0),

I21(8) =(1 + 6, (1 + pr)y + 8) x (6, pr — 6)U

(1L + pr)y1 + 6, (1 + pr)y + 72 = 8) x (6,72 = §),

L 21(8) =(71, (1 + pr)m +712) x (0,8) U (1, (1 + pr)ya + 8) x (pr — 6, pr)U

(1 + pr)yr, (14 pr)ys +72) x (r2 = 8,72) U (31,71 + 6) x (8, pr — 6)U
(L4 pr)ya, (L+ pr)my +8) x (pr,r? — 8)U
(1

+ pr)yi + 12 =6, (1L + pr)y) x (6,r° = 6),
To29(8) =(y2 + 6,1 — 6) x (8,2 — 5),
f2,2,2(5) =(72,1) x ((O, I U (7«2 — 6, r2)) U ((y2,72 +0) U (1 —6,1)) x (6, 2 _ 5),
I23(8) =(m1 + 8,72 + 1 — 8) x (ry1 + 8,7 — §),

L23(8) =((v,m + ) U (r? +m = 8,7 + 1)) x (191 + 8,7 — 8) U (1,72 + 71) %
((r’yl, ry4+0) U (r — 4, r)),
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= f2,1,1(5)
= 72,1,1(5)

==+

FIGURE 9. The middle part and shaded region are I~2,171(5) and f27171(5), respec-
tively, the union is Io 1 1.

=== E,1,2(5)

e -?2,1,2(5)

CoIIiIIiiIiiiiiiik=— O

FIGURE 10. The middle part and shaded region are l;,172((5) and f27172((5), re-
spectively, the union is I 1 2.

.727371(5) =3, pry1 +6) X (71 + 0, pr +71 — 6)U

pry1 + 8, pron 1% = 8) X (v + 8,77 + 1 = 6),

0, proy1 +7%) % (y1,71 +8) U (0, pryy +6) x (pr + 71 — &, pr + 1)U
pry1, pry1 +12) X (12 1 = 8,72 1) U(0,68) x (31 + 8, pr + 41 — 6)U

Ip31(6) =

pry1, pry1 +0) X (pr + Y, 4+ — 9)U

(
(
(
(
(
(pry1 4772 =6, pry +7%) x (1 +6,7% + 71— 0),

Lyga(0) =(rm + 08,7 = 8) x (1 +8,r° +m — ),
I2(8) =(ry1,7) % ((y1,m + ) U (P2 + 91 = 6,72 + 1)) U (31 + 8,72 + 71 — §) x
((ryr,mm +6) U (1 = 6,7)),

3,3,3(5) :(5? T2 - 5) X (72 + 57 1- 5))
To33(8) =(0,7%) X (2,72 + 0) U (1 = 8,1)) U ((0,8) U (r2 = §,7%)) X (72 + 6,1 — 4).

(See Figures [9] and
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It follows from (5.1)), (5.2) and Lemma that for ¢ =1,2,3 and j > 2,

p(Lj,1) = w2 (i — 2)p(l,1), p(Lj12) = w2 (i — 2)p(l,3),

1(Lj1,4) = p2(j — Dp(l12), w(lj15) = p2(j — Du(l13),

1(l2,2,i) = pap(li,i), 1(12,3,:) = papi(l;).

Thus

w(f,1,1) =wa(j—2), ¢(j,1,1)=1, o1, 1) =521, 7oG11=pr""",
w(j,1,2) =wa(j—2),  ¢(j,1,2) =3,  0(j;1,2) = Spi—21,  Te(az = prl
w(j, 1,4) :pjz;l, c(j,1,4) = 2, o(j,1,4) = Syj—1, To(ian) =177,
w(4,1,5) = py ', c(j,1,5) =3,  0(j.1,5) =Sp-1, Ty =11,
w(2,2,1) = ps, c(2,2,1) =1, 0(2,2,i) = Ss, To(2,2,) = T
w(2,3,1) = p4, c(2,3,1) =1, 0(2,3,1) = Sy, To(2,3,) = T

(6/pr? =2, po + 6/ pr?=2) x (8/pr 2, p = 6/ pr! %)L
(py1 +6/pr7 2 pyr + 1 — 8/ pri™2) x (8/pri=2, 1 — 8/ pri™?),
La(8/pri=2) =(0, py1 +7) x (0,8/pri=2)U
(0,071 +6/pr?=2) x (p = 8/pr’ 2, p)U
(py1spm +1) X (r—68/pr’ =2, 1)U
(0,8/pr7=2) x (8/pr’ =2, p = 8/ pr!=*)U
(py1s 1 +8/pr7 %) X (p,r = 8/ pr! =)L
(471 =68/pr! 2 pyr +7) X (6/pr? 2,7 =6/ pr7?),
La(8/pr’=2) =(8/prI 2, = 6/pr?™2) x (L =1 +06/pr' %, 1= 6/pr! ™2,
Lis(8/pr7%) =(0,7) x (1 =7+ 8/pr’ =) U (1= 6/pri =2, 1))U
((0,6/pr" ) U (r=6/pri=2,r)) x (L =7 +8/pr! 2,1 =6/pr’7?),
Tia(8/r™Yy =(y1 4+ 6/r 711 = 6 /971 x (/7972 — 6 /ri 1,
Lo(8/r 7Y =(,1) x ((0,8/r7 7YY U (r — 8/ 1)U
((’yl,’yl + 5/rj_1) U((l-— (5/rj_1, 1)) X (5/7"j_1,r — 5/rj_1),
L3(8/r7 7Y =(6/r = r = /r )y x (1—r48/r771 1= /1771,
La(8/r77h) =(0,7) x (L =r+§/r ™y U1 —3§/r " 1)U
(( 5/7"3 1 (r—5/1"3 1,7“)) X (1—r+5/rj_1,1—5/rj_1),
L1 (8/7) =(8/7, pra +6/7) x (8/7,p = §/r)U
(py1 + 6/ py1 + 1 —6/r) x (6/r,7 —6/7),
L1 (8/7) =(0, py1 + 1) x (0,6/r) U (0, py1 +6/7) x (p — 6/, p)U
(pri.pyi+7) x (1 =38/r,r)U(0,8/r) x (6/r,p—6/r)U
(py1,pm1 +6/7) x (p,7 = 6/1)U
(py1+r—=398/r,pn+71) x (8/r,r—46/r),
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Ilg( /r)=(v1+0/r,1=38/r) x (6/r,r—35/1),
Lo(8/r) =(71,1) x ((0,8/r) U (r — §/r,7))U
((71, vy +6/r)u(l—4/r, 1)) x (0/r,r—4d/r),
Ls(8/r) =(8/r,r —6/r) x (1 —r+68/r,1—8/r),
Ti3(3/r) =(0,7) x (1 —7r+d/r)u (1 —d/r1))u
((0,6/r)U(r—238/r,r)) x (L—r+0d/r,1—35/r).

By (3.7) and (3.8), we have

Sl = 2ot ([ [ YuBygpr 207 dx
=2 I I3
+Z q2j 1 / / 35/7«1 1(x)) dx

=2 1,2 I3

1

+)_((6) = &(9) + / 11(Bs(x))? dx
=2 In1,3

and

3
eld) = pl 7S /j H(Bsjn(x)) dx + eb(8) — &4(5)  for £ = 2,3,
=1 i

ao=([ o+ e[ e[ Yo,
Ij1,1(9) I51,2(9) I1,4(9) Ij1,5(9)

Js s

where

é}((s) :wQ(j—2)q(Prj2)2(/A _ —i-/A _ )M(B(;/prj_Q(X))q dx
I,1(8/pri=2) I1,3(8/pri=2)

+ (p3r?)y ! (/A +/A )”(Bé/ﬂ*(x))q ax,
1172(5/7'3‘71) 11,3(6/7471)

3

0 =3 / (B ()1 dx,
; I5,0,i(3)
—pe+17"2 Z/ e B(;/T x))? dx for £ = 2, 3.
1 % r

Multiplying both sides of (5.3) and (5.4) by 6~ >+ and using (3.2)), we have

szj—2 (pri=2)= 3~ @ (3/prI2)

i=1,3

+Z<p%r*a>f*l S e o/
j=2

i=2,3

vy 0727 (ej(0) — & () + 6727 (Bs(x))? dx,
j; /Inymu 5

31

(5.3)
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and
o (8) = v Z@ (6/r) +6727(ch(6) = 5(8))  for £ =23,

Let N be the largest integer such that § < min{pr¥=2,7N¥=1}. Taking n = N in (5.6)), we have

ngj—Z (pri=2) Z@D (6/pri=2)

=1,3

(5.7)
+Z eyt ST @6/ + B{(8) — E{L(0),
1=2,3
where
N
BG) = 367 el(0) - o) + 67 [ u(Bo(x)dx
=2 Ings
EL(0) = Y wn(i - 2% )Y @ (6/pr )
j—N+1 i=1,3
—l—Z q_ajlsz 5/7”1
j=N+1 i=2,3
Let
<I>( ) ler_O‘ZCI) (6/r) +E( )(5) for £ = 2,3, (5.8)
where

B (8) := 6727(eb(6) — ().

Next, we derive a vector-valued renewal equation. It follows from (3.12), (3.13]), (5.7) and

(5.8) that
x):ng(j—Z) (pri=2) Z fi(z +1n(pri=2))
j=2

i=1,3
+3 08N file + () + 2 (@),
=2 1=2,3

and

3

fol@) =pf ™ filz +1n(r) + 2{V(2)  for £=2,3,

=1

where

AV @) = E@ (e ) — B (e ™), AY@) = B ().

For /,m = 1,2, let ,u(a) be the discrete measures such that for j > 2,

ml
1 (—n(pri=2)) = wa(j — 2)4(pri %)= for m = 1,3,
pd (=7 71) = gy for m = 2,3,
u( 2( In(r)) = pg 7%, form=1,2,3 and £ = 2,3.
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Then
oo
Hu ng j—2)%(pr’~ 2) ) M21 Z pyr—?)
J=2
e .
pS7(R) = 3wl —2)7(pr ) + Z A,
j=2
,uggg(R) = pzﬂr_o‘, form=1,2,3 and ¢ = 2,3.

For fixed ¢ > 0,

Fl(a):2(§w2(j—2 (pri=2 a+§: Y,

T = (5.9)
Fy(a) = 3pg 7 for £ = 2,3,

={aeR: Fia) <oo} forl=1,23,

and

— —

a pir pir
Ma(oo)=| b pyr=® pir ™ |,
a+b plr—o plr—
where a := Z]Oiz wa(j — 2)9(pr’=2)" and b := Z] o (pdr )it
Finally, we want to show that the error terms zé )(:1:) = o(e™ ") as x—00, i.e., Eéa)(é) = 0(69)
and E’gao)o(é) = 0(d¢) as 6—0 for some € > 0 and £ =1,2,3.

Proposition 5.1. (a) q)z(a)(é/prk) <1 fori=1,3 and any k > N — 1.
(b) @Ea)(é/rk) <1 fori=2,3 and any k> N.

Proof. (a) It follows from the definition of N that & > pr* for any k > N — 1. Thus

« wi(6 prk .
<I>,E )(5/p7'k) = Wy < /I 1(Bs ek (%)) dx < / dx <1 fori=1,3.

1,i Iy

This proves part (a).
(b) The proof is similar to that of (a). O

Proposition 5.2. For ¢ > 0, let Fy(«), Dy be defined as in (5.9)). Then Dy is open.

Proof. The proof is similar to that of Proposition O

Proposition 5.3. For ¢ > 0, assume that o € Dy for £ =1,2,3. Then there exists € > 0 such
that

(8) 0w w2li = 2)(pri ) Yy 5 @) (8/pr %) = o(h);
(b) 32w (P s <1>§a><6/rﬂ-1>=o<56>,-
(c) N, 67270} (6) — 21(8)) = o(6°);
(d) 67272 [ n(Bs(x))? dx = o(5°);
)

(e) 0727(e5(8) — €5(8)) = o(6) for £ = 2,3.
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Proof. (a) By Proposition we have D1 = {a € R : Fi(a) < oo} is open. Thus there exists
e > 0 such that Fi(a + €) € D;. So there exists a positive constant C' such that

o0 o0
> wa(G=2)%pr )+ Y (YT <
j=N+1 j=N+1
Since
(er™M 7 Y wa( = 2)(pr )< Y wa(G — 2)U(prd )T,
j=N+1 j=N+1

we have > 22 v\ w2 () — 2)4(pri=2)=* < C(prN=1)¢ < €6, where the last inequality follows
from the definition of N. Combining this with Proposition [5.1](a), we have

Z w(j — 2)9(pri=?) Z(I) (6/pri=%) < 206°.
j=N+1 1=1,3

This proves part (a).
(b) The proof is similar to that of (a).
(c) Tt suffices to show that e;(d) = 0(6*T*T€) and &}(0) = o(5°+**¢) for 2 < j < N. In order

to estimate the remaining error terms, we will need the following facts. It follows from (a) and
(b) that

wa(N —1)7 <208t and  p)? <206t (5.10)
By (5.5), we have
= > / w(Bs(x,y))? da dy.

i=1,2,45"15,1,i(5)

As an example we only prove that ff] 10y H(Bs (@, ) da dy = 0(5%T9+€). Note that

/A p(Bs(x,y))? dx dy
5,1,1(0)

prj—2 I Pty o prj—2tp?rI Py td ppPrI T2
PYj—2 0 PYi—2 pAri=2—4

pYj—2t+pPri T 2yi4pri=t  ppri=t pvj—2+8  pp?riTi=g
pYi—2+p?ri=2y pri=l—6  Jpyj_o )

pYj—2tprI 248 ppriTl =g pYj—2tp?rI 2y pri =t ppriTl =6
+/ _ / _ +/ , _ / )u(Ba(x,y))qdwdy
pYj—2+p?ri =3y p2ri=2 pYj—2+p?ri=2y1+pri=1-6J§

= E1+E+E+E+E+ &

For &, since /(p?r71=2y1 + pyj—1)? + 62 < 2p, we have Bs(z,y) € Bopt5(S9i-211(0,0)) for
(x,9) € (pyj-2, prj—2 + P*r! 31 + pyj-1) x (0,8). Note that

1(B2p15(S2i-211(0,0))) = prwa(j — 2)p(B2pts)/p2ri—2(0,0)) < prwa(j — 2)
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and for 0 < k< N — 2,

P pN 2 ps - T (k4 pE s -+ ph)
Py +pY Pps o +py Y
w1 (N — 1)(pa + p3)*

py 4Py Cpat-+py !

wz(k) =

< py Nwa(N - 1). (5.11)

Combining these with the definition of N, we have

&1

IN

(prwa(j — 2))q(ﬂ27’j_271 + pvj-1)0 < 2pplwa(j — 2)96
2pIpy My (N — 1)2prV 11N < o(ppl =N yapl-Ng2tate,

N

The proofs for & < C§*Tot€ and 3 < CH2TF€ are similar.

For &4, since

&y

IN

pYj—2+6  ppPriT2=4
[ ustedsay
PYi—2 0

and /(62 + (p?ri=2 — §)2 < p?ri=2 < p?, we have Bs(x,y) C Bp2,45(S2i-212(0,0)) for (z,y) €
(pYj—2, prj—2+06) x (0, p?ri=2 —5). Note that p(B,2,5(S9i-219(0,0))) < powsz(j—2). Combining
these with (5.10)), (5.11)) and the definition of N, we have

&y

IN

(pawa(j — 2))4(p*r7 2 = 6)6 < phwa(j — 2)1p%0
p(QQ_N)qu(N — 1)prt=NprN=1s
< QC’prl_Np§2_N)q52+a+€.

IN

The proofs for & < C§*ToH€ and & < C§212H are similar.
Combining the estimates for &1, ..., &, we have ff‘ 1 (6) w(Bs(x,y))q de dy < CH>Tate,
VIR
Next, we will show that €;(d) = 0(6****€). By (5.5)), we have

40 = w2 ([ s ] )i(Bs o2 (30))" i

1,1(8/pri=2 1,3(8/pri=2)

+(p3r2)j_1</A +/A )“(Bé/rjfl(x))qu'
Na(6/ri=Y)y  JTq 3(8/ri—1)

1,2

As an example we only prove

wz(j - 2)q(prj—2)2/A | :U(Bé/prj—Q (X))q dx = 0(52+a+5)'
I,1(8/pri—2)
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Note that

wa(j — 2)9(pri~2)? / (B i (x))7 dx
I 1(8/pri—2)

e pyitr 8/priT? py1+8/pri =2 rp
p—8/pri=2
/mﬁﬂ”/ /5/p7“’ 2//) 5//)?“J 2 /p71+5/m“j2 /7“—5/p?“j2
Ja! r—6/pri=2 6/pri=2 o Iz

pytr r—=6/pri=?
+/ ) / ] )M(B(s/prj—Q(xvy)qudy
prtr—56/pri=2Jé/pri=2

= S +E+E+E+E+E.

Since \/(py1 +7)2 + (6/pri=2)2 < p+1r+6/pri~2, we have
B(S/pr’j—2 (:Ea y) - Bp+r+26/p7’j—2 (Sl (07 O))
Note that p(B,qyy25/pri-2)(51(0,0)) < p1. Thus

&

IN

1@0—2V@”4VﬁOWr+ﬂWm$a<udj—%%WF%ﬂp+ﬂ5
< pIpS My (N = 1)9p(p +1)8 < N (pyph =)o (N — 1)7p(prN =1 4 1N)5
< QCp’I“l_N (plp;fN)q(S}l-a-‘re‘

A

The proofs for & < C§2Fate and & < O§2HF¢ are similar. For 54, we have

- 8/pri=2  pp—8/pri=?

Ei < walj—2)%(pr2) /0 /0 1( B pri—2(z, )1 dac dy
< wa(j — 2)2(pr 2By s/ -2 (S1(0,0)))U(p — 6/ pri=2)5/ pri=>
< Pl M n(N = 1P - )0
< (mpy V) wa(N — 1)9prNtprt=Ng
< 2Cpr (p1p1 N)q52+a+e

The proofs for & < C§2To+e and E < C§2TT€ are similar. Hence,

w2(j - 2)q(prj_2)2/:\ ) ,U,(Ba/p,rj,Q (X))q dX — 0(52+a+6).
I1,1(8/pri=2)

Similarly, we can derive analogous results for the second, third and fourth terms of é} (6). Thus
€;(0) = o(6°+**¢). This proves part (c).
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(d) Tt suffices to show that fI p(Bs(x))?dx < C§*tete, Tt follows from (5.1)) and Propo-
sition [2.20(d) that
| a0y ax
In1,3

pyv porN T pyn+r e
= (/ / / / )M(Ba(m,y))qudy
PIN-1 0
pyn+S  pprV =6 pyn+rN =6 prN=6
SV A S|
PYN-1+6 pPYN+6 4

N-1

pyn+rN 8 pIN+S  rpr
Jooo bl ]
PYN 0 pyN—1 JprN—1-6
pyn+rY pYN-118  rpr
L N |
PN rN— PYN-1 0
N N

PYIN+O pyn+rN rN_§
Y I LYl TV E
PYN pr-1 pyn+rN—6J8

= EN N+ N v ey +eN 1+ N + &Y.

_l’_

N*lié

o1 () = wo(N —2)u o 5’2,\} 21 +pév71,u o S;]\},l, and hence

(1(Sqn—1(I1,1)) < wa(N —2)+pY~'. Since Bs(z,y) C Syv-1(111) for (z,y) € (pyn—1-+8, pyn +
) x (8, prNTL = 8) U (pyn + 0, pyn + 1Y = 8) x (6,7 —6), (5.10) implies

EfV + €2N (wo(N —2) +pév 1) ((pw\/ — pw\f,l)(pr]\[*1 —20)+ (TN — 26)2)

(py Nwa(N = 1) 4+ p3 'p ) ((prN1)? 4+ r2V)
< 2C(py N 4 py hygFrete,

By Lemma [2.22(c), we have u|g

IN

IN

For the other six terms, we have

&'

IN

11(Bpr126(San-11(0,0)) (pyn + 1V = pyn-1)d
wy(N — 1) 4 pr¥ 1§ < 2052,

IA

The proofs for £ < C§2+ote and &Y < C§*HF€ are similar. For &, we have

perl—(S

N PYN—1+0
&y < / / w(Bs(z, ) de dy
p 0

YN -1
#(Bpri5(51(0,0))) (pr 1 = 6)8 < plpr¥ 1o
pipy NaplNag2 < 20 (pypy N )25 et

IN

IN

The proofs for EN < C§2Fe+€ and EY < C§2TF€ are similar. This proves part (d); part (e)

can be proved similarly. O

Proof of Theorem[1.]. Combining Theorem and Proposition we have 7(¢q) = a. Let

o0

4
G(q,a) = (1 — pgr_o‘) (1 — pgr_a) Z w2(k‘)q(ﬂ7“k)_a +r ¢ ZP? - L
1=2

k=0
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Similar to the proof of Theorem we can show that G(q,a) is C! and that G4(q, a) # 0 for
any (g, a) satisfying G(a, @) = 0. The implicit function theorem now implies that 7 is differen-
tiable on (0, 00) and the formula for dimg(u) follows by computing 7/(1) = —Gy4(1,0)G4(1,0) L.
This completes the proof. O

Figure[L1]shows graphs of 7(¢) and f(«) for one of the measures. For this example, dimy(p) =
7/(1) ~ 1.13748 and dimp(K) = —7(0) ~ 1.18726, where K is the self-similar set.

90

1.4
80
701 1.2¢
601 1.0t
501 08
401 '
30f 0.61
20 0.4
10r
0 0.2¢
_10 L L L L L L L L L 8 L L L
0 10 20 30 40 50 60 70 80 90 100 .8 0.9 1 1.1 1.2

(a) 7(q) (b) f(a)

FIGURE 11. Graphs of 7(¢) and f(«) for a self-similar measure in Example
with r =7/20 and p=p; =1/4 for i = 1,2, 3, 4.

6. COMMENTS AND QUESTIONS

The spectral dimension of certain infinite IFSs has been computed in [22]. The method in

this paper can be applied to those IFSs to obtain 7(q).

It is interesting to compute 7(q) for ¢ < 0 and see whether there is any phase transition. Our

method cannot be applied to this case.

Infinite Bernoulli convolutions associated with Pisot numbers (and have overlaps) do not sat-
isfy Condition (B), and second-order identities are satisfied only by the one associated with the
golden ratio. It is of interest to compute the spectral dimension of infinite Bernoulli convolutions

associated with other Pisot numbers; new techniques are perhaps needed.
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