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Abstract. We obtain two-sided sub-Gaussian estimates of heat kernels for strongly local
Dirichlet forms on intervals, equipped with self-similar measures generated by iterated
function systems (IFS’s) that do not satisfy the open set condition (OSC) and have over-
laps. We first give a framework for heat kernel estimates on intervals, and then consider
examples of self-similar measures to illustrate this phenomenon. These examples include
the infinite Bernoulli convolution associated with the golden ratio, and a family of con-
volutions of Cantor-type measures. We make use of Strichartz second-order identities
defined by auxiliary IFS’s to compute measures of cells on different levels. These auxil-
iary IFS’s do satisfy the OSC and are used to define new metrics. The walk dimensions
obtained under these new metrics are strictly greater than 2 and are closely related to the
spectral dimension of fractal Laplacians.
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1. Introduction

Heat kernel estimates for local Dirichlet forms on fractals are typically sub-Gaussian.
This has been shown by plenty of examples: by Barlow and Perkins for the Sierpiński gas-
ket [4], by Kumagai [24] for nested fractals, by Fitzsimmons, Hambly and Kumagai [7]
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for affine nested fractals, by Hambly and Kumagai [15] (see also [26]) for post-critically
finite self-similar sets, by Kigami [19] and Kumagai [25] for resistance forms, and by
Barlow and Bass [1, 2] for the Sierpiński carpets, and by Kigami [21, 22, 23] for doubling
spaces, as well as many other authors. Equivalence conditions for two-sided estimates of
heat kernels for local Dirichlet forms on metric measure spaces are given by Grigor’yan,
Lau and the second author [10, 11], and Grigor’yan and Telcs [14], and references therein
(see also [16] for a certain class of resistance forms).

Typical measures on fractals described above are s-dimensional Hausdorff measures for
some number s > 0, and they are equivalent to self-similar measures generated by iterated
function systems (IFS’s) satisfying the open set condition (OSC). This paper studies self-
similar measures generated by IFS’s that do not satisfy the OSC. These measures are
no longer regular but still possess doubling property after introducing suitable metrics.
Although the self-similar sets themselves are intervals and hence Dirichlet forms can be
defined easily, the associated self-similar measures exhibit complicated fractal behavior,
and therefore heat kernel estimates become much more awkward.

Let C1(K) be the space of all functions, continuous on K and first-order smooth in open
(a, b) with a < b. Consider the following form (E,C1(K)):

E(u, v) =

∫ b

a
u′(x)v′(x)dx. (1.1)

Note that for any u ∈ C1(K) and any x, y ∈ K,

|u(x) − u(y)|2 ≤ E(u)|x − y|, (1.2)

where E(u) := E(u, u), since for any x < y and any smooth u,

|u(x) − u(y)|2 =

{∫ y

x
u′(z)dz

}2

≤ (y − x)
∫ y

x

[
u′(z)

]2 dz ≤ (y − x)E(u).

Let µ be a Radon measure with full supp(µ) = K := [a, b] (that is, µ (I) > 0 for any
nonempty open interval in K). Clearly, the form

(
E,C1(K)

)
is densely defined, non-

negative definite, symmetric, bilinear and Markovian in L2(µ) := L2(K, µ). In order to
introduce a Dirichlet form for E in L2(µ), we need to specify a domain F of E such that
F ⊂ L2(µ). Let H1(K) be the usual Sobolev space on K against the Lebesgue measure.
Using (1.2) and the Arzelà-Ascoli theorem, it is not hard to see that H1(K) is complete

under norm
√
E(u) + ‖u‖2L2(µ). Let

F := H1(K). (1.3)

By (1.2), we have F ⊂ C(K) where C(K) is the space of all continuous functions on
K. The form (E,F ) given by (1.1) and (1.3) is thus a Dirichlet form in L2(µ) (cf. [8]).
Moreover, (E,F ) is regular, conservative , strongly local in L2(µ) (since 1 ∈ F and
E(1) = 0, the form (E,F ) is conservative).

This paper studies two-sided estimates of the heat kernel of the form (E,F ) for µ being
certain self-similar measures with overlaps. Let {S i}

N
i=0 be contractive similitudes on R
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such that

K =

N⋃
i=0

S i(K), (1.4)

and let µ be a self-similar measure with weight
{
ρi
}N
i=0 :

µ =

N⋃
i=0

ρi

(
µ ◦ S −1

i

)
, (1.5)

where each 0 < ρi < 1 and
∑N

i=0 ρi = 1, and

µ(A) = 0 (1.6)

if A is a singleton1.

Let {T j}
m
j=0 be an auxiliary IFS of contractive similitudes:∣∣∣T j(x) − T j(y)

∣∣∣ = r j|x − y| for any x, y ∈ K, (1.7)

where each 0 < r j < 1, such that {T j(K) : j = 0, 1, . . . ,m} forms a partition of K:

K =

m⋃
i=0

T j(K), (1.8)

and the intervals Ti(K) and T j(K) can only intersect at their end-points if i , j. (Note that
the IFS {T j}

m
j=0 does not have overlaps but the IFS {S i}

N
i=0 may have.)

For a word ω = ω · · ·ωn, we let |ω| = n denote the length of n and call Kω an n-cell.
Write Kω ∼ Kτ if Kω ∩ Kτ , ∅. We say that two words ω, τ having the same length are
neighbors if Kω ∼ Kτ. We use the notation

Kω := Tω1 ◦ · · · ◦ Tωn(K) and rω := rω1 · · · rωn .

Note that {T0,T1, . . . ,Tm}, not {S 0, S 1, . . . , S N}, is used to define Kω. For each n ∈ N, let
J = {0, 1, . . . ,m} and let

Jn := {0, 1, . . . ,m}n, J∗ :=
∞⋃

k=0

Jn

be respectively the sets of words with length n, with finite length. Here J0 is defined to
be the empty word, and we use the convention that

ω∅ = ∅ω = ω for any word ω.

For two finite words ω and τ, we say ω < τ if there exists a non-empty word γ such that
τ = ωγ. We write ω ≤ τ (and call ω a father of τ) if ω < τ or ω = τ.

Let d∗ be a metric on K, and let

V(x, r) := µ(Bd∗(x, r)), (1.9)

1In fact, if K is a self-similar set generated by a family of contractive similitudes in Rn and µ is an associ-
ated self-similar measure with positive weights supported on K, then µ (∂B(x, r)) = 0 for any Euclidean ball
B(x, r) in Rn provided that K is not a singleton. This fact can be shown by using Lemma 2.6 in the paper
titled “Self-similar and self-affine sets: measure of the intersection of two copies”. Ergodic Theory Dynam.
Systems 30 (2010), 399–440 by M. Elekes, T. Keleti, and M. András −We learned this from De-Jun Feng.
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where
Bd∗(x, r) = {y ∈ K : d∗(y, x) < r} ,

a ball with center x and radius r under the metric d∗.

Fix some number β > 1. We introduce the following conditions that may or may not
be satisfied:

(1) self-similarity of (E,F ):

E(u) =

m∑
i=0

1
ri
E(u ◦ Ti), (1.10)

where r j, 0 ≤ j ≤ m, are given by (1.7);
(2) comparability of neighboring cells: if τ and σ are neighbors, then

µ(Kτ) � µ(Kσ); (1.11)

(3) generalized mid-point property: for any points x, y, z ∈ K with x < y < z,

d∗(x, z) = d∗(x, y) + d∗(y, z); (1.12)

(4) product of Euclidean length and µ-measure of interval [x, y] :

|x − y|µ ([x, y]) � d∗(x, y)β; (1.13)

(5) volume doubling property (VD): there exists a constant C > 0 such that

V(x, 2r) ≤ CV(x, r) for all r > 0 and all x ∈K; (1.14)

(6) ratio of volumes of two concentric balls Bd∗(x, r) and Bd∗(x, ηr):

V(x, r)
V(x, ηr)

= o
(
η−β

)
uniformly in x, r as η→ 0+,

that is,

sup
x∈K,0<r<1

ηβV(x, r)
V(x, ηr)

→ 0+ as η→ 0+. (1.15)

Here and below, the sign f � g means that C−1g ≤ f ≤ Cg for some universal constant
C > 0 independent of the arguments f and g. Note that we can take β = 2 in above
conditions if µ is the Lebesgue measure and d∗ is the Euclidean metric. In this paper we
are interested in the situation where β is strictly greater than 2 by introducing suitable µ
and d∗ on K.

Note that condition (1.12) implies the mid-point property, which in turn implies the
chain condition, see for example [12, Definition 3.4]. (A distance d on a nonempty set X
is said to have the mid-point property if for any x, y ∈ X, there exists some z ∈ X such
that, d(x, z) = d(z, y) = d(x, y)/2.)

Theorem 1.1. Let µ be a Radon measure with full support K = [a, b], and let (E,F ) be
defined by (1.1), (1.3). Let {T j}

m
j=0 be an auxiliary IFS defined by (1.7) such that (1.8)
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holds. Assume that conditions (1.10)–(1.15) are all satisfied for some metric d∗ on K.
Then the heat kernel pt(x, y) of (E,F ) exists, and satisfies the upper estimate

pt(x, y) ≤
C1

V(x, t1/β)
exp

−c1

(
d∗(x, y)

t1/β

)β/(β−1) (UE)

and the lower estimate

pt(x, y) ≥
C2

V(x, t1/β)
exp

−c2

(
d∗(x, y)

t1/β

)β/(β−1) (LE)

for all t ∈ (0, 1) and all x, y ∈ K.

We will prove Theorem 1.1 in Section 2 .

We consider two specific Radon measures µ and introduce a new metric d∗ accordingly.
The introduction of this kind of new metric d∗ (see (3.20) and (4.14) below) is partially
motivated by that in [20, Section 5], but it is more involved because of the overlaps of the
IFS. In this paper a lot of efforts go to verify conditions (1.10)–(1.15) for such (µ, d∗).

The first Radon measure we study is the infinite Bernoulli convolution associated with
the golden ratio. Let

S 0(x) = ρx, S 1(x) = ρx + (1 − ρ), ρ =

√
5 − 1
2

, (1.16)

and let µ be the self-similar measure with supp(µ) = K satisfying:

µ =
1
2
µ ◦ S −1

0 +
1
2
µ ◦ S −1

1 . (1.17)

The metric d∗ and the constant α ∈
(
0, 1

2

)
in the following theorem will be given in

Section 3.

Theorem 1.2. Let µ be defined by (1.17) and d∗ by (3.20) below. Let α ∈
(
0, 1

2

)
be

defined by (3.21) and β := 1/α > 2. Then all the conditions (1.10)–(1.15) are satisfied.
Consequently, the heat kernel pt(x, y) of (E,F ) exists and satisfies the two-sided estimates
(UE) and (LE) with such parameter β.

Theorem 1.2 will be proved in Section 3.

The second measure we study is from a family of convolutions of Cantor-type mea-
sures. Let

S 0(x) =
1
m

x, S 1(x) =
1
m

x +
m − 1

m
, (1.18)

where m ≥ 3 is an odd integer. The attractor of this IFS is a symmetric Cantor-type
set. Let νm be the self-similar measure defined by the IFS (1.18) with probability weights
p0 = p1 = 1/2. The m -fold convolution µm of ν∗mm is the self-similar measure defined by
the following IFS with overlaps (see [28]):

S i(x) =
1
m

x +
m − 1

m
i, i = 0, 1, . . . ,m, (1.19)
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together with probability weights

wi :=
1

2m

(
m
i

)
, i = 0, 1, . . . ,m. (1.20)

That is,

µm =

m∑
i=0

1
2m

(
m
i

)
µm ◦ S −1

i , (1.21)

with supp(µm) = [0,m].

The metric d∗ and the constant α ∈
(
0, 1

2

)
in the following theorem will be given in

Section 4.

Theorem 1.3. For any odd integer m ≥ 3, let µm be the m -fold convolution of the Cantor
measure defined as in (1.21). Let d∗ be a metric defined by (4.14) below, and let α ∈

(
0, 1

2

)
be a constant defined by (4.15) and β := 1/α > 2. Then the same conclusion of Theorem
1.2 holds with this value of β.

We will prove Theorem 1.3 in Section 4 .

2. Two-sided heat kernel estimates

Let K = [a, b] and let (E,F ) be the regular, strongly local, and conservative Dirichlet
form in L2(µ) defined by (1.1) and (1.3). In this section, we will prove Theorem 1.1.
Firstly, we derive the stated off-diagonal upper bound (UE) of the heat kernel by showing
both of the following conditions (DUE) (see (2.27) below) and (E) (see (2.43) and (2.44)
below) are satisfied, and then use the following equivalence

(UE)⇔ (DUE) + (E) (2.1)

that was obtained in [9, Theorem 2.2] or [14, Theorem 4.2] (although the metric space
considered in both [9] and [14] is unbounded, the conclusion is also true for bounded
metric space but with a finite range of time t in the heat kernel estimate). Secondly, we
derive the lower bound (LE) of the heat kernel. To do this, first we have the on-diagonal
lower bound from the off-diagonal upper bound, then we can use the Hölder continuity of
the heat kernel to derive the near diagonal lower estimate (NLE) (see (2.48) below) and
finally a chain argument yields the off-diagonal lower bound (see [12, Corollary 3.5]).

We use a Nash-type inequality to obtain the existence of the heat kernel, using ideas
from [20, 21]. For a word ω, let

g(ω) :=
√

rωµ(Kω). (2.2)

For s ∈ (0, 1], let

Λs :=
{
ω = ω1 · · ·ωn : g(ω) ≤ s < g(ω1 · · ·ωn−1), each ωi ∈ {0, 1, . . . ,m}

}
.

For any u ∈ F , let
Λs(u) := {ω ∈ Λs : Kω ∩ supp(u) , ∅}.

The following lemma follows by modifying the proofs in [20, Theorem 5.3] and [21,
Lemma 3.1.6]. We include a proof for completeness.
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Lemma 2.1. Assume that conditions (1.8) and (1.10) hold. Then there exist two positive
universal constant C1,C2 such that for all s ∈ (0, 1] and all u ∈ F ,

E(u) +
C1

s2 min
ω∈Λs(u)

µ(Kω)
||u||21 ≥

C2

s2 ||u||
2
2. (2.3)

(If Λs(u) = ∅, then min
ω∈Λs(u)

µ(Kω) = 1 since K∅ = K and µ(K) = 1.)

Proof. Let µω(·) := µ(Tω(·))/µ(Kω). Clearly,

µω(K) = 1 and
∫

k
f ◦ Tωdµω =

1
µ(Kω)

∫
Kω

f dµ (2.4)

for any f ∈ L1(µ). Since for any x ∈ K,

|u(x) − ū|2 =

∣∣∣∣∣∫
K

(u(x) − u(y))dµω(y)
∣∣∣∣∣2 ≤ ∫

K
(u(x) − u(y))2dµω(y),

where ū :=
∫

K
u dµω, we obtain from (1.2) that∫

K
|u − ū|2 dµω ≤

∫
K×K

(u(x) − u(y))2dµω(y)dµω(x)

≤ E(u)
∫

K×K
|x − y|dµω(y)dµω(x) ≤ CE(u), (2.5)

where C = b − a, the Euclidean length of the interval K. Set uω := u ◦ Tω. Then using
(1.10), (2.5) and (2.4), we have, for any s ∈ (0, 1],

E(u) =
∑

ω∈Λs(u)

1
rω
E(uω) ≥ C

∑
ω∈Λs(u)

1
rω

∫
K
|u ◦ Tω − u ◦ Tω|

2 dµω

= C
∑

ω∈Λs(u)

1
rωµ(Kω)


∫

Kω

u2 dµ −
1

µ(Kω)

(∫
Kω

udµ
)2
 . (2.6)

For any ω ∈ Λs(u), we have rωµ(Kω) ≤ s2 < rω1 · · · rωn−1µ(Kω1···ωn−1). Hence by (1.8)

C
∑

ω∈Λs(u)

1
rωµ(Kω)

∫
Kω

u2 dµ ≥ C
∑

ω∈Λs(u)

1
s2

∫
Kω

u2 dµ =
C
s2 ‖u‖

2
2. (2.7)

On the other hand, by (2.2),

rωµ(Kω) ≥ rωµ(Kω1···ωn−1) = rωng
2 (ω1 · · ·ωn−1) ≥ min

j

{
r j

}
s2,

and hence, using (1.8) again,

C
∑

ω∈Λs(u)

1
rωµ(Kω)

1
µ(Kω)

(∫
Kω

udµ
)2

≤ C′
∑

ω∈Λs(u)

1
s2

1
min
ω∈Λs(u)

µ(Kω)

(∫
Kω

|u|dµ
)2

≤ C′
1
s2

1
min
ω∈Λs(u)

µ(Kω)
‖u‖21 . (2.8)

The lemma now follows by combining (2.6), (2.7), and (2.8). �
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Proposition 2.2. Assume that condition (1.11) holds. Then there exists a constant δ1 ∈

(0, 1) such that for any word ω,

δ|ω|1 ≤ µ(Kω) and rω ≤ δ
|ω|
2 , (2.9)

where δ2 = max j

{
r j

}
. Consequently,

µ(Kω) ≥ g(ω)θ (2.10)

for some constant 0 < θ < 2.

Proof. Let ω = ω1 · · ·ωn. By (1.11), there exists a constant δ1 ∈ (0, 1) such that

µ(Kω) ≥ δ1µ(Kω1···ωn−1) ≥ · · · ≥ δ
|ω|
1 µ(K) = δ|ω|1 . (2.11)

Clearly,

rω ≤
{

max
j
{r j : 1 ≤ j ≤ m}

}|ω|
= δ|ω|2 , (2.12)

and hence we get (2.9).

To prove (2.10), notice that by (2.2),

µ(Kω) ≥ g(ω)θ ⇔ µ(Kω)
2−θ
θ ≥ rω. (2.13)

Hence it suffices to show that there exists some 0 < θ < 2 such that

µ(Kω)
2−θ
θ ≥

(
δ|w|1

) 2−θ
θ
≥ δ|ω|2 ≥ rω, (2.14)

where the first and third inequalities follow from (2.11) and (2.12) respectively. The
second inequality also follows on taking θ sufficiently close to 2. The proof is complete.
�

Lemma 2.3. Assume that conditions (1.8), (1.10) , (1.11) hold. Then the following Nash
inequality holds: there exists some θ > 0 such that

||u||2+ 4
θ

2 ≤ C
(
E(u) + ||u||22

)
||u||

4
θ

1 for all u ∈ F . (2.15)

Consequently, the heat kernel of (E,F ) exists, and is jointly continuous by using (1.2).

Proof. Substituting (2.10) into (2.3), and observing that g(ω) � s for any ω ∈ Λs, we
obtain that for all u ∈ F and all 0 < s ≤ 1,

E(u) +
C3

s2+θ
||u||21 ≥

C4

s2 ||u||
2
2.

We can rewrite it as
||u||22 ≤ C

(
s2E(u) + s−θ||u||21

)
. (2.16)

If E(u) ≤ ||u||21, by letting s = 1 in (2.16), we have

||u||22 ≤ C||u||21, (2.17)

which implies (2.15) but without the term CE(u)||u||
4
θ

1 .

If E(u) > ||u||21, by substituting s = (||u||21/E(u))1/(2+θ) in (2.16), we have

||u||22 ≤ C||u||
4

2+θ

1 E(u)
θ

2+θ , (2.18)
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which implies (2.15) again but without the term C||u||22||u||
4
θ

1 , after raising to the power
(2 + θ)/θ. In both cases, we get (2.15), as desired.

The ultra-contractivity of the heat semigroup now follows by (2.15) (see [6, Theorem
2.1]): ||Pt||1→∞ ≤ Cett−θ/2 and a unique heat kernel pt(x, y) exists. (We only need the
existence; the exponents are not important here since our case is nonhomogeneous.) �

To obtain the on-diagonal upper bound, we will follow the argument in [3] on graphs
(see also [16, p.184, Theorem 5.1] on metric spaces). Recall that the effective resistance
R(A, B) between two disjoint non-empty closed subsets A and B of K is defined by

R(A, B)−1 := inf
{
E(u) : u ∈ F , u|A = 1 and u|B = 0

}
.

It follows from definition that for any fixed A ⊆ K, R(A, B) is a non-increasing function
of B. Denote

R(x, B) := R ({x}, B) and R(x, y) := R ({x}, {y}) .
Since 1 ∈ F ⊂ C(K) and E(1) = 0, we have the following equivalent definition:

R(x, y) = sup
{
|u(x) − u(y)|2

E(u)
: u ∈ F , E(u) > 0

}
. (2.19)

From this, we see that for any t > 0 and x, y, z ∈ K,

|pt(x, y) − pt(x, z)|2 ≤ E(pt(x, ·))R(y, z). (2.20)

The following proposition will be used.

Proposition 2.4. Assume that conditions (1.12) and (VD) hold. Then there exists some
universal constant C > 0 such that for all x, y ∈ K with x < y ,

C−1V (x, d∗(x, y)) ≤ µ ([x, y]) ≤ V (x, d∗(x, y)) . (2.21)

Consequently, if in addition (1.13) holds then

|x − y| � R(x, y) �
d∗(x, y)β

V(x, d∗(x, y))
. (2.22)

Proof. Let x, y ∈ K with x < y. Then

[x, y] ⊆ Bd∗ (x, d∗(x, y)) , (2.23)

since by (1.12), for any point ξ ∈ [x, y],

d∗(x, y) = d∗(x, ξ) + d∗(ξ, y) ≥ d∗(ξ, x).

Thus, the second inequality in (2.21) holds.

To show the first one, let z ∈ [x, y] be the point such that

d∗(x, z) = d∗(z, y) = d∗(x, y)/2.

Then
[x, y] = Bd∗ (z, d∗(x, y)/2) ,

and thus
µ ([x, y]) = V(z, d∗(x, y)/2). (2.24)
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On the other hand,
Bd∗ (x, d∗(x, y)) ⊆ Bd∗ (z, 3d∗(x, y)/2) , (2.25)

since if d∗(ξ, x) ≤ d∗(x, y) then either ξ < x, which leads to

d∗(ξ, z) = d∗(ξ, x) + d∗(x, z) ≤ d∗(x, y) + d∗(x, y)/2 = 3d∗(x, y)/2,

and (2.25) is true, or ξ ∈ [x, y] ⊂ Bd∗ (x, d∗(x, y)) and (2.25) is also true. It follows that

V (x, d∗(x, y)) ≤ V (z, 3d∗(x, y)/2) . (2.26)

Therefore, we have from (2.24), (2.26), and condition (VD) that

µ ([x, y]) = V(z, d∗(x, y)/2) ≥ C−1V (z, 3d∗(x, y)/2) ≥ C−1V (x, d∗(x, y)) ,

proving the first inequality in (2.21).

Finally, note that there exists a constant c > 0 such that

c−1|x − y| ≤ R(x, y) ≤ c|x − y| for all x, y ∈ K

(see [18, formula (1.2)]). From this and using (1.13) and (2.21), we see that (2.22) follows.
�

We introduce condition (DUE).

(DUE) (on diagonal upper estimate): There exists a positive constant C such that

pt(x, x) ≤
C

V(x, t1/β)
(2.27)

for all t ∈ (0, 1) and all x ∈ K.

Lemma 2.5. Assume that all conditions (1.12), (VD) and (1.15) hold. Then condition
(DUE) is true.

Proof. Fix a ball B = Bd∗(x0, r). Since pt(x0, ·) is continuous, there is a point y0 ∈ B such
that pt(x0, y0) = min

y∈B
pt(x0, y). Recall that V(x0, r) := µ(B). Hence

pt(x0, y0)V(x0, r) ≤
∫

B
pt(x0, y)dµ(y) ≤ 1,

and thus

pt(x0, y0) ≤
1

V(x0, r)
. (2.28)

Observe by (1.15) and (VD) that there exists some constant C > 0 such that for all x ∈ K
and all 0 < s ≤ r ≤ 1,

sβ

V(x, s)
≤

Crβ

V(x, r)
. (2.29)

In fact, let s = ηr for some η ∈ (0, 1]. By (1.15), there exists some η0 ∈ (0, 1) such that
for all 0 < η ≤ η0,

sβ

V(x, s)
=

(ηr)β

V(x, ηr)
≤

rβ

V(x, r)
,
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whilst for all η0 < η ≤ 1, using (VD),

sβ

V(x, s)
=

(ηr)β

V(x, ηr)
≤

rβ

V(x, ηr)
≤ C

rβ

V(x, r)
,

thus showing (2.29).

As s := d∗(x0, y0) ≤ r, we have from (2.22 ) and (2.29) that

R(x0, y0) �
d∗(x0, y0)β

V(x0, d∗(x0, y0))
≤

Crβ

V(x0, r)
(2.30)

for some universal constant C > 0. Using the inequality (a + b)2 ≤ 2a2 + 2b2 and

E(pt(x0, ·)) = −(Lpt(x0, ·), pt(x0, ·)) = −

(
∂

∂t
pt(x0, ·), pt(x0, ·)

)
= −

1
2
∂

∂t
(pt(x0, ·), pt(x0, ·)) = −

1
2
∂

∂t
p2t(x0, x0),

we have

p2
t (x0, x0) ≤ 2p2

t (x0, y0) + 2 |pt(x0, x0) − pt(x0, y0)|2

≤
2

V(x0, r)2 + 2R(x0, y0)E(pt(x0, ·)) (by (2.28) and (2.20))

≤
2

V(x0, r)2 +
Crβ

V(x0, r)

(
−
∂

∂t
p2t(x0, x0)

)
(by (2.30 )). (2.31)

Letting r = t1/β ≤ (diamd∗(K))/2 := c1, integrating both sides of (2.31) from s/2 to s, and
using the monotonicity of pt(x0, x0) and V(x0, t1/β) on t, we have

s
2

p2
s(x0, x0) ≤

s

V
(
x0, (s/2)1/β)2 +

Cs
V(x0, (s/2)1/β)

ps(x0, x0).

Solving this inequality gives

ps(x0, x0) ≤
C′

V(x0, (s/2)1/β)
≤

C
V(x0, s1/β)

,

where s ∈ (0, cβ1), thus proving (2.27) by using the monotonicity of pt(x0, x0) again. �

We now show that condition (E) holds. Using a standard argument, we can derive this
by first estimating R(x, Bc), and then estimating the Green function on B.

For an open set Ω, let F (Ω) be the closure of F ∩ C0(Ω) under the F -norm, where
C0(Ω) is the space of all continuous functions with supports contained in Ω. It is known
that (E,F (Ω)) is a regular Dirichlet form in L2(Ω, µ) for any nonempty open Ω ⊂ K.

Definition 2.6. For any nonempty open set Ω, define the Green function gΩ(x, y) as fol-
lows,

gΩ(x, y) =

{
R(x,Ωc)ψΩ(x, y), if x, y ∈ Ω,

0, otherwise, (2.32)

where for any fixed x ∈ Ω, the function ψΩ is a solution of the variational problem

inf
{
E(u) : u ∈ F (Ω), u(x) = 1

}
;
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that is, ψΩ(x, ·) ∈ F (Ω) satisfies that ψΩ(x, x) = 1, 0 ≤ ψΩ(x, ·) ≤ 1 on K, and

R(x,Ωc)−1 = E(ψΩ(x, ·)). (2.33)

Such a function ψΩ(x, ·) exists for any x ∈ Ω and any nonempty open Ω by using (1.2)
(see for example [16, Proposition 4.2]).

For any ball B, let LB be the infinitesimal generator of the form (E,F (B)):

LB f := lim
t→0

PB
t f − f

t
in L2(µ)-norm,

where
{
PB

t

}
t>0

is the heat semigroup of ( E,F (B)). Then the Poisson-type equation

− LBu = f on B (2.34)

admits the unique weak solution u ∈ F (B) given by

u(x) =

∫
B

gB(x, y) f (y)dµ(y) (2.35)

for any f ∈ L∞(B) (see [16] or [13]).

Lemma 2.7. Assume that conditions (1.12), (1.13), (VD), and (1.15) hold. Then there
exists some constant C > 0 such that for any ball B = Bd∗(x0, r),

inf
x∈ 1

2 B
R(x, Bc) ≥ C−1 rβ

V(x, r)
≥ C′

rβ

V(x0, r)
. (2.36)

Proof. The proof given here is motivated by [3] on graphs (see also [16, Proposition 5.3]
on metric spaces). For a point x ∈ B\ 1

2 B, let ψx ∈ F (B) be the optimal function satisfying
that ψx(x0) = 1, ψx(x) = 0, and 0 ≤ ψx ≤ 1 on K, and

R(x0, x)−1 = E(ψx). (2.37)

(Such a function ψx exists, see for example [16, Proposition 4.2].) For any y ∈ Bd∗(x, ηr)
with η ∈ (0, 1/2), we have from (2.22) and (2.29) that

R(x, y) ≤
C′d∗(x, y)β

V(x, d∗(x, y))
≤

C(ηr)β

V(x, ηr)
. (2.38)

As Bd∗(x0, d∗(x0, x)) ⊆ Bd∗(x, 2r) and d∗(x0, x) ≥ r/2, we see from (2.22) that, using (VD),

R(x0, x)−1 ≤ C
V(x0, d∗(x0, x))

d∗(x0, x)β

≤ C′
V(x, 2r)
(r/2)β

≤ C
V(x, r)

rβ
. (2.39)

Combining (2.37), (2.38) and (2.39), we obtain

ψx(y)2 = |ψx(y) − ψx(x)|2 ≤ R(x, y)E(ψx) =
R(x, y)
R(x0, x)

≤
C(ηr)β

V(x, ηr)
·

V(x, r)
rβ

=
CηβV(x, r)

V(x, ηr)
.
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In view of (1.15), we may choose η > 0 to be sufficiently small so that

C
ηβV(x, r)
V(x, ηr)

≤
1
4
.

It follows that ψx(y) ≤ 1
2 , showing that

ψx ≤
1
2

on Bd∗(x, ηr).

Since µ satisfies (VD), there exists a finite number of balls {Bd∗(xi, ηr)}Ni=1, with xi ∈ B\ 1
2 B,

that covers the set B \ 1
2 B, where N does not depend on x0 or r. Let

f = ψx1
∧ ψx2

∧ · · · ∧ ψxN
.

Then f (x0) = 1 and f ≤ 1
2 on B \ 1

2 B, and 0 ≤ f ≤ 1 on K. Let

g = 2
(

f −
1
2

)
+

.

Then g(x0) = 1, g = 0 on B \ 1
2 B, and 0 ≤ g ≤ 1 on K . Using the Markov property of

(E,F ), we obtain

E(g) ≤ 4E( f ) ≤ 4
N∑

i=1

E(ψxi
) = 4

N∑
i=1

R(x0, xi)−1,

where the second inequality can be obtained as in [13, Proposition 6.9] and the third one
follows from (2.37) with x replaced by xi. Let φ be a cut-off function of the pair

(
1
2 B, B

)
.

Then g1Bc ∈ F by using the facts that gφ ∈ F and that g1Bc = g − gφ. Since the functions
gφ and g1Bc have disjoint supports, we obtain, using the locality of (E,F ), that

E(gφ) = E(g) − E(g1Bc) ≤ E(g) ≤ 4
N∑

i=1

R(x0, xi)−1.

Using (2.22) again, we see

R(x0, xi)−1 ≤ C
V(x0, d∗(x0, xi))

d∗(x0, xi)β
≤ C′

V(x0, r)
(r/2)β

= C
V(x0, r)

rβ
,

which gives that

E(gφ) ≤ C′
V(x0, r)

rβ
.

Noting that gφ satisfies the defining condition for R(x0, Bc)−1, we obtain

R(x0, Bc) ≥ E(gφ)−1 ≥ C
rβ

V(x0, r)
,

Therefore, for any x ∈ 1
2 B,

R(x, Bc) ≥ R(x, Bd∗(x, r/2)c) ≥ C
(r/2)β

V(x, r/2)
≥ C′

rβ

V(x0, r)
,

thus proving (2.36). �

We estimate the Green function gB(x, y) when x, y are close to the center of B.
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Lemma 2.8. Assume the hypotheses of Lemma 2.7. Then there exist universal constants
C > 0 and δ ∈

(
0, 1

4

)
such that

gB(x, y) ≥ C−1 rβ

V(x0, r)
for all x, y ∈ δB, (2.40)

where B = Bd∗(x0, r) and gB is the Green function on B.

Proof. Let δ ≤ 1
4 be a positive number to be determined later on. For any x ∈ 1

2 B, let
ψB(x, ·) be the optimal function for R(x, Bc)−1. For any y ∈ Bd∗(x, 2δr), we obtain

|ψB(x, y) − 1|2 = |ψB(x, y) − ψB(x, x)|2 ≤ R(x, y)E(ψB(x, ·))

= R(x, y)R(x, Bc)−1 (by (2.33) with Ω = B )

≤ C
d∗(x, y)β

V(x, d∗(x, y))
V(x, r)

rβ
(by (2.22) and (2.36))

≤ C′
(2δr)β

V(x, 2δr)
·

V (x, r)
rβ

≤
1
4

(by (2.29))

for sufficiently small δ by using (1.15). Thus

ψB(x, y) ≥
1
2

for any y ∈ Bd∗(x, 2δr). (2.41)

From this and (2.36), we have

gB(x, y) = R(x, Bc)ψB(x, y) ≥ C−1 rβ

V(x0, r)
ψB(x, y) ≥ (2C)−1 rβ

V(x0, r)
. (2.42)

For any x, y ∈ Bd∗(x0, δr), note that x ∈ 1
2 B as δ ≤ 1

2 , and y ∈ Bd∗(x, 2δr) as

d∗(y, x) ≤ d∗(y, x0) + d∗(x0, x) < δr + δr = 2δr.

Therefore, for any x, y ∈ Bd∗(x0, δr), it follows from (2.42) that

gB(x, y) ≥ (2C)−1 rβ

V(x0, r)
,

proving (2.40). �

We say that condition (E≤) holds if the solution u of (2.34) with f = 1B satisfies

sup
B

u ≤ Crβ, (2.43)

and condition (E≥) holds if u satisfies

inf
δB

u ≥ C−1rβ (2.44)

for some δ ∈ (0, 1) independent of u, B. We say that Condition (E) holds if both (E≤) and
(E≥) are true.

Lemma 2.9. Assume the hypotheses of Lemma 2.7. Then condition (E) holds.
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Proof. The condition (E≤) is straightforward by using the upper bound of R(x, Bc). We
now show condition (E≥). For any B = Bd∗(x0, r), let u be the solution of (2.34) with
f = 1B. Then for any x ∈ Bd∗(x0, δr), we have from (2.40) that

u(x) =

∫
B

gB(x, y)dµ(y) ≥
∫
δB

gB(x, y) f (y)dµ(y)

≥ C−1 rβ

V(x0, r)
µ(δB) ≥ C′rβ,

thus showing that condition (E≥) is true. �

Proof of condition (UE) in Theorem 1.1. Since condition (DUE) is true by Lemma 2.5
and condition (E) is true by Lemma 2.9, condition (UE) follows by using (2.1). �

It remains to derive the lower estimate (LE) in Theorem 1.1. We first use (UE) to obtain
(NLE), the method is standard, see [13, Theorem 6.17]. Since (E,F ) is conservative, we
have from (UE) that∫

Bd∗

(
x,(δ−1t)1/β

) pt(x, y)dµ(y) = 1 −
∫

KrBd∗

(
x,(δ−1t)1/β

) pt(x, y)dµ(y) ≥
1
2

(2.45)

for sufficiently small δ > 0, see [12, formula (3.8)]. By the semigroup property and (VD),
we have, for any x ∈ K and any t ∈ (0, 1),

p2t(x, x) =

∫
K

pt(x, y)2dµ(y) ≥
∫

Bd∗

(
x,(δ−1t)1/β

) pt(x, y)2dµ(y)

≥
1

µ
(
Bd∗

(
x,

(
δ−1t

)1/β
)) ∫

Bd∗

(
x,(δ−1t)1/β

) pt(x, y)dµ(y)


2

≥
1

4V
(
x,

(
δ−1t

)1/β
) ≥ C−1

V
(
x, t1/β) ,

which gives the on-diagonal lower bound: there exists C > 0 such that for all x ∈ K and
all t ∈ (0, 1),

pt(x, x) ≥
C−1

V
(
x, (t/2)1/β

) ≥ C−1

V
(
x, t1/β) . (2.46)

On the other hand, letting f := pt/2(x, ·), we have (see for example [16, (3.7)] or [13])

E(pt(x, ·)) = E(Pt/2 f ) =

∫ ∞

0
λe−λtd(Eλ f , f )

≤
1
et

∫ ∞

0
d(Eλ f , f ) =

1
et
|| f ||22 =

1
et

pt(x, x)

≤
C

tV
(
x, t1/β) (using condition (DUE) ) . (2.47)
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Then using (2.22) and (2.47), we have

|pt(x, y) − pt(x, x)|2 ≤ C
d∗(x, y)β

V(x, d∗(x, y))
E(pt(x, ·))

≤ C
d∗(x, y)β

V(x, d∗(x, y))
·

1
tV

(
x, t1/β) .

Now we prove condition (NLE). Let η ∈ (0, 1) be some constant which will be deter-
mined later. For all y ∈ Bd∗(x, (ηt)1/β) and any ε > 0,

pt(x, y) ≥ pt(x, x) −

√
C

d∗(x, y)β

V(x, d∗(x, y))
·

1
tV

(
x, t1/β)

≥
C−1

V
(
x, t1/β) −

√
CC′

ηt
V(x, (ηt)1/β)

·
1

tV
(
x, t1/β) (by (2.29))

≥
C−1

V
(
x, t1/β) − ε

V(x, t1/β)
(by (1.15))

≥
C−1

2V
(
x, t1/β) , (2.48)

provided we choose η sufficiently small. This proves condition (NLE).

Proof of condition (LE) in Theorem 1.1. Condition (NLE) is true from above. Since the
metric d∗ satisfies the chain condition, we conclude that (LE) in Theorem 1.1 follows
directly from (NLE) (see, for example, [12, Corollary 3.5]). We omit the detail. �

3. Infinite Bernoulli convolution associated with the golden ratio

Let K = [0, 1] and µ be given by (1.17) and (1.16). In this section we introduce a new
metric d∗ on K, and show that conditions (1.10)–(1.15) are all satisfied.

It is shown in [29] that by introducing the auxiliary IFS {T0,T1,T2}:

T0(x) = ρ2x, T1(x) = ρ3x + ρ2, T2(x) = ρ2x + ρ, (3.1)

(see Figure 1), one can obtain the following second-order identities: For all Borel subsets
A ⊂ [0, 1], µ(T0TiA)

µ(T1TiA)
µ(T2TiA)

 = Mi

µ(T0A)
µ(T1A)
µ(T2A)

 , i = 0, 1, 2, (3.2)

where

M0 =
1
8

2 0 0
1 2 0
0 4 0

 , M1 =
1
4

0 1 0
0 1 0
0 1 0

 , M2 =
1
8

0 4 0
0 2 1
0 0 2

 . (3.3)
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0 1
�
��

S 0 A
AU
S 1

ρ2 ρ0 1

(a)

0 1
�
��

T0 A
AU
T2

?

T1

ρ2 ρ0 1

(b)

Figure 1. (a) The IFS {S 0, S 1} has overlaps. (b) The auxiliary IFS
{T0,T1,T2} does not have overlaps.

By (3.2) we have

µ (T0(K)) = µ (T1(K)) = µ (T2(K)) =
1
3

(3.4)

(see [29, p.109]). Let
r0 = r2 = ρ2 and r1 = ρ3, (3.5)

the contraction ratios of the auxiliary IFS {T0,T1,T2}.

Proposition 3.1. The Dirichlet form (E,F ) defined by (1.1 ) and (1.3) in L2(µ) satisfies
the following self-similar identity: For any u ∈ F ,

E(u) =

2∑
i=0

1
ri
E(u ◦ Ti), (3.6)

where r0, r1, r2 are given by (3.5). Consequently, condition (1.10) holds.

Proof. Indeed, note that

E(u ◦ T0) =

∫ 1

0

(
(u ◦ T0)′(x)

)2 dx =

∫ 1

0

(
u′(x2)

)2
· ρ4dx = ρ2

∫ ρ2

0
u′2dy. (3.7)

Similarly,

E(u ◦ T1) = ρ3
∫ ρ

ρ2
u′2dy, (3.8)

and

E(u ◦ T2) = ρ2
∫ 1

ρ

u′2dy. (3.9)

Therefore, by summing up (3.7), (3.8) and (3.9), we have

1
ρ2E(u ◦ T0) +

1
ρ3E(u ◦ T1) +

1
ρ2E(u ◦ T2) =

∫ 1

0
u′2dy = E(u),

thus showing (3.6). �

Note that the form (E,F ) does not depend on any metric. We will introduce a new
metric d∗ on K below. Before this, we show condition (1.11). We use the following
notation. For each n ∈ N, let

Jn := {0, 1, 2}n, Jn
0 := {0, 2}n, J∗ :=

∞⋃
k=0

Jn, J∗0 :=
∞⋃

k=0

J
n
0,
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where J0 and J0
0 are defined to be the empty word.

For a symbol ω ∈ {0, 1, 2}, let eω be the row matrix defined as

eω =


[1 0 0] if ω = 0,
[0 1 0] if ω = 1,
[0 0 1] if ω = 2.

By using (3.2), we obtain

µ(Kω) = µ(Tω(K)) = eω1

µ(T0Tω2 · · · Tωn(K))
µ(T1Tω2 · · · Tωn(K))
µ(T2Tω2 · · · Tωn(K))

 = eω1 Mω2

µ(T0Tω3 · · · Tωn(K))
µ(T1Tω3 · · · Tωn(K))
µ(T2Tω3 · · · Tωn(K))


= eω1 Mω2 · · ·Mωn

µ(T0(K))
µ(T1(K))
µ(T2(K))

 =
1
3

eω1 Mω2 · · ·Mωn

11
1

 . (3.10)

Lemma 3.2. For any two neighbouring words ω and τ, we have

2−1µ(Kτ) ≤ µ(Kω) ≤ 2µ(Kτ). (3.11)

Consequently, condition (1.11) is true.

Proof. Without loss of generality, we assume that Kω is on the left of Kτ. Then either of
the following relationships holds for such ω and τ:

ω = θ02 · · · 2︸︷︷︸
`

and τ = θ10 · · · 0︸︷︷︸
`

, (3.12)

or
ω = θ12 · · · 2︸︷︷︸

`

and τ = θ20 · · · 0︸︷︷︸
`

, (3.13)

where θ is some finite word (possibly empty word) and ` ≥ 0 is some integer.

We deal with the first case; the second one is similar.

Note that µ(Kω) = µ(Kτ) = 1
3 when |ω| = |τ| = 1 by using (3.4), and (3.11) holds

trivially. We assume that |ω| = |τ| = n ≥ 2 and ω1, τ1 are the first symbols of ω, τ
respectively. Assume that |θ| = s ≥ 1 and write θ = θ1θ2 · · · θs. As ω = θ02 · · · 2︸︷︷︸

`

, we have,

using (3.10) that

µ(Kω) =
1
3

eθ1 Mθ2 · · ·Mθs · M0 · M`
2 ·

11
1

 =
[
a b c

]
· M0 · M`

2 ·

11
1

 , (3.14)

where
[
a b c

]
is the row vector with a, b, c ≥ 0. Similarly, we have

µ(Kτ) =
1
3

eθ1 Mθ2 · · ·Mθs · M1 · M`
0 ·

11
1

 =
[
a b c

]
· M1 · M`

0 ·

11
1

 . (3.15)
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By comparing µ(Kω) and µ(Kτ), it is easy to see that µ(Kω) ≤ 2µ(Kτ) when ` = 0 (for
the second case we have µ(Kτ) ≤ 2µ(Kω)), and hence (3.11) holds. Meanwhile, using
induction, we obtain, for any integer ` ≥ 1,

M`
0 =

1
8`

2 0 0
1 2 0
0 4 0


`

=
1
8`

 2` 0 0
2`−1 · ` 2` 0

2` · (` − 1) 2`+1 0

 , (3.16)

and also

M`
2 =

0 0 1
0 1 0
1 0 0

 · M`
0 ·

0 0 1
0 1 0
1 0 0

 =
1
8`

0 2`+1 2` · (` − 1)
0 2` 2`−1 · `
0 0 2`

 . (3.17)

Substituting (3.16) and (3.17) into (3.14) and (3.15) respectively, we see that

µ(Kω) =
1

8`+1

[
a b c

] 2
`+1 · (` + 1)

2` · (2` + 3)
2`+1 · (` + 2)

 ,
and

µ(Kτ) =
1

8`+1

[
a b c

] 2
` · (` + 2)

2` · (` + 2)
2` · (` + 2)

 .
Thus we obtain

µ(Kω)
µ(Kτ)

=
(2` + 2)a + (2` + 3)b + (2` + 4)c

(` + 2)(a + b + c)
,

which implies that

1 ≤
µ(Kω)
µ(Kτ)

≤ 2.

Thus (3.11) holds. �

For any 0 ≤ x < y ≤ 1, we define a setW(x, y) of finite words as follows:

W(x, y) :=
{
ω = ω1 · · ·ωn ∈ J

∗ : ωn = 1, Kω ⊆ [x, y],

and ω is a father
}
, (3.18)

where the notion “ω = ω1 · · ·ωn is a father” means that no proper ancestor ω1 · · ·ωk

(k < |ω|) of ω satisfies both of the following conditions:

(1) ωk = 1;
(2) Kω1···ωk ⊆ [x, y].

Namely, any word ωξ with ξ , ∅ cannot belong toW(x, y) if ω ∈ W(x, y), and hence ω
is of the shortest length among this class, or is a father.

For example, if [x, y] = [ρ2, ρ] = K1, then W(x, y) = {1}, consisting of only one
singleton. Note that the word “11” does not belong to W(ρ2, ρ) since “1” is its father.
Another example is when [x, y] = [0, ρ2] = K0, then

W(x, y) = {01, 001, 021, 0001, 0021, 0201, 0221, . . . } (3.19)
=

{
0J1 : J ∈ J∗0

}
,
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an infinite set of words with finite length (noting that J∗0 contains the empty word). Note
that none of the words in the following set

{011, 0101, 0111, 0121}

is in W(0, ρ2), although each word ω in this set ends with the symbol “1”, and Kω ⊆

[0, ρ2]. The reason is that all of them are offspring of the word “01”, which is inW(0, ρ2).

Note that for any x, y with 0 ≤ x < y ≤ 1, the set W(x, y) , ∅. This is because
K = [0, 1] and for each n ≥ 1,

⋃
ω∈Jn Kω = [0, 1]. Let ω = ω1 . . . ωn be the shortest word

such that Kω ⊆ [x, y] (such a word exists since the midpoint (x + y)/2 belongs to at least
one nonempty cell Kτ ⊆ [x, y] and we let ω be the shortest of such τ). If ωn = 1, then
ω ∈ W(x, y); otherwise ω1 ∈ W(x, y). ThereforeW(x, y) is nonempty.

Define a distance d∗ on K as follows: d∗(x, y) = 0 if x = y , and

d∗(x, y) =
∑

ω∈W(x,y)

(
rωµ(Kω)

)α (3.20)

if 0 ≤ x < y ≤ 1, where r0, r1, r2 are given by (3.5) and α is the unique solution of the
following equation

∞∑
k=0

∑
J∈Jk

0

(
ρ2k+3cJ

)α
= 1 (3.21)

with cJ given by

cJ :=
1
4

[
0 1 0

]
MJ

11
1

 where MJ := M j1 · · ·M jk (3.22)

for any index J = j1 · · · jk ∈ J
k
0 := {0, 2}k and any integer k ≥ 0. Here we use the

convention that Mω := I, the identity matrix, if ω is the empty word.

Remark 3.3. Let ∆µ be the Laplacian defined by µ (see [5, 17]). Then

dims(µ) = 2α,

where dims(µ) is the spectral dimension of the corresponding Dirichlet and Neumann
Laplacians −∆µ (see [28]). In fact (see [28, p.654]), we have

α =
dims(µ)

2
≈

0.998
2

= 0.499 < 0.5 (3.23)

(the value of α is close to but strictly less than 0.5). This sharply contrasts with the
classical case where α = 0.5 for the Euclidean metric and the Lebesgue measure.

Note that for any word ω, letting x = Tω(0), y = Tω(1), we have by definition ( 3.20),

d∗(x, y) =
(
rωµ(Kω)

)α (3.24)

if ω ends with the symbol “1” sinceW(x, y) = {ω}, while

d∗(x, y) =

∞∑
k=0

∑
J∈Jk

0

(rωJ1µ(KωJ1))α (3.25)

if ω ends with the symbols “0” or “2” sinceW(x, y) =
{
ωJ1 : J ∈ J∗0

}
.
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Proposition 3.4. For any 0 ≤ x < y ≤ 1 and for any distinct ω, τ ∈ W(x, y), we have

Kω ∩ Kτ = ∅. (3.26)

Proof. Assume that there are two distinct words ω, τ ∈ W(x, y) such that Kω ∩ Kτ , ∅.
Since both ω and τ end with 1, the only possible case is that one cell is contained in the
other (Indeed, if ω = ω1 · · ·ωn−11 and τ = τ1 · · · τm−11 (n ≤ m), and if ωk , τk for some
k ≤ n, then Kω ∩ Kτ = ∅). Without loss of generality, assume that Kω ⊂ Kτ. Then τ is a
father of ω, a contradiction by the definition ofW(x, y). The proposition follows. �

Proposition 3.5. The quantity d∗ is a metric on K, and satisfies

d∗(x, z) = d∗(x, y) + d∗(y, z) (3.27)

for any 0 ≤ x < y < z ≤ 1. Consequently, condition (1.12) is satisfied.

Proof. If d∗(x, y) = 0 then x = y; otherwise there would exist some nonempty word
ω ∈ W(x, y) such that µ (Kω) = 0, a contradiction by using (1.6).

It suffices to prove (3.27), since this will imply that d∗ satisfies the triangle inequality,
and thus d∗ is a metric on K.

To do this, we first claim that for any ω = ω1 · · ·ωn with ωn = 1, we have

(rωµ(Kω))α =
∑
J∈J∗0

(rωJ1µ(KωJ1))α =

∞∑
k=0

∑
J∈Jk

0

(rωJ1µ(KωJ1))α . (3.28)

The left-hand side of (3.28) is

(rωµ(Kω))α = rαω · µ(Kω)α,

and in view of (3.5), the right-hand side of (3.28) is:

rαω ·
∞∑

k=0

∑
J∈Jk

0

(
ρ2k+3

)α
· µ(KωJ1)α.

Thus we only need to show that

µ(Kω)α =

∞∑
k=0

∑
J∈Jk

0

(
ρ2k+3

)α
· µ(KωJ1)α. (3.29)

To do this, we use (3.10) to get

µ(Kω) =
1
3

eω1 Mω2 · · ·Mωn−1 · M1 ·

11
1

 =
1
3

[
a b c

]
· M1 ·

11
1

 =
1
12

(a + b + c), (3.30)

where
[
a b c

]
= eω1 Mω2 · · ·Mωn−1 is some row vector with nonnegative entries. Simi-

larly, we have

µ(KωJ1) =
1
3

eω1 Mω2 · · ·Mωn−1 · M1 · MJ · M1

11
1


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=
1

12

[
0 a + b + c 0

]
· MJ · M1 ·

11
1


=

1
12

(a + b + c) ·
1
4

[
0 1 0

]
MJ

11
1


=

1
12

(a + b + c)cJ. (3.31)

Therefore, by (3.21), (3.30) and (3.31), we obtain ( 3.29), showing (3.28).

Let x, y, z ∈ K with x < y < z. Observe thatW(x, y) ∩W(y, z) = ∅. By the definition
of d∗ and using (3.28), we see that

d∗(x, y) + d∗(y, z) =
∑

ω∈W(x,y)∪ W(y,z)

(rωµ(Kω))α , (3.32)

and that
d∗(x, z) =

∑
τ∈W(x,z)

(rτµ(Kτ))α . (3.33)

Observing that each word ω ∈ W(x, y) ∪ W(y, z) either belongs to W(x, z) or is an
offspring of some word inW(x, z). For the latter case, write

ω = τJ11J21 · · · Jk1

for some k ≥ 1 and J1, J2, . . . , Jk ∈ J
∗
0 , and for some τ ∈ W(x, z). Using (3.28) k times,

we have

(rτµ(Kτ))α =
∑

J′1,...,J
′
k∈J

∗
0

(
rτJ′11J′21···J′k1µ(KτJ′11J′21···J′k1)

)α
≥

∑
ω∈W(x,y)∪W(y,z) and ω has prefix τ

(rωµ(Kω))α ,

and hence by (3.32), (3.33),

d∗(x, y) + d∗(y, z) ≤ d∗(x, z). (3.34)

On the other hand, for any ε > 0, using (3.28) k times again, we have by (3.33),

d∗(x, z) =
∑

ω∈W(x,z)

∑
J1,...,Jk∈J

∗
0

(
rωJ11J21···Jk1µ(KωJ11J21···Jk1)

)α . (3.35)

We can pick an integer k sufficiently large such that each term(
rωJ11J21···Jk1µ(KωJ11J21···Jk1)

)α < ε.
Observe that there is at most one cell KωJ11J21···Jk1 on the right-hand side of (3.35) con-
taining y since the words inW(x, y)∪W(y, z) represent disjoint cells by Proposition 3.4,
whilst each of the remaining words is an offspring of some element inW(x, y)∪W(y, z).
Applying these facts to the right-hand side of (3.35), we obtain

d∗(x, z) ≤
∑

ω∈W(x,y)

∑
J1,...,Jk∈J

∗
0

(
rωJ11J21···Jk1µ(KωJ11J21···Jk1)

)α
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+
∑

ω∈W(y,z)

∑
J1,...,Jk∈J

∗
0

(
rωJ11J21···Jk1µ(KωJ11J21···Jk1)

)α
+ ε

≤ d∗(x, y) + d∗(y, z) + ε. (3.36)

Since ε is arbitrary, we have

d∗(x, z) ≤ d∗(x, y) + d∗(y, z). (3.37)

Combining (3.34), (3.37), we obtain (3.27). The proof is complete. �

For any word ω, define

d∗(Kω) = sup
x,y∈Kω

d∗(x, y) = d∗ (Tω(0),Tω(1)) , (3.38)

the diameter of the cell Kω under the metric d∗.

Lemma 3.6. There exists a constant C > 0 (depending only on ρ) such that for any two
neighbouring words ω and τ,

C−1d∗(Kτ) ≤ d∗(Kω) ≤ Cd∗(Kτ). (3.39)

(In fact, one can take C =
{
1 + 2

(
8ρ−3

)α} (
10ρ−1

)α
.)

Proof. We first claim that for any finite word ω, the following holds:(
ρ2

10

)α
d∗(Kω1) ≤ d∗(Kω0) ≤

(
8
ρ3

)α
d∗(Kω1),(

ρ2

10

)α
d∗(Kω1) ≤ d∗(Kω2) ≤

(
8
ρ3

)α
d∗(Kω1), (3.40)

that is,
d∗(Kω0) � d∗(Kω1) � d∗(Kω2).

We first show the ‘≤’ part of the first line in (3.40). Indeed, by (3.24)

d∗(Kω1) = µ(Kω1)αrαω1,

and using (3.10), we see that

µ(Kω1) =
1
3

eω1 Mω2 · · ·Mωn M1

11
1

 =
1

12
eω1 Mω2 · · ·Mωn

11
1

 =
1

12
(a + b + c),

where
[
a b c

]
:= eω1 Mω2 · · ·Mωn and a, b, c are nonnegative numbers. Thus we have

d∗(Kω1) =

(
a + b + c

12

)α
· rαω1 = ρ3α

(
a + b + c

12

)α
· rαω. (3.41)

Again, combining the definition of d∗, (3.10), and (3.25), we get

d∗(Kω0) =

∞∑
k=0

∑
J∈Jk

0

µ(Kω0J1)αrαω0J1, (3.42)
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and

µ(Kω0J1) =
1
3

eω1 Mω2 · · ·Mωn M0MJ M1

11
1

 =
1

12

[
a b c

]
M0MJ

11
1


=

1
96

[
2a + b 2b + 4c 0

]
MJ

11
1

 ≤ a + b + c
48

[
1 2 0

]
MJ

11
1


=

2(a + b + c)
3

·

1
4

[
0 1 0

]
M0MJ

11
1


 =

2(a + b + c)
3

c0J.

Thus, the right-hand side of (3.42) satisfies
∞∑

k=0

∑
J∈Jk

0

µ(Kω0J1)αrαω0J1 ≤

∞∑
k=0

∑
J∈Jk

0

(
2(a + b + c)

3

)α
cα0J · r

α
ω · ρ

(2k+5)α

=

(
2(a + b + c)

3

)α
· rαω ·

∞∑
k=0

∑
J∈Jk

0

cα0J · ρ
(2k+5)α

≤

(
2(a + b + c)

3

)α
· rαω ·

∞∑
k=0

∑
J′∈Jk

0

cαJ′ · ρ
(2(k+1)+3)α (let J′ = 0J)

≤

(
2(a + b + c)

3

)α
· rαω. (definition of α)

Using this and comparing with (3.41), we obtain

d∗(Kω0) ≤
(

8
ρ3

)α
d∗(Kω1),

thus proving the ‘≤’ part of the first line in (3.40).

On the other hand, using Lemma 3.2 and (1.6), for any word θ,

µ(Kθ) = µ(Kθ0) + µ(Kθ1) + µ(Kθ2)
≤ 2µ(Kθ1) + µ(Kθ1) + 2µ(Kθ1) = 5µ(Kθ1). (3.43)

Applying this inequality with θ = ω0 and using Lemma 3.2 again,

µ(Kω1) ≤ 2µ(Kω0) ≤ 10µ(Kω01),

which implies, in view of (3.24) again, that

d∗(Kω01) = µ(Kω01)αrαω01 ≥ 10−αµ(Kω1)αρ2αrαω1 =

(
ρ2

10

)α
d∗(Kω1).

Thus, we have

d∗(Kω0) ≥ d∗(Kω01) ≥
(
ρ2

10

)α
d∗(Kω1), (3.44)

proving the ‘≥’ part of the first line in (3.40). By symmetry, the second line in (3.40) also
holds. This proves our claim.
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Therefore, for any finite word ω, by (3.27) and (3.40), we have

d∗(Kω1) ≤ d∗(Kω) = d∗(Kω0) + d∗(Kω1) + d∗(Kω2)

≤
{
1 + 2

(
8ρ−3

)α}
d∗(Kω1) := Ad∗(Kω1), (3.45)

where A = 1 + 2
(
8ρ−3

)α
.

Finally, for any neighboring words ω and τ, using (3.5) and ( 3.12) (or (3.13)), we have

ρrτ ≤ rω ≤ ρ−1rτ, (3.46)

which implies, by using Lemma 3.2 and (3.43) with θ = τ, that

rω1µ(Kω1) ≤ rω1µ(Kω) ≤ r1

(
ρ−1rτ

)
(2µ(Kτ))

= 2ρ−1rτ1µ(Kτ) ≤ 10ρ−1rτ1µ(Kτ1).

Thus, using (3.45), we have

d∗(Kω) ≤ Ad∗(Kω1) = A
[
rω1µ(Kω1)

]α
≤ A

(
10ρ−1

)α [
rτ1µ(Kτ1)

]α
= A

(
10ρ−1

)α
d∗(Kτ1)

≤
{
1 + 2

(
8ρ−3

)α} (
10ρ−1

)α
d∗(Kτ), (3.47)

thus proving the lemma. �

We need the following proposition.

Proposition 3.7. Let ω be the shortest word such that Kω ⊆ [x, y] for 0 ≤ x < y ≤ 1. Set
|ω| = n. Then there are at most four n-cells between the points x and y.

Proof. Assume that ω , ∅; otherwise nothing needs to be proved. Let ω′ be the father of
ω; that is, ω is one of {ω′0, ω′1, ω′2}. Without loss of generality assume that ω′ , ∅. Note
that x, y cannot be separated apart by any (n − 1)-cell; otherwise, ω is not the shortest.
Namely, both x and y must lie in the union of two neighboring (n − 1)-cells.

Case (1). ω = ω′0. The point x must lie to the left of Kω′ , since Kω = Kω′0 ⊆ [x, y]. Let
τ′ be the left neighboring (n − 1)-word of ω′. Then

x ∈ Kτ′ and y ∈ Kω′

(see Figure 2.)

Figure 2. Points x, y and cells Kω′ ,Kτ′ , where ω = ω′0.
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Clearly, there are at most four n-cells between the points x and y:

x ∈ Kτ′0 ∼ Kτ′1 ∼ Kτ′2 ∼ Kω′0 = Kω ∼ Kω′1 ∼ Kω′2 3 y,

thus proving our conclusion.

Case (2). ω = ω′2. Under this assumption, the worst case is the following:

x ∈ Kω′0 and y ∈ Kτ′′2,

where τ′′ is the right neighboring (n − 1)-word of ω′ (see Figure 3).

Figure 3. Points x, y and cells Kω′ ,Kτ′′ , where ω = ω′2.

Clearly, there are also at most four n-cells between the points x and y:

x ∈ Kω′0 ∼ Kω′1 ∼ Kω′2 = Kω ∼ Kτ
′′0 ∼ Kτ

′′1 ∼ Kτ′′2 3 y,

and our conclusion is true as well.

Case (3). ω = ω′1. Since x and y cannot both lie outside of Kω′ , we assume, without
loss of generality, that y ∈ Kω′ . The other point x lies either in Kω′ , or in the left or the
right neighboring cell of Kω′ , and we assume that x ∈ Kτ′ , the left neighboring cell of Kω′

(see Figure 4).

Figure 4. Cells Kω′ ,Kτ′ where ω = ω′1 and y ∈ Kω′ , x ∈ Kτ′ with Kτ′

being the left neighboring cell.

Clearly our conclusion is also true. The proof is complete. �

Lemma 3.8. Let ω be the shortest word such that Kω ⊆ [x, y] for 0 ≤ x < y ≤ 1. Then

µ(Kω) ≤ µ ([x, y]) ≤ 30µ(Kω), (3.48)

rω ≤ |x − y| ≤
(
1 + ρ−1

)
ρ−2rω, (3.49)

C−1 [
µ(Kω)rω

]α
≤ d∗(x, y) ≤ C

[
µ(Kω)rω

]α . (3.50)

Consequently, condition (1.13) holds with β = 1/α.
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Proof. If ω = ∅, nothing needs to be proved. Assume that ω , ∅.

We first consider the caseω = ω′0 for some wordω′. Without loss of generality assume
that ω′ , ∅. Then y ∈ Kω′ and x ∈ Kτ′ for the left neighboring word τ′ of ω′ (see Figure 2
above), and

Kω′0 = Kω ⊆ [x, y] ⊆ Kω′ ∪ Kτ′ . (3.51)
It follows that

µ(Kω) ≤ µ([x, y]) ≤ µ(Kω′) + µ(Kτ′) ≤ 3µ(Kω′) (using (3.11))
≤ 15µ(Kω′1) (using (3.43))
≤ 30µ(Kω′0) = 30µ(Kω) (using ( 3.11)),

thus proving (3.48).

Observe that by (3.51) and (3.1),

rω ≤ |x − y| ≤ rω′ + rτ′ . (3.52)

Since rω = rω′0 = ρ2rω′ , using (3.46) we have

rω′ + rτ′ ≤ rω′ + ρ−1rω′ =
(
1 + ρ−1

)
rω′ =

(
1 + ρ−1

)
ρ−2rω.

Combining this with (3.52) proves (3.49).

Using (3.39) and (3.27), we have from (3.51) that

C−1d∗(Kω′1) ≤ d∗(Kω′0) = d∗(Kω) ≤ d∗(x, y)
≤ d∗(Kω′) + d∗(Kτ′) ≤ (1 + C)d∗(Kω′)
≤ (1 + C)Ad∗(Kω′1) (using (3.45) with ω replaced by ω′ ). (3.53)

By (3.11) and (3.5),

µ(Kω′1)rω′1 ≤ 2µ(Kω′0)rω′1 = 2ρµ (Kω) rω,
µ(Kω′1)rω′1 ≥ 2−1µ(Kω′0)rω′1 = 2−1ρµ (Kω) rω.

It follows by using (3.24) that(
2−1ρ

)α [
µ (Kω) rω

]α
≤

[
µ(Kω′1)rω′1

]α
= d∗(Kω′1) ≤ (2ρ)α

[
µ (Kω) rω

]α .
From this and using (3.53), we have

C−1
(
2−1ρ

)α [
µ (Kω) rω

]α
≤ d∗(Kω) ≤ (1 + C)A (2ρ)α

[
µ (Kω) rω

]α ,
thus proving (3.50).

The cases ω = ω′2 and ω = ω′1 can be treated similarly.

Finally, the formula (1.13) with β = 1/α follows directly by combining (3.48), (3.49),
and (3.50). The proof is complete. �

Lemma 3.9. Condition (1.14) is true.

Proof. It suffices to show that there exists a constant C > 1 (depending only on ρ) such
that for any 0 ≤ x < y < z ≤ 1 with d∗(x, y) = d∗(y, z), we have

C−1µ ([y, z]) ≤ µ ([x, y]) ≤ Cµ ([y, z]) . (3.54)
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Choose two shortest words ω and τ such that

Kω ⊆ [x, y] and Kτ ⊆ [y, z].

We claim that there exists a universal integer k ≥ 0 (depending only on ρ) such that∣∣∣|ω| − |τ|∣∣∣ ≤ k. (3.55)

Indeed, without loss of generality, assume that |ω| ≥ |τ| ≥ 1, and let ω′ ≤ ω such that
|ω′| = |τ|, ω = ω′θ for some word θ (possibly θ = ∅). Then by applying Proposition 3.7,
we see that the number of words with the same length |τ| and lying between y and z is at
most 4. See Figure 5 for the worst case when ω′ = ω. More precisely, the cell Kω′ can be
connected to cell Kτ by at most four |τ|-cells.

Figure 5. Positions of three points x, y, z when ω′ = ω.

Thus, by repeatedly using Lemma 3.2, we have

2−5µ(Kτ) ≤ µ(Kω′) ≤ 25µ(Kτ), (3.56)

and repeatedly using (3.46) yields

rω′ ≤ ρ−5rτ. (3.57)

By (3.50), we see that

µ(Kω)αrαω � d∗(x, y) = d∗(y, z) � µ(Kτ)αrατ .

Combining this with (3.56) and the inclusion Kω ⊆ Kω′ , we see that there exists some
C0 > 0 such that

µ(Kτ)rτ ≤ C0µ(Kω)rω ≤ C0µ(Kω′)rω ≤ C025µ(Kτ)rω, (3.58)

and after dividing by µ(Kτ),
rτ ≤ C025rω.

Combining this with (3.57), we have

rω′ ≤ C0(2ρ−1)5rω ≤ C0(2ρ−1)5rω′ρ2(|ω|−|τ|),

where we have used the following fact from (3.5):

rω = rω′rθ ≤ rω′ρ2|θ| = rω′ρ2(|ω|−|ω′ |) = rω′ρ2(|ω|−|τ|).

This shows that |ω| − |τ| is bounded by a universal integer k, proving our claim.

Note that by (3.43) and Lemma 3.2,

µ(Kθi) ≤ µ(Kθ) ≤ 5µ(Kθ1) ≤ 10µ(Kθi) (3.59)
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for any word θ and any i ∈ {0, 1, 2}. From this and using (3.55), we have

µ(Kω) ≤ µ(Kω′) ≤ 10µ(Kω′θ1) ≤ 102µ(Kω′θ1θ2) ≤ · · ·
≤ 10kµ(Kω′θ1···θk) = 10kµ(Kω),

which together with (3.56) gives that

µ(Kω) � µ(Kτ).

Finally, from this and using (3.48), we see that

µ ([x, y]) � µ(Kω) � µ(Kτ) � µ ([y, z]) ,

thus proving (3.54). The lemma follows. �

Lemma 3.10. Condition (1.15) with β = 1/α is satisfied.

Proof. For any x ∈ [0, 1], any small 0 < r < d∗(K)/2 and any integer ` ≥ 1, choose z and
y` in [0, 1] such that

d∗(x, z) = r = `d∗(x, y`). (3.60)
Then, letting η = 1/`, we have

V(x, r) � µ ([x, z]) and V(x, ηr) � µ ([x, y`]) .

From this and using (1.13), we have

V(x, r)
rβ

�
µ ([x, z])

rβ
�

d∗(x, z)β

|x − z|rβ
=

1
|x − z|

,

V(x, ηr)
(ηr)β

�
µ ([x, y`])

(ηr)β
�

d∗(x, y`)β

|x − y`|(ηr)β
=

1
|x − y`|

.

Thus, in order to prove (1.15), it suffices to show that

lim
`→∞

|x − y`|
|x − z|

= 0, (3.61)

where the limit is independent of the choice of x, r and y`, z.

We may assume that x < y` < z; the other cases y` < x < z, z < y` < x and z < x < y`
are similar. Choose a shortest word ω := ω` such that

Kω ⊆ [x, y`].

Then by (3.49) we have
|x − y`| � rω. (3.62)

Consider a chain of k + 1 neighbouring words starting from ω and with length |ω|. There
exists a constant C0 > 1 such that the total distance of these cells is not more than

d∗(Kω)(1 + C0 + · · · + Ck
0). (3.63)

Choose k to be the largest integer such that

1 + C0 + · · · + Ck
0 ≤ `, (3.64)

and thus
k � log `. (3.65)
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From (3.60), (3.63) and (3.64), we see that the chain of k + 1 neighbouring cells are
contained in [x, z], see Figure 6. Set k = 3N+1 for an integer N ≥ 0. We can find a word τ

Figure 6. A chain of k + 1 cells with length |ω| are contained in [x, z].

such that
|ω| − N = |τ| > 0 and Kτ ⊆ [x, z], (3.66)

that is, the points x and z can be separated apart by at least one (|ω| − N)-cell. In fact, if
[x, z] does not contain any (|ω| − N)-cell, then the number of (|ω| − N)-cells outside [x, z]
is at least 3|ω|−N −2; this is because the total number of (|ω| − N)-cells on K is 3|ω|−N whilst
the number of (|ω| − N)-cells covering [x, z] is at most 2. As each (|ω| − N)-cell contains
3N cells of length |ω|, the total number of cells with length |ω| outside [x, z] is thus at least(

3|ω|−N − 2
)
· 3N = 3|ω| − 2 · 3N .

However, inside [x, z] there are k + 1 = 3N+1 + 1 cells with length |ω| from above. Thus,
after summing up, the total number of |ω|-cells on K is at least(

3|ω| − 2 · 3N
)

+
(
3N+1 + 1

)
= 3|ω| + 3N + 1 > 3|ω|,

a contradiction, since the number of |ω|-cells on K is 3|ω|.

Let ω′ < ω such that
|ω′| = |τ|.

Then ω′ and τ are neighbouring words or ω′ = τ. We obtain

|x − z| ≥ rτ (since Kτ ⊆ [x, z] by (3.66))
≥ ρrω′ (by (3.46))
≥ ρ · ρ−2Nrω (3.67)
≥ C−1ρ−2N |x − y`| (by (3.62))

for some constant C depending only on ρ, where (3.67) follows by setting ω = ω′θ,

rω = rω′ · rθ ≤ rω′
(
ρ2

)|θ|
= rω′

(
ρ2

)N

by virtue of (3.5) and (3.66). Therefore, using (3.65), we have

|x − y`|
|x − z|

≤ Cρ2N = Cρ2 log3 k ≤ C(log `)2 log3 ρ → 0

as ` → ∞, completing the proof. �

Proof of Theorem 1.2. From above, conditions (1.10)–(1.15) are all satisfied with β =

1/α. By Theorem 1.1 we see that Theorem 1.2 is true. �
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4. m-fold convolution of Cantor-type measures

Let {S i}
m
i=0 and µ be defined as in (1.19) and (1.21) respectively, with m ≥ 3 being an

odd integer, and let K := [0,m]. In this section we introduce a new metric d∗ on K, and
again show that conditions (1.10)–(1.15) are all satisfied. Therefore, the conclusion in
Theorem 1.3 is true.

Let {Ti}
m−1
i=0 be the auxiliary IFS defined by

Ti(x) =
1
m

x + i, i = 0, 1, . . . ,m − 1, (4.1)

see Figure 7 for m = 3.

0 3
�
���

S 0 �
���

S 1 C
CCW

S 2 A
AAU

S 3

1 20 3

(a)

0 3
�
��

T0 A
AU
T2

?

T1

1 20 3

(b)

Figure 7. (a) The IFS {S i}
3
i=0 has overlaps. (b) The auxiliary IFS {Ti}

3
i=1

does not have overlaps.

Proposition 4.1. Let {S i}
m
i=0, µ, and {Ti}

m−1
i=0 be defined as in (1.19), (1.21), and (4.1)

respectively. Then for any u ∈ F ,

E(u) =

m−1∑
i=0

mE(u ◦ Ti). (4.2)

Consequently, condition (1.10) is true with each ri = 1
m .

Proof. For 0 ≤ i ≤ m − 1, we have

E(u ◦ Ti) =

∫ m

0

(
(u ◦ Ti)′(x)

)2 dx =
1

m2

∫ m

0

(
u′(x/m + i)

)2 dx =
1
m

∫ i+1

i

(
u′(y)

)2 dy.

Hence,
m−1∑
i=0

E(u ◦ Ti) =
1
m

m−1∑
i=0

∫ i+1

i
(u′)2 dy =

1
m
E(u),

thus proving (4.2). �

Let

J = {0, 1, . . . ,m − 1}, J1 := {1, . . . ,m − 2}, J0 := {0,m − 1},
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and for each n ∈ N, let

Jn := {0, 1, . . . ,m − 1}n, Jn
0 := {0,m − 1}n, J∗ :=

∞⋃
k=0

Jn, J∗0 :=
∞⋃

k=0

Jn
0 ,

where J0 and J0
0 are defined to be the empty word as before. It is shown in [27] that µ

satisfies a family of second-order identities with respect to the IFS {Ti}
m−1
i=0 . More precisely,

for i, j, k ∈ J , define

a(i)
j,k :=

w`, if ∃`(0 ≤ ` ≤ m) such that i + m j − (m − 1)` = k
0, otherwise,

where {w`}
m
`=0 is given by (1.20), and let Mi, 0 ≤ i ≤ m − 1, be the matrix

Mi :=
[
a(i)

p−1,q−1

]m

p,q=1
. (4.3)

For example, for m = 3,

M0 =

w0 0 0
0 w1 0

w3 0 w2

 , M1 =

 0 w0 0
w2 0 w1

0 w3 0

 , M2 =

w1 0 w0

0 w2 0
0 0 w3

 .
In general,

M0 =



w0 0 · · · 0 0

0 w1 0 . . . 0
... 0 w2

. . .
...

0 . . .
. . .

. . . 0
wm · · · 0 0 wm−1


, M1 =



0 w0 0 · · · 0
... 0 w1

. . .
...

0
...

. . .
. . . 0

wm−1 0 · · · 0 wm−2

0 wm 0 · · · 0


, . . .

Mm−2 =



0 · · · 0 w0 0
w2 0 · · · 0 w1

0 . . .
. . .

. . . 0

0 . . . wm−1
. . . 0

0 · · · 0 wm 0


, Mm−1 =



w1 0 · · · 0 w0

0 w2 0 · · · 0
...

. . .
. . .

. . .
...

0 . . .
. . . wm−1 0

0 0 · · · 0 wm


.

(4.4)
Then for all A ⊆ [0,m], 

µ(T0TiA)
...

µ(Tm−1TiA)

 = Mi


µ(T0A)

...
µ(Tm−1A)

 , i ∈ J . (4.5)

For ω = ω1 · · ·ω` ∈ J
`, we use the notation

Kω := Tω1 ◦ · · · ◦ Tω`(K)

as before. For i ∈ J , let ei denote the unit vector in Rm whose (i + 1)-st coordinate is 1.
Applying (4.5) repeatedly yields

µ(TωA) = eω1 Mω2 · · ·Mω`


µ(T0A)

...
µ(Tm−1A)

 for all A ⊆ [0,m]. (4.6)
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Proposition 4.2. Condition (1.11 ) is true.

Proof. Assume, without loss of generality, that Kω is on the left of Kτ. Then exactly one
of the following relationships holds for i = 0, 1, . . . ,m − 2: (θ could be empty)

ω = θi(m − 1) · · · (m − 1)︸                 ︷︷                 ︸
k

and τ = θ(i + 1)0 · · · 0︸︷︷︸
k

.

Assume that θ = θ1 · · · θ` for ` ≥ 1 and i = 0; other cases are similar. Then

µ(Kω) = eθ1 Mθ2 · · ·Mθ` M0Mk
m−1


µ(T0K)

...
µ(Tm−1K)

 =:
[
a0 · · · am−1

]
M0Mk

m−1µ
t, (4.7)

where
[
a0 · · · am−1

]
= eθ1 Mθ2 · · ·Mθ` and µ =

[
µ(T0K) · · · µ(Tm−1K)

]
.

Similarly,

µ(Kτ) =:
[
a0 · · · am−1

]
M1Mk

0µ
t. (4.8)

A direct calculation shows

Mk
m−1 =



wk
1 0 · · · 0 w0

∑k
i=1 wk−i

1 wi−1
m

0 wk
2 0 . . . 0

0 0 wk
3

. . .
...

0 . . .
. . .

. . . 0
0 · · · 0 0 wk

m


�



wk
1 0 · · · 0 wk

1

0 wk
2 0 . . . 0

0 0 wk
3

. . .
...

0 . . .
. . .

. . . 0
0 · · · 0 0 wk

m


,

Mk
0 =



wk
0 0 . . . 0 0

0 wk
1 0 . . . 0

0 0 wk
2 . . .

...

0 . . .
. . .

. . . 0
wm

∑k
i=1 wk−i

0 wi−1
m−1 0 . . . 0 wk

m−1


�



wk
0 0 . . . 0 0

0 wk
1 0 . . . 0

0 0 wk
2 . . .

...

0 . . .
. . .

. . . 0
wk

m−1 0 . . . 0 wk
m−1


.

Thus we obtain

M0Mk
m−1µ

t �



wk
1 0 · · · 0 wk

1

0 wk
2 0 . . . 0

0 0 wk
3

. . .
...

0 . . .
. . .

. . . 0
wk

1 · · · 0 0 wk
1


µt �


wk

1
wk

2
...

wk
m−1
wk

1


, (4.9)

and similarly, we have

M1Mk
0µ

t �



0 wk
1 0 · · · 0

0 0 wk
2

. . . 0

0 0 . . .
. . .

...

wk
m−1 0 . . . 0 wk

m−1
0 wk

1 · · · 0 0


µt �


wk

1
wk

2
...

wk
m−1
wk

1


. (4.10)
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Substituting (4.9) and (4.10) into (4.7) and (4.8) separately, we obtain

µ(Kω) �
[
a0 · · · am−1

]
·


wk

1
wk

2
...

wk
m−1
wk

1


� µ(Kτ).

The assertion follows. �

Recall that for −(m − 1) ≤ k ≤ m − 1, the k-diagonal of an m × m matrix A = (a` j)
consists of the entries j = ` + k. The main diagonal is the 0-diagonal. We say that A
is of Type 0 (or Type m − 1) if all its k-diagonals are zero, except possibly for k = 0 or
k = ±(m − 1), and if is of Type i (1 ≤ i ≤ m − 2) if all its k-diagonals are zero, except
possibly for k = i or k = −i′, where

i′ = m − 1 − i. (4.11)

An entry a` j of A belongs to the k-diagonal (−(m − 1) ≤ k ≤ m − 1) if and only j − ` = k.
Note that for each i ∈ {0, 1, . . . ,m−1} , the matrix Mi defined in (4.3) is of Type i. Denote
the transpose of a matrix A by At.

Proposition 4.3. Let A be an m × m matrix of Type i for 0 ≤ i ≤ m − 1. Then

(a) At, the transpose of A, is of Type i′;
(b) the (m − i)-th row of A is of the form [∗, 0, . . . , 0, ∗];
(c) the (i + 1)-st column of A is of the form [∗, 0, . . . , 0, ∗]t.

Proof. These are obvious if i = 0 or i = m − 1. So we assume that 1 ≤ i < m − 2.

(a) The possibly nonzero entries of A are

(i) the i-diagonal: (1, i + 1), (2, i + 2), . . . , (m − i,m), and
(ii) the −i′-diagonal: (m − i, 1), (m − i + 1, 2), . . . , (m, i + 1).

Hence, the possibly nonzero entries of At are:

(i’) (1,m − i), (2,m − i + 1), . . . , (i + 1,m), and
(ii’) (i + 1, 1), (i + 2, 2), . . . , (m,m − i),

which are respectively the i′ and −i = −(i′)′ diagonals of At. Hence At is of Type i′.

(b) By (i) and (ii), the entries of the two diagonals belong to the same row if and only if
the row number is m − i and the entries are (m − i,m) and (m − i, 1), proving (b).

Finally, (c) follows from (b) by taking transpose and using (a). �

We now study products of such matrices.

Proposition 4.4. Let A, B be two m × m matrices of Types i and j, respectively. Then AB
is of Type i + j mod (m − 1).
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Proof. Case 1. i = 0 or j = 0. It is obvious that if both A and B are of Type 0, then
so is AB. Now assume that i = 0 and 1 ≤ j ≤ m − 2. Using (i) and (ii) in the proof of
Proposition 4.3, we have:

(1) the nonzero entries corresponding to multiplication of A and the j-diagonal of B
are (`, j + `), 1 ≤ ` ≤ m− j, which belong to the j-diagonal, and (m, j + 1), which
belongs to the (− j′) -diagonal;

(2) the nonzero entries corresponding to multiplying A with the (− j′)-diagonal of B
are (m− j + `, `+ 1), 0 ≤ ` ≤ j, which belong to the (− j′)-diagonal, and (1, j + 1),
which belongs to the j-diagonal.

Hence AB is of Type j.

Next, we assume 1 ≤ i ≤ m − 2 and j = 0. Then AB = (BtAt)t. By Proposition 4.3(a),
Bt is of Types 0 and At is of Type i′. By what we have just proved above, BtAt if of Type
i′. By Proposition 4.3(a) again, we see that AB is of Type i.

Case 2. 1 ≤ i, j ≤ m − 2. The i-diagonal of A is: (1, i + 1), (2, i + 2), . . . , (m − i,m); the
(−i′)-diagonal of A is: (m− i, 1), (m− i + 1, 2), . . . , (m, i + 1); the j-diagonal of B is: (1, j +

1), (2, j+2), . . . , (m− j,m); the (− j′)-diagonal of B is: (m− j, 1), (m− j+1, 2), . . . , (m, j+1).
We divide the proof into four subcases.

Subcase I. i-diagonal of A times j-diagonal of B. An entry corresponding to such a prod-
uct can be nonzero only if it is of the form:

(`, j + k), where i + ` = k, 1 ≤ ` ≤ m − i and 1 ≤ k ≤ m − j.

If i + j ≤ m − 1, it is of the form (`, i + j + `), 1 ≤ ` ≤ m − i − j, which lies in the
(i + j)-diagonal. If i + j ≤ m, then i + ` = k ≤ m− j would imply that i + j + ` ≤ m, which
is impossible.

Subcase II. i-diagonal of A times (− j′) -diagonal of B. An entry in the product is nonzero
only if it is of the form:

(`, k + 1), where i + ` = m − j + k, 1 ≤ ` ≤ m − i, 0 ≤ k ≤ j.

Consider the case i + j ≤ m− 1. Equivalently, m− `+ k ≤ m− 1, or k− ` ≥ 1. The entry is
of the form (m − 1 − (i + j) + k + 1, k + 1), 0 ≤ k ≤ j, which lies on the −(i + j)′-diagonal.
Next, we consider the case i + j ≥ m. The entry is of the form (`, i + j − (m − 1) + `),
which lies on the (i + j − (m − 1))-diagonal.

Subcase III. (−i′)-diagonal of A times j-diagonal of B. An entry is nonzero only if it is of
the form:

(m − i + ` − 1, j + k), where ` = k, 1 ≤ ` ≤ i + 1, 1 ≤ k ≤ m − j.

If i+ j ≤ m−1, then the entry is of the form (m−1−(i+ j)+ j+k, j+k), 1 ≤ k ≤ min{i+1,m−
j}, which is on the −(i+ j)′-diagonal. If i+ j ≥ m, then, as j+k−(m−i+`−1) = i+ j−(m−1),
the entry is on the (i + j − (m − 1))-diagonal.
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Subcase IV. (−i′)-diagonal of A times (− j′)-diagonal of B. An entry is nonzero only if it
is of the form:

(m − i + ` − 1, k + 1), where ` = m − j + k, 1 ≤ ` ≤ i + 1, 0 ≤ k ≤ j.

First, assume i + j ≤ m − 1. Since (k + 1) − (m − i + ` − 1) = i + j − 2(m − 1) < 0, the
entry (m − i + `, k + 1) does not belong to the upper triangle of AB. On the other hand,

m − i − ` − 1 − (k + 1) = 2(m − 1) − (i + j) ≥ m − 1.

Hence (m − i + ` − 1, k + 1) can be a nonzero entry only if i + j = m − 1 and the nonzero
entry is (m, 0), which belongs to the −(i + j)′-diagonal.

Next, assume i + j ≥ m. Then the entry is

(m − i + m − j + k − 1, k + 1) = (m − 1 − (i + j − m + 1) + k + 1, k + 1),

which belongs to the −(i + j − m + 1)′-diagonal of AB.

To summarize, we see that if i + j ≤ m− 1, then the nonzero entries of AB are along the
(i + j)-diagonal or the −(i + j)′-diagonal. If i + j ≥ m, then the nonzero entries of AB are
along the (i + j−m + 1) -diagonal or the −(i + j−m + 1)′-diagonal. In the former case, AB
is of Type i + j; in the latter case, it is of Type i + j − m + 1. This completes the proof. �

Proposition 4.5. Let i, ` ∈ J and let A be an m × m matrix of Type `.

(a) If i + ` ≡ 0 mod (m − 1), then eiA is of the form [∗, 0, . . . , 0, ∗].
(b) If i + ` ≡ k mod (m − 1), where 1 ≤ k ≤ m − 2, then eiA is of the form aek for

some a ≥ 0.

Proof. (a) Since A is of Type `, by Proposition 4.3, the (m − `)-th row of A is of the form
[∗, 0, . . . , 0, ∗]. It follows from i+ ` ≡ 0 mod (m−1) that i = m−1− ` or i = 2(m−1)− `.
In the former case, ei = em−`−1 and the assertion follows. In the latter case i = ` = m − 1
and thus ei = em−1 and A is of Type 0. Again the assertion follows.

(b) Let i + ` ≡ k mod (m − 1) and 1 ≤ k ≤ m − 2. Since the unique nonzero entry of A
in row (i + 1) falls in the column (k + 1),

eiA = [0, . . . , 0, ∗, 0 . . . , 0] = aek

for some a ≥ 0. �

For i ∈ {0,m−1}, let M̃i be the matrix formed from Mi by keeping its first and last rows
and assigning 0 to all other entries. For i ∈ J1, let M̃i denote the matrix formed from Mi

by keeping its (m − i)−th row and assigning 0 to all other entries. For J = ( j1, . . . , jk) ,
where k ≥ 0 and j` ∈ {0,m − 1}, define (see [27])

ci,J := [wi+1, 0,wi]MJ

w0

0
wm

 = [wi+1, 0,wi]M̃J

w0

0
wm

 = eiMi′ M̃J

w0

0
wm

 , i ∈ J1, (4.12)

where 0 denotes the zero vector in Rm−2.
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Define a distance d∗ on K as follows. For any x, y ∈ [0,m] with x < y, let

W(x, y) :=
{
ω = ω1 · · ·ωn ∈ J

n : ωn ∈ J1,Kω ⊆ [x, y],
n∑

i=1

ωi ≡ 0 mod (m − 1)

and ω is a father
}
,

where the notion “ω = ω1 · · ·ωn is a father” means that none of the proper ancestors (or
prefixes) ω1 · · ·ωk (k < n) satisfies all of the following conditions:

• ωk ∈ J1;
• Kω1···ωk ⊆ [x, y];
•

∑k
i=1 ωi ≡ 0 mod (m − 1).

For example, let m = 3. If [x, y] = [0, 1] = K0, then

W(x, y) = {011, 0011, 0211, 0101, 0121, . . . } .

If [x, y] =
[

4
3 ,

5
3

]
= K11, thenW(x, y) = {11}.

Similar to Proposition 3.4, we have

Proposition 4.6. For any 0 ≤ x < y ≤ m and any distinct ω, τ ∈ W(x, y), we have

Kω ∩ Kτ = ∅. (4.13)

Define a symbol set S by

S =
{
ω1 · · ·ωn : ω1 ∈ J1, ωn ∈ J1,

n∑
i=1

ωi ≡ 0 mod (m − 1),

and
k∑

i=1

ωi . 0 mod (m − 1) for each k = 1, . . . , n − 1
}
.

Now define d∗(x, y) := 0 if x = y, and if x < y, define

d∗(x, y) :=
∑

ω∈W(x,y)

∑
J∈J∗0 ,σ∈S

(
rωJσµ(KωJσ)

)α
, (4.14)

where α is the unique solution of the equation

1
mα

m−1∑
i=1

wα
i +

∑
J∈J∗0

1
m(|J|+2)α

m−2∑
i=1

cαi,J = 1, (4.15)

where ci,J is given by (4.12). We remark that 2α is the spectral dimension of the Laplacian
−∆µ defined by µ [28]. For example if m = 3, then α ≈0.4985 < 0.5 (this value is close to
but strictly less than 0.5).

Proposition 4.7. Condition (1.12) is true with d∗ defined above.

Proof. Following the same spirit in the proof of Proposition 3.5, we need only to show
that for any ω = ω1 · · ·ωn with ωn ∈ J1,

∑n
i=1 ωi ≡ 0 mod (m − 1),∑

J∈J∗0 ,σ∈S

(rωJσµ(KωJσ))α =
∑

J∈J∗0 ,σ∈S

∑
J′∈J∗0 ,σ

′∈S

(rωJσJ′σ′µ(KωJσJ′σ′))α . (4.16)
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Indeed, assume that (4.16) is true. Let x, y, z ∈ K with x < y < z. Since W(x, y) ∩
W(y, z) = ∅, by the definition of d∗, we see that

d∗(x, y) + d∗(y, z) =
∑

ω∈W(x,y)∪ W(y,z)

∑
J∈J∗0 ,σ∈S

(rωJσµ(KωJσ))α , (4.17)

and that
d∗(x, z) =

∑
ω∈W(x,z)

∑
J∈J∗0 ,σ∈S

(rωJσµ(KωJσ))α . (4.18)

Observing that each word inW(x, y)∪W(y, z) either belongs toW(x, z) or is an offspring
of some word inW(x, z), and repeatedly using (4.16) to the words inW(x, z), we obtain

d∗(x, y) + d∗(y, z) ≤ d∗(x, z). (4.19)

For any ε > 0, similar to (3.36), we have

d∗(x, z) ≤ d∗(x, y) + d∗(y, z) + ε.

Since ε is arbitrary, we see

d∗(x, z) ≤ d∗(x, y) + d∗(y, z). (4.20)

We conclude from (4.19) and (4.20) that

d∗(x, z) = d∗(x, y) + d∗(y, z),

thus proving that condition (1.12) is holds with this d∗.

We now turn to show that (4.16) is true. Indeed, by (4.6) with A = K,

µ(KωJσ) = eω1 Mω2 · · ·Mωn−1 Mωn · MJ Mσ ·


µ(T0K)

...
µ(Tm−1K)

 . (4.21)

On the other hand, we show that

eω1 Mω2 · · ·Mωn−1 Mωn = eω1 Mω2 · · ·Mωn−1 et
ω′n
·
[
wω′n+1 0 wω′n

]
, (4.22)

whereω′n = m−1−ωn. In fact, applying Proposition 4.5(b) with i = ω1, ` = ω2+· · ·+ωn−1,
k = i + ` = ω1 + · · · + ωn−1 ≡ m − 1 − ωn = ω′n mod (m − 1),

eω1 Mω2 · · ·Mωn−1 = aeω′n (4.23)

for some a ≥ 0. Recall that

Mωn =



0 · · · w0 · · · 0
...

...
...

. . .
...

wω′n+1 · · · 0 · · · wω′n
...

. . .
...

...
...

0 · · · wm · · · 0


,

and hence, using (4.23) twice,

eω1 Mω2 · · ·Mωn−1 Mωn = aeω′n Mωn = a
[
wω′n+1 0 wω′n

]
= aeω′n · e

t
ω′n

[
wω′n+1 0 wω′n

]
= eω1 Mω2 · · ·Mωn−1 · e

t
ω′n

[
wω′n+1 0 wω′n

]
,
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thus showing (4.22).

We show that for any J ∈ J∗0 and any σ1 ∈ J1 = {1, 2, . . . ,m − 2} ,[
wω′n+1 0 wω′n

]
MJ Mσ1 = cω′n,Jeσ1 . (4.24)

In fact, the matrix MJ is of Type-0 by Proposition 4.4, since so is each MJk (1 ≤ k ≤ `) if
J = J1 · · · J` ∈ J∗0 . Hence

[
wω′n+1 0 wω′n

]
MJ =

[
wω′n+1 0 wω′n

] 
∗ · · · ∗
...

. . .
...

∗ · · · ∗

 =
[
a 0 b

]
(4.25)

for some numbers a, b ≥ 0. As Mσ1 is of Type-σ1, its (σ1 + 1)-th column looks like

w0

∗

wm

,
and thus,[

a 0 b
]
· Mσ1 =

[
0 · · · aw0 + bwm · · · 0

]
= (aw0 + bwm) eσ1

=
[
a 0 b

] w0

0
wm

 eσ1 =
[
wω′n+1 0 wω′n

]
MJ

w0

0
wm

 eσ1 .

Combining this with (4.25) and (4.12), we obtain[
wω′n+1 0 wω′n

]
MJ Mσ1 =

[
a 0 b

]
Mσ1

=
[
wω′n+1 0 wω′n

]
MJ

w0

0
wm

 eσ1 = cω′n,Jeσ1 ,

thus showing (4.24).

For any σ = σ1 · · ·σ` with σ1 ∈ J1, it follows by using (4.22) and (4.24) that

eω1 Mω2 · · ·Mωn−1 Mωn · MJ Mσ

= eω1 Mω2 · · ·Mωn−1e
t
ω′n
·
[
wω′n+1 0 wω′n

]
MJ Mσ1 · Mσ2 · · ·Mσ`

= eω1 Mω2 · · ·Mωn−1e
t
ω′n
· cω′n,Jeσ1 · Mσ2 · · ·Mσ` .

From this and the fact that

eσ1 · Mσ2 · · ·Mσ`


µ(T0K)

...
µ(Tm−1K)

 = µ (Kσ) (using (4.6))

we obtain

eω1 Mω2 · · ·Mωn−1 Mωn · MJ Mσ


µ(T0K)

...
µ(Tm−1K)

 = eω1 Mω2 · · ·Mωn−1e
t
ω′n
· cω′n,Jµ (Kσ) . (4.26)

Thus by (4.21), for any J ∈ J∗0 and any σ ∈ J∗ with initial letter σ1 ∈ J1, and for any
ω = ω1 · · ·ωn with ωn ∈ J1,

∑n
i=1 ωi ≡ 0 mod (m − 1),

µ(KωJσ) = eω1 Mω2 · · ·Mωn−1e
t
ω′n
· cω′n,Jµ (Kσ) . (4.27)
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From this, we only need to prove (4.16) without ω and summation of J; that is,∑
σ∈S

(rσµ(Kσ))α =
∑
σ∈S

∑
J′∈J∗0 ,σ

′∈S

(rσJ′σ′µ(KσJ′σ′))α . (4.28)

We first claim that for any integer k ≥ 3 and any θ ∈ J∗,∑
σ∈S,|σ|=k

µ(Kσθ)α =

m−1∑
j=1

wα
j ·

∑
σ∈S,|σ|=k−1

µ(Kσθ)α, (4.29)

Indeed, take any σ = σ1σ2 · · ·σk−1 ∈ S with |σ| = k − 1. Let Sσ be a collection of m − 1
words with length k which are formed by replacing σ1 in σ by one of the elements

1(σ1 − 1), 2(σ1 − 2), . . . , (σ1 − 1)1, σ10,
σ1(m − 1), (σ1 + 1)(m − 2), . . . , (m − 2)(σ1 + 1),

whilst keeping the remaining symbols σ2 · · ·σk−1 unchanged. It is not hard to see that⋃
σ∈S,|σ|=k−1

Sσ = {σ : σ ∈ S, |σ| = k}. (4.30)

We first look at the element 1(σ1 − 1)σ2 · · ·σk−1 in Sσ. By (4.6), we have

µ(K1(σ1−1)σ2···σk−1θ) = e1Mσ1−1Mσ2 · · ·Mσk−1 Mθ


µ(T0K)

...
µ(Tm−1K)


= w1eσ1 Mσ2 · · ·Mσk−1 Mθ


µ(T0K)

...
µ(Tm−1K)

 = w1µ(Kσθ).

We similarly treat the other elements τ ∈ Sσ. Raising to the power α and then summing
up, we obtain that ∑

τ∈Sσ

µ(Kτθ)α =

m−1∑
j=1

wα
j · µ(Kσθ)α.

After summing up over {σ : σ ∈ S, |σ| = k − 1} and using (4.30), we obtain (4.29), thus
proving our claim.

From the claim, we have∑
σ∈S,|σ|=k

1
m|σ|α

µ(Kσθ)α =

 1
mα

m−1∑
j=1

wα
j


k−2

·
∑

σ∈S,|σ|=2

1
m|σ|α

µ(Kσθ)α. (4.31)

From this we have∑
σ∈S

1
m|σ|α

µ(Kσθ)α =

∞∑
k=2

∑
σ∈S,|σ|=k

1
m|σ|α

µ(Kσθ)α

=
∑

σ∈S,|σ|=2

1
m|σ|α

µ(Kσθ)α ·
∞∑
`=0

( 1
mα

m−1∑
j=1

wα
j

)`
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=
∑

σ∈S,|σ|=2

1
m|σ|α

µ(Kσθ)α ·

1 − 1
mα

m−1∑
j=1

wα
j


−1

,

where we have used the fact that (1/mα)
∑m−1

j=1 wα
j < 1. By taking θ = ∅ and using the fact

that rσ = 1/m|σ|, we see that the left-hand side of (4.28) is∑
σ∈S

1
m|σ|α

µ(Kσ)α =

∑m−2
i=1 µ(Kii′)α

m2α ·

1 − 1
mα

m−1∑
j=1

wα
j


−1

. (4.32)

On the other hand, using (4.31) with θ = J′σ′ and summing up, we can write the
right-hand side of (4.28) as∑

σ∈S

∑
J′∈J∗0 ,σ

′∈S

(
rσJ′σ′µ(KσJ′σ′)

)α
=

(
1 −

1
mα

m−1∑
j=1

wα
j

)−1 ∑
σ∈S,|σ|=2

∑
J′∈J∗0 ,σ

′∈S

(
rσJ′σ′µ(KσJ′σ′)

)α
, (4.33)

Observing that the set of all the σ with |σ| = 2 is {1(m − 2), 2(m − 3), . . . , (m − 2)1}, and
for each σ = i(m − 1 − i) = ii′ with i ∈ J1, we have by (4.27) that

µ(KσJ′σ′) = µ(Kii′J′σ′) = eiet
(i′)′ · c(i′)′,J′µ (Kσ′) = ci,J′µ(Kσ′). (4.34)

Substituting (4.34) and (4.32) into (4.33), we have∑
σ∈S

∑
J′∈J∗0 ,σ

′∈S

(rσJ′σ′µ(KσJ′σ′))α

=

(
1 −

1
mα

m−1∑
j=1

wα
j

)−2

·

∑m−2
i=1 µ(Kii′)α

m2α ·

m−2∑
i=1

∑
J′∈J∗0

1
m(|J′ |+2)α cαi,J′ . (4.35)

Comparing (4.32) and (4.35), we see that (4.28) is equivalent to

1 =

(
1 −

1
mα

m−1∑
j=1

wα
j

)−1

·

m−2∑
i=1

∑
J′∈J∗0

1
m(|J′ |+2)α cαi,J′ ,

which is true by using the definition of α. �

For j ∈ J1, let

S j =
{
ω1 · · ·ωn : ω1 ∈ J1, ωn ∈ J1,

n∑
i=1

ωi ≡ j (mod m − 1),

and
k∑

i=1

ωi . j (mod m − 1) for each k = 1, . . . , n − 1
}
.

Lemma 4.8. There exists a constant C > 0 such that for any finite word ω,

C−1d∗(Kω) ≤ rαωµ(Kω)α ≤ Cd∗(Kω), (4.36)

where d∗(Kω) is the diameter of Kω under the metric d∗.
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Proof. We first claim that for any finite word ω, and any b ∈ J = {0, 1, . . . ,m − 1},

d∗(Kωb) � rαωµ(Kω)α. (4.37)

Case 1. ω = ω1 · · ·ωn and
n∑

k=1
ωk ≡ m − 1 − j (mod m − 1) for some j ∈ J1.

If b , j, then W(Kωb) is the set of all elements of the form ωbJτ with J ∈ J∗0 and
τ ∈ S j−b. Thus by the definition of d∗, we have

d∗(Kωb) =
∑

J∈J∗0 ,τ∈S
j−b

∑
J′∈J∗0 ,σ∈S

rαωbJτJ′σµ(KωbJτJ′σ)α. (4.38)

Since ωbJτ ≡ 0 (mod m − 1), we obtain that, using (4.27),

µ(KωaJτJ′σ) = eω1 · Mω2 · · ·Mωn Mb · MJ · Mτ1 · · ·Mτs−1 · e
t
τ′s
· cτ′s,J′µ(Kσ). (4.39)

On the other hand, by Proposition 4.5(b), we see that eω1 ·Mω2 · · ·Mωn Mb ·MJ ·Mτ1 · · ·Mτs−1

can be written as aeτ′s . Then by using (4.6),

µ(KωbJτ) = eω1 · Mω2 · · ·Mωn Mb · MJ · Mτ1 · · ·Mτs−1 · Mτs


µ(T0K)

...
µ(Tm−1K)


= aeτ′s · cet

τ′s
� eω1 · Mω2 · · ·Mωn Mb · MJ · Mτ1 · · ·Mτs−1e

t
τ′s
,

where c is the (τ′s + 1)-th entry of Mτs


µ(T0K)

...
µ(Tm−1K)

, thus

µ(KωbJτJ′σ) � µ(KωbJτ) · cτ′s,J′ · µ(Kσ) (4.40)

where τ = τ1 · · · τs.

Using (4.32) and (4.40), we have∑
J′∈J∗0 ,σ∈S

rαωbJτJ′σµ(KωbJτJ′σ)α � rαωbJτµ(KωbJτ)α
∑
J′,σ

rαJ′σcατ,J′µ(Kσ)α

= rαωbJτµ(KωbJτ)α ·

m−2∑
i=1

µ(Kii′)α

m2α ·

1 − 1
mα

m−1∑
j=1

wα
j


−1

·
∑

J′∈J∗0

1
m|J′ |α

cατ,J′ .

From the identity (4.15) and the fact that ci,J′ � c j,J′ for any i, j ∈ J1, we have∑
J′∈J∗0 ,σ∈S

rαωbJτJ′σµ(KωbJτJ′σ)α � rαωbJτµ(KωbJτ)α. (4.41)

For J ∈ J∗0 , denote by |J(0)| the number of ‘0’ in J and |J(m−1)| the number of ‘m−1’ in
J. Using Proposition 4.5(b), we see that eω1 · Mω2 · · ·Mωn · Mb is of the form aeb− j. Thus

µ(KωaJτ)

=eω1 · Mω2 · · ·Mωn · Mb · M0(b − j, b − j)|J(0)| · Mm−1(b − j, b − j)|J(m−1)| · Mτ


µ(T0K)

...
µ(Tm−1K)


=µ(Kωbτ) · M0(b − j, b − j)|J(0)| · Mm−1(b − j, b − j)|J(m−1)|,
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where M(b − j, b − j) denotes the (b − j + 1, b − j + 1)-th entry of a matrix M. Using the
fact that

w|J|0 ≤ M0(b − j, b − j)|J(0)| · Mm−1(b − j, b − j)|J(m−1)| ≤ w|J|(m+1)/2,

we have

rαωbτµ(Kωbτ)α ·
∑
k≥0

2k ·

(w0

m

)αk
≤

∑
J∈J∗0

rαωbJτµ(KωbJτ)α ≤ rαωbτµ(Kωbτ)α ·
∑
k≥0

2k ·

(w(m+1)/2

m

)αk
,

which, by observing that 2
(w(m+1)/2

m

)α
< 1, implies that∑

J∈J∗0

rαωbJτµ(KωbJτ)α � rαωbτµ(Kωbτ)α. (4.42)

Using Proposition 4.5(b), we see that eω1 · Mω2 · · ·Mωn can be written as ae j′ . Therefore,
we have by (4.6),

µ(Kωbτ) = ae j′ · Mb · Mτ


µ(T0K)

...
µ(Tm−1K)

 = a · c · eb− j · Mτ


µ(T0K)

...
µ(Tm−1K)


� ae j′


µ(T0K)

...
µ(Tm−1K)

 · eb− j · Mτ


µ(T0K)

...
µ(Tm−1K)

 = µ(Kω) · µ(K(b− j)τ),

where c is the only nonzero entry in the j′-th row of Mb.

Finally, we consider the summation∑
τ∈S j−b

rαωbτµ(Kωbτ)α � µ(Kω)α · rαω ·
∑
τ∈S j−b

rατµ(K(b− j)τ)α.

By using the formula (4.32), we see that

∑
τ∈S j−b

rατµ(K(b− j)τ)α ≤ mα ·
∑
|s|≥2

1
m|s|α

µ(Ks)α =

m−2∑
i=1

µ(Kii′)α

m2α ·

1 − 1
mα

m−1∑
j=1

wα
j


−1

.

Thus,
∑

τ∈S j−b
rατµ(K(b− j)τ)α has an upper bound, and also a lower bound and these bounds

are independent of ω or b. We conclude that∑
τ∈S j−a

rαωbτµ(Kωbτ)α � µ(Kω)α · rαω. (4.43)

Combining (4.38), (4.41), (4.42 ), and (4.43), we obtain (4.37) as desired.

If b = j, we have
d∗(Kω j) =

∑
J∈J∗0 ,σ∈S

rαω jJσµ(Kω jJσ)α.

Using (4.41), we obtain

d∗(Kω j) � µ(Kω j)α · rαω j � µ(Kω)α · rαω,

where the second asymptotic relation follows from Proposition 4.2. Hence we have shown
that (4.37) is true in Case 1.
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Case 2. ω = ω1 · · ·ωn and
n∑

k=1
ωk ≡ 0 (mod m − 1).

If b ∈ J1, then we can use a similar strategy as in Case 1 to show that (4.37) is true, we
omit the details. If b ∈ J0, we can assume, without loss of generality, that b = 0. Then

d∗(Kω0) =
∑

J∈J∗0 ,σ∈S

∑
J′∈J∗0 ,σ

′∈S

rαω0JσJ′σ′µ(Kω0JσJ′σ′)α. (4.44)

Similar to (4.41) in Case 1, we can drop the summation of J′, σ′; that is

d∗(Kω0) �
∑
J∈J∗0

∑
σ∈S

rαω0Jσµ(Kω0Jσ)α.

Using (4.6), we have

µ(Kω0Jσ) = eω1 Mω2 · · ·Mωn · M0MJ Mσ


µ(T0K)

...
µ(Tm−1K)


≤ Ceω1 Mω2 · · ·Mωn ·


µ(T0K)

...
µ(Tm−1K)

 · [w1 0 w0

]
M0J Mσ ·


µ(T0K)

...
µ(Tm−1K)


≤ Cµ(Kω) · c1,0Jµ(Kσ).

Substituting this into (4.44), and using (4.32), we obtain

d∗(Kω0) ≤ C
∑
J∈J∗0

rαω0Jµ(Kω)α · cα1,0J

∑
σ∈S

rασµ(Kσ) ≤ C′
∑
J∈J∗0

rαω0Jµ(Kω)α · cα1,0J

≤ Crαωµ(Kω)α
∑
|J′ |≥0

1
m|J′ |α

cα1,J′ ≤ Crαωµ(Kω)α. (4.45)

On the other hand, since ω01 with b = 0 belongs to Case 1, we have

d∗(Kω0) ≥ d∗(Kω010) ≥ C−1rαω01µ(Kω01)α ≥ C−1rαωµ(Kω)α, (4.46)

where we obtain the last inequality by using Proposition 4.2 . We conclude from (4.45)
and (4.46) that (4.37) is true in Case 2. Therefore our claim holds.

It follows from Proposition 4.7 and (4.37) that

d∗(Kω) =

m−1∑
j=0

d∗(Kω j) � rαωµ(Kω)α,

which completes the proof. �

Lemma 4.9. Condition (1.13) holds with β = 1/α, where α is given by (4.15).

Proof. Choose one of the shortest words, say ω′, such that Kω′ ⊆ [x, y]. Without loss of
generality, we assume that ω′ is non-empty. Let ω′ = ω j, where 0 ≤ j ≤ m − 1 and ω
may be empty. Then there exists a neighbor τ of ω such that

Kω j ⊆ [x, y] ⊆ Kω ∪ Kτ. (4.47)
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Using Proposition 4.2 and (4.47), we have

C−1µ(Kω j) ≤ µ([x, y]) ≤ µ(Kω) + µ(Kτ) ≤ (C′ + 1)µ(Kω) ≤ Cµ(Kω j). (4.48)

Thus,
µ([x, y]) � µ(Kω j). (4.49)

Also, by (4.47), m · rω j ≤ |x − y| ≤ m · (rω + rτ), which yields

|x − y| � rω j. (4.50)

From (4.47) and Proposition 4.7, we also get

d∗(Kω j) ≤ d∗(x, y) ≤ d∗(Kω) + d∗(Kτ), (4.51)

Hence, using (4.36) and Proposition 4.2,

C−1µ(Kω j)αrαω j ≤ d∗(x, y) ≤ C
(
µ(Kω)αrαω + µ(Kτ)αrατ

)
≤ C′µ(Kω)αrαω ≤ Cµ(Kω j)αrαω j. (4.52)

Finally, combining (4.52), (4.50) and (4.49), we have

d∗(x, y)1/α � µ(Kω j)rω j � µ(Kω j)|x − y| � µ([x, y])|x − y|,

which yields (1.13) with β = 1/α and completes the proof. �

Lemma 4.10. Condition (1.14) is satisfied.

Proof. Using condition (1.12), it suffices to show that there exists a constant c > 1 such
that for all x, y, z with 0 ≤ x < y < z ≤ m and d∗(x, y) = d∗(y, z), we have

c−1µ ([y, z]) ≤ µ ([x, y]) ≤ cµ ([y, z]) . (4.53)

Choose two shortest words ω and τ such that

Kω ⊆ [x, y] and Kτ ⊆ [y, z],

and that the point y is closest to Kω and Kτ.

Claim. There exists a constant L ≥ 0 such that∣∣∣|ω| − |τ|∣∣∣ ≤ L. (4.54)

To prove the claim we assume, without loss of generality, that |ω|− |τ| ≥ 0, and let ω′ ≤ ω
such that |ω′| = |τ|. Then

rω′ = rτ. (4.55)
The number of words lying between Kω′ and Kτ with length |ω′| is less than some constant
c1 > 0. Thus by Proposition 4.2,

c−1
2 µ(Kτ) ≤ µ(Kω′) ≤ c2µ(Kτ). (4.56)

From (4.52), we have
d∗(x, y) � µ(Kω)αrαω

and that
d∗(y, z) � µ(Kτ)αrατ .

Using this and the equality d∗(x, y) = d∗(y, z), we see that there exists some constant c3 > 0
such that

µ(Kτ)rτ ≤ c3µ(Kω)rω ≤ c3µ(Kω′)rω. (4.57)
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Combining (4.56), (4.55), and (4.57), we have

rω′ = rτ ≤
c3µ(Kω′)rω
µ(Kτ)

≤ c3c2rω = c3c2rω′
(

1
m

)|ω|−|ω′ |
,

which implies that 1 ≤ c3c2/m(|ω|−|ω′ |), proving the claim.

Now by (4.54) and (4.56),

µ(Kω) � µ(Kω′) � µ(Kτ).

It now follows from (4.49) that µ([x, y]) � µ([y, z]). �

We say that two words τ and σ with equal length are consecutive if Kτ ∩ Kω , ∅.

Lemma 4.11. Condition (1.15) holds with β = 1/α.

Proof. For any x ∈ (0,m), any small r ∈ (0, 1) and any integer ` ≥ 1, choose z and y` in
[0,m] such that

d∗(x, z) = r = `d∗(x, y`) (4.58)
We need to show that

lim
`→∞

|x − y`|
|x − z|

= 0, (4.59)

where the limit is independent of x and r. We may assume that x < y` < z; the other cases
are similar. Choose a shortest word ω such that Kω ⊆ [x, y`].

Consider a chain of k + 1 consecutive words starting from ω and with length |ω|, where
k will be determined later. By Lemma 4.8 and Proposition 4.2, d∗(Kω) � d∗(Kτ) if τ is
neighbor of ω. Hence there exists a constant c0 > 1 such that the total distance of the
corresponding cells is no more than

d∗(Kω)(1 + c0 + · · · + ck
0). (4.60)

Let k be the largest integer such that

1 + c0 + · · · + ck
0 ≤ `, (4.61)

and thus
k � log `. (4.62)

Using (4.58), (4.60), and the inclusion Kω ⊆ [x, y`], we see that there exists a chain of k+1
consecutive cells starting from Kω that are contained in [x, z]. Let N := [logm k]−1, where

[·] denotes the greatest integer function. Since the Euclidean length of Kω is m
(

1
m

)|ω|
and

since k ≥ mN+1, we see that

|x − z| ≥ k · m
(

1
m

)|ω|
≥ m2

(
1
m

)|ω|−N

> 2m
(

1
m

)|ω|−N

.

This implies that there exists a word τ such that

|τ| = |ω| − N and Kτ ⊆ [x, z].

Let ω′ ≤ ω such that |ω′| = |τ|. Hence

|x − z| ≥ m · rτ = m · rω′ = mN+1rω. (4.63)
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Note that by (4.50),
|x − y`| � rω. (4.64)

Combining (4.64), (4.62), and (4.63), we have
|x − y`|
|x − z|

≤
c′rω

mN+1rω
=

c′

mN+1 =
c′

m[logm k] ≤
mc′

k
≤

c
log `

→ 0 as ` → ∞.

This proves (4.59). Finally, letting η = 1
`

and using (2.22),

sup
x∈K,0<r<1

η1/αV(x, r)
V(x, ηr)

= sup
x∈K,0<r<1

(ηr)β /µ
(
Bd∗(x, ηr)

)
rβ/µ

(
Bd∗(x, r)

)
� sup

x∈K,0<r<1

|x − y`|
|x − z|

,

which tends to 0 as η→ 0+ by (4.59). �

Proof of Theorem 1.3. From above, conditions (1.10)–(1.15) are all satisfied with β =

1/α. Theorem 1.3 now follows from Theorem 1.1. �
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Probab. Theory Related Fields 91 (1992), 307–330.

[2] M.T. Barlow and R.F. Bass, Brownian motion and harmonic analysis on Sierpiński carpets, Canad. J.
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