A brief introduction to quantum groups

Pavel Etingof

MIT

May 5, 2020
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics.
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas:
The theory of quantum groups developed in mid 1980s
(Faddeev’s school, Drinfeld, Jimbo) from attempts to construct
and understand solutions of the quantum Yang-Baxter equation
arising in quantum field theory and statistical mechanics. Since
then, it’s grown into a vast subject with deep links to many areas:
representation theory
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas:

- representation theory
- the Langlands program
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas: representation theory, the Langlands program, low-dimensional topology.
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas:

- representation theory
- the Langlands program
- low-dimensional topology
- category theory
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas:

- representation theory
- the Langlands program
- low-dimensional topology
- category theory
- enumerative geometry
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas:

- representation theory
- the Langlands program
- low-dimensional topology
- category theory
- enumerative geometry
- quantum computation
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas:

- representation theory
- the Langlands program
- low-dimensional topology
- category theory
- enumerative geometry
- quantum computation
- algebraic combinatorics
- conformal field theory
- integrable systems
- integrable probability
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas:

- representation theory
- the Langlands program
- low-dimensional topology
- category theory
- enumerative geometry
- quantum computation
- algebraic combinatorics
- conformal field theory
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas:

- representation theory
- the Langlands program
- low-dimensional topology
- category theory
- enumerative geometry
- quantum computation
- algebraic combinatorics
- conformal field theory
- integrable systems
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas:

- representation theory
- the Langlands program
- low-dimensional topology
- category theory
- enumerative geometry
- quantum computation
- algebraic combinatorics
- conformal field theory
- integrable systems
- integrable probability
The theory of quantum groups developed in mid 1980s (Faddeev’s school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it’s grown into a vast subject with deep links to many areas:

- representation theory
- the Langlands program
- low-dimensional topology
- category theory
- enumerative geometry
- quantum computation
- algebraic combinatorics
- conformal field theory
- integrable systems
- integrable probability

The goal of this talk is to review some of the main ideas and examples of quantum groups and briefly describe some of the applications.
Classical physics:
Classical physics:

- X – a space of states;
• **Classical physics:**
 - X – a space of states;
 - $A = \mathcal{O}(X)$ – the algebra of observables, i.e., (say, complex) functions on X (a commutative, associative algebra).
Hopf algebras

- Classical physics:
 \(X\) – a space of states;
 \(A = \mathcal{O}(X)\) – the algebra of observables, i.e., (say, complex) functions on \(X\) (a commutative, associative algebra).

 Example: \(X = \mathbb{R}^2\). Then the coordinate \(x\) and momentum \(p\) are examples of observables (elements of \(A\)).
Classical physics:

X – a space of states;

$A = \mathcal{O}(X)$ – the algebra of observables, i.e., (say, complex) functions on X (a commutative, associative algebra).

Example: $X = \mathbb{R}^2$. Then the coordinate x and momentum p are examples of observables (elements of A).

Quantum physics:
- **Classical physics:**
 \(X \) – a space of states;
 \(A = \mathcal{O}(X) \) – the algebra of observables, i.e., (say, complex) functions on \(X \) (a commutative, associative algebra).
 Example: \(X = \mathbb{R}^2 \).
 Then the coordinate \(x \) and momentum \(p \) are examples of observables (elements of \(A \)).

- **Quantum physics:**
 \(A \) is deformed to a non-commutative (but still associative) algebra \(A_\hbar \) with quantization parameter \(\hbar \),
Classical physics:
X – a space of states;
A = \mathcal{O}(X) – the algebra of observables, i.e., (say, complex) functions on X (a commutative, associative algebra).
Example: X = \mathbb{R}^2. Then the coordinate x and momentum p are examples of observables (elements of A).

Quantum physics:
A is deformed to a non-commutative (but still associative) algebra A_\hbar with quantization parameter \hbar, e.g., the Heisenberg uncertainty relation [p, x] = -i\hbar.
What if $X = G$ is a group?

A group is equipped with an associative product, which has a unit and all elements are invertible:

$m : G \times G \to G,\ m(x, y) = xy, (xy)z = (xy)z,\ \exists e : \forall g \in G : eg = ge = g, \forall g \exists g^{-1} : gg^{-1} = g^{-1}g = e.$

Thus the algebra $A = O(G)$ of functions on a (say, finite) group has a natural structure of a coalgebra. Namely, decomposing $O(G \times G)$ as $O(G) \otimes O(G)$, one gets comultiplication, or coproduct on A from the multiplication m in G:

$\Delta : A \to A \otimes A : (\Delta f)(x, y) = f(xy) = f(1)(x) \otimes f(2)(y).$

Here we used Sweedler's notation for the coproduct $\Delta f = f(1) \otimes f(2)$ where summation is implied, i.e., $f(1) \otimes f(2)$ is really $\sum_i f_i(1) \otimes f_i(2).$
What if $X = G$ is a group?

A group is equipped with an associative product, which has a unit and all elements are invertible:
What if $X = G$ is a group?

A group is equipped with an associative product, which has a unit and all elements are invertible:

$$m : G \times G \to G, \quad m(x, y) = xy, \quad x(yz) = (xy)z,$$

$$\exists e : \forall g \in G : \ eg = ge = g,$$

$$\forall g \exists g^{-1} : gg^{-1} = g^{-1}g = e.$$
What if $X = G$ is a group?

A group is equipped with an associative product, which has a unit and all elements are invertible:

\[
m : G \times G \to G, \quad m(x, y) = xy, \quad x(yz) = (xy)z,
\]

\[
\exists e : \forall g \in G : \ eg = ge = g,
\]

\[
\forall g \exists g^{-1} : gg^{-1} = g^{-1}g = e.
\]

Thus the algebra $A = \mathcal{O}(G)$ of functions on a (say, finite) group has a natural structure of a coalgebra.
What if \(X = G \) is a group?

A group is equipped with an associative product, which has a unit and all elements are invertible:

\[
m : G \times G \to G, \quad m(x, y) = xy, \quad x(yz) = (xy)z,
\]

\[
\exists e : \forall g \in G : \quad eg = ge = g,
\]

\[
\forall g \exists g^{-1} : \quad gg^{-1} = g^{-1}g = e.
\]

Thus the algebra \(A = \mathcal{O}(G) \) of functions on a (say, finite) group has a natural structure of a coalgebra. Namely, decomposing \(\mathcal{O}(G \times G) \) as \(\mathcal{O}(G) \otimes \mathcal{O}(G) \), one gets comultiplication, or coproduct on \(A \) from the multiplication \(m \) in \(G \):
What if $X = G$ is a group?

A group is equipped with an associative product, which has a unit and all elements are invertible:

$$m : G \times G \to G, \ m(x, y) = xy, \ x(yz) = (xy)z,$$

$$\exists e : \ \forall g \in G : \ eg = ge = g,$$

$$\forall g \exists g^{-1} : gg^{-1} = g^{-1}g = e.$$

Thus the algebra $A = \mathcal{O}(G)$ of functions on a (say, finite) group has a natural structure of a coalgebra. Namely, decomposing $\mathcal{O}(G \times G)$ as $\mathcal{O}(G) \otimes \mathcal{O}(G)$, one gets comultiplication, or coproduct on A from the multiplication m in G:

$$\Delta : A \to A \otimes A : (\Delta f)(x, y) = f(xy) = f_1(x) \otimes f_2(y).$$
What if $X = G$ is a group?

A group is equipped with an associative product, which has a unit and all elements are invertible:

$$m : G \times G \to G, \quad m(x, y) = xy, \quad x(yz) = (xy)z,$$

$$\exists e : \forall g \in G : \quad eg = ge = g,$$

$$\forall g \exists g^{-1} : gg^{-1} = g^{-1}g = e.$$

Thus the algebra $A = \mathcal{O}(G)$ of functions on a (say, finite) group has a natural structure of a coalgebra. Namely, decomposing $\mathcal{O}(G \times G)$ as $\mathcal{O}(G) \otimes \mathcal{O}(G)$, one gets comultiplication, or coproduct on A from the multiplication m in G:

$$\Delta : A \to A \otimes A : \quad (\Delta f)(x, y) = f(xy) = f_1(x) \otimes f_2(y).$$

Here we used Sweedler's notation for the coproduct $\Delta f = f_1 \otimes f_2$ where summation is implied, i.e., $f_1 \otimes f_2$ is really $\sum_i f_1^{(i)} \otimes f_2^{(i)}$.

28
It is clear that

- Δ is an algebra homomorphism.
It is clear that
• Δ is an algebra homomorphism.

The algebra A also has a natural counit and antipode obtained from the unit and inversion in G:

\[\varepsilon : A \to \mathbb{C} : \varepsilon(f) = f(e), \]
\[S : A \to A : S(f)(x) = f(x^{-1}). \]
It is clear that

• Δ is an algebra homomorphism.

The algebra A also has a natural counit and antipode obtained from the unit and inversion in G:

$$\varepsilon : A \to \mathbb{C} : \varepsilon(f) = f(e),$$

$$S : A \to A : S(f)(x) = f(x^{-1}).$$
Hopf algebras ctd.

It is clear that

- Δ is an algebra homomorphism.

The algebra A also has a natural counit and antipode obtained from the unit and inversion in G:

\[\varepsilon : A \to \mathbb{C} : \varepsilon(f) = f(e), \]

\[S : A \to A : S(f)(x) = f(x^{-1}). \]

The following properties could be easily checked:

- Δ is coassociative, i.e., $(\text{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \text{id}) \circ \Delta$;
It is clear that

• Δ is an algebra homomorphism.

The algebra A also has a natural counit and antipode obtained from the unit and inversion in G:

$$\varepsilon : A \rightarrow \mathbb{C} : \varepsilon(f) = f(e),$$

$$S : A \rightarrow A : S(f)(x) = f(x^{-1}).$$

The following properties could be easily checked:

• Δ is coassociative, i.e., $(\text{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \text{id}) \circ \Delta$;

• $(\varepsilon \otimes \text{id}) \circ \Delta = (\text{id} \otimes \varepsilon) \circ \Delta = \text{id};$
It is clear that

- \(\Delta\) is an algebra homomorphism.

The algebra \(A\) also has a natural counit and antipode obtained from the unit and inversion in \(G\):

\[
\varepsilon : A \rightarrow \mathbb{C} : \varepsilon(f) = f(e),
\]
\[
S : A \rightarrow A : S(f)(x) = f(x^{-1}).
\]

The following properties could be easily checked:

- \(\Delta\) is coassociative, i.e., \((\text{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \text{id}) \circ \Delta\);
- \((\varepsilon \otimes \text{id}) \circ \Delta = (\text{id} \otimes \varepsilon) \circ \Delta = \text{id}\);
- \(\mu \circ (S \otimes \text{id}) \circ \Delta(x) = \mu \circ (\text{id} \otimes S) \circ \Delta(x) = \varepsilon(x),\)
It is clear that
• \(\Delta \) is an algebra homomorphism.

The algebra \(A \) also has a natural counit and antipode obtained from the unit and inversion in \(G \):

\[
\varepsilon : A \rightarrow \mathbb{C}: \varepsilon(f) = f(e),
\]

\[
S : A \rightarrow A : S(f)(x) = f(x^{-1}).
\]

The following properties could be easily checked:
• \(\Delta \) is coassociative, i.e., \((\text{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \text{id}) \circ \Delta\);
• \((\varepsilon \otimes \text{id}) \circ \Delta = (\text{id} \otimes \varepsilon) \circ \Delta = \text{id} \);
• \(\mu \circ (S \otimes \text{id}) \circ \Delta(x) = \mu \circ (\text{id} \otimes S) \circ \Delta(x) = \varepsilon(x) \),
 where \(\mu : A \otimes A \rightarrow A \) is the multiplication.
Hopf algebras ctd.

It is clear that

• Δ is an algebra homomorphism.

The algebra A also has a natural counit and antipode obtained from the unit and inversion in G:

$$\varepsilon : A \rightarrow \mathbb{C} : \varepsilon(f) = f(e),$$

$$S : A \rightarrow A : S(f)(x) = f(x^{-1}).$$

The following properties could be easily checked:

• Δ is coassociative, i.e., $(id \otimes \Delta) \circ \Delta = (\Delta \otimes id) \circ \Delta$;
• $(\varepsilon \otimes id) \circ \Delta = (id \otimes \varepsilon) \circ \Delta = id$;
• $\mu \circ (S \otimes id) \circ \Delta(x) = \mu \circ (id \otimes S) \circ \Delta(x) = \varepsilon(x),$

where $\mu : A \otimes A \rightarrow A$ is the multiplication.

Definition

A quantum group or Hopf algebra is a unital associative algebra A (not necessary commutative) which is equipped with Δ, ε, S and has the properties listed above.
Note that this definition makes sense over any field and even over a commutative ring.
Note that this definition makes sense over any field and even over a commutative ring. Usually it is also assumed that S is invertible (we will do so below); this does not follow from the above axioms.
Note that this definition makes sense over any field and even over a commutative ring. Usually it is also assumed that S is invertible (we will do so below); this does not follow from the above axioms. We will also use the notation $\Delta^{\text{op}} = P \circ \Delta$ where P is the permutation: $P(u \otimes v) = v \otimes u$.

Proposition 1. If A is a finite dimensional Hopf algebra then A^* is also, with the operations of A^* being dual to the operations of A.

2. ε is an algebra homomorphism.

3. S is an algebra and coalgebra antihomomorphism, i.e., $S(xy) = S(y)S(x)$ and $\Delta(S(x)) = (S \otimes S)(\Delta^{\text{op}}(x))$.

4. ε and S are uniquely determined by Δ.

5. If A is commutative or cocommutative (i.e., $\Delta = \Delta^{\text{op}}$) then $S^2 = \text{id}$ (even without the assumption that S is invertible).
Note that this definition makes sense over any field and even over a commutative ring. Usually it is also assumed that S is invertible (we will do so below); this does not follow from the above axioms. We will also use the notation $\Delta^\text{op} = P \circ \Delta$ where P is the permutation: $P(u \otimes v) = v \otimes u$. Finally, note that we can view the unit of A as a linear map $\iota : \mathbb{C} \to A$.

Proposition 1. If A is a finite dimensional Hopf algebra then A^* is also, with the operations of A^* being dual to the operations of A.

2. ε is an algebra homomorphism.

3. S is an algebra and coalgebra antihomomorphism, i.e., $S(xy) = S(y)S(x)$ and $\Delta(S(x)) = (S \otimes S)(\Delta^\text{op}(x))$.

4. ε and S are uniquely determined by Δ.

5. If A is commutative or cocommutative (i.e., $\Delta = \Delta^\text{op}$) then $S^2 = \text{id}$ (even without the assumption that S is invertible).
Note that this definition makes sense over any field and even over a commutative ring. Usually it is also assumed that S is invertible (we will do so below); this does not follow from the above axioms. We will also use the notation $\Delta^\text{op} = P \circ \Delta$ where P is the permutation: $P(u \otimes v) = v \otimes u$. Finally, note that we can view the unit of A as a linear map $\iota : \mathbb{C} \to A$.

Proposition

1. If A is a finite dimensional Hopf algebra then A^* is also, with the operations of A^* being dual to the operations of A.
Note that this definition makes sense over any field and even over a commutative ring. Usually it is also assumed that S is invertible (we will do so below); this does not follow from the above axioms. We will also use the notation $\Delta^{\text{op}} = P \circ \Delta$ where P is the permutation: $P(u \otimes v) = v \otimes u$. Finally, note that we can view the unit of A as a linear map $\iota : \mathbb{C} \rightarrow A$.

Proposition

1. If A is a finite dimensional Hopf algebra then A^* is also, with the operations of A^* being dual to the operations of A.
2. ε is an algebra homomorphism.
Note that this definition makes sense over any field and even over a commutative ring. Usually it is also assumed that S is invertible (we will do so below); this does not follow from the above axioms. We will also use the notation $\Delta^{op} = P \circ \Delta$ where P is the permutation: $P(u \otimes v) = v \otimes u$. Finally, note that we can view the unit of A as a linear map $\iota : \mathbb{C} \to A$.

Proposition

1. If A is a finite dimensional Hopf algebra then A^* is also, with the operations of A^* being dual to the operations of A.
2. ε is an algebra homomorphism.
3. S is an algebra and coalgebra antihomomorphism, i.e., $S(xy) = S(y)S(x)$ and $\Delta(S(x)) = (S \otimes S)(\Delta^{op}(x))$.
Hopf algebras ctd.

Note that this definition makes sense over any field and even over a commutative ring. Usually it is also assumed that S is invertible (we will do so below); this does not follow from the above axioms. We will also use the notation $\Delta^{\text{op}} = P \circ \Delta$ where P is the permutation: $P(u \otimes v) = v \otimes u$. Finally, note that we can view the unit of A as a linear map $\iota : \mathbb{C} \to A$.

Proposition

1. If A is a finite dimensional Hopf algebra then A^* is also, with the operations of A^* being dual to the operations of A.
2. ε is an algebra homomorphism.
3. S is an algebra and coalgebra antihomomorphism, i.e., $S(xy) = S(y)S(x)$ and $\Delta(S(x)) = (S \otimes S)(\Delta^{\text{op}}(x))$.
4. ε and S are uniquely determined by Δ.
Note that this definition makes sense over any field and even over a commutative ring. Usually it is also assumed that S is invertible (we will do so below); this does not follow from the above axioms. We will also use the notation $\Delta^{\text{op}} = P \circ \Delta$ where P is the permutation: $P(u \otimes v) = v \otimes u$. Finally, note that we can view the unit of A as a linear map $\iota : \mathbb{C} \to A$.

Proposition

1. If A is a finite dimensional Hopf algebra then A^* is also, with the operations of A^* being dual to the operations of A.
2. ε is an algebra homomorphism.
3. S is an algebra and coalgebra antihomomorphism, i.e., $S(xy) = S(y)S(x)$ and $\Delta(S(x)) = (S \otimes S)(\Delta^{\text{op}}(x))$.
4. ε and S are uniquely determined by Δ.
5. If A is commutative or cocommutative (i.e., $\Delta = \Delta^{\text{op}}$) then $S^2 = \text{id}$ (even without the assumption that S is invertible).
Examples of Hopf algebras

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$A = \mathcal{O}(G)$, G is finite. Then A is commutative.</td>
</tr>
</tbody>
</table>
Examples of Hopf algebras

Example

1. \(A = \mathcal{O}(G) \), \(G \) is finite. Then \(A \) is commutative.

2. \(A = \mathcal{O}(G) \) (the algebra of regular functions), \(G \) is an affine algebraic group, \(A \) is commutative.

3. \(A = \mathbb{C}G \) - the group algebra,
 \(\Delta(g) = g \otimes g \), \(S(g) = g^{-1} \), \(\varepsilon(g) = 1 \), \(A \) is cocommutative: \(\Delta = \Delta^{\text{op}} \).

4. \(g \) a Lie algebra, \(A = U(g) \) (the universal enveloping algebra),
 \(\Delta(x) = x \otimes 1 + 1 \otimes x \), \(S(x) = -x \), \(\varepsilon(x) = 0 \) for \(x \in g \), \(A \) is cocommutative.
Let \(q \in \mathbb{C}, q \neq 0, \pm 1 \). The quantum group \(U_q(\mathfrak{sl}_2) \) is generated by \(e, f, K^{\pm 1} \) with relations

\[
KeK^{-1} = q^2 e, \quad KfK^{-1} = q^{-2} f, \quad ef - fe = \frac{K - K^{-1}}{q - q^{-1}}.
\]
Let $q \in \mathbb{C}$, $q \neq 0, \pm 1$. The quantum group $U_q(sl_2)$ is generated by $e, f, K^\pm 1$ with relations

$$KeK^{-1} = q^2e, \quad KfK^{-1} = q^{-2}f, \quad ef - fe = \frac{K - K^{-1}}{q - q^{-1}}.$$

The coproduct and counit are defined by

$$\Delta e = e \otimes K + 1 \otimes e, \quad \Delta f = f \otimes 1 + K^{-1} \otimes f, \quad \Delta K = K \otimes K,$$
Quantum SL_2

Let $q \in \mathbb{C}$, $q \neq 0, \pm 1$. The quantum group $U_q(sl_2)$ is generated by $e, f, K^{\pm 1}$ with relations

$$KeK^{-1} = q^2 e, \quad KfK^{-1} = q^{-2} f, \quad ef - fe = \frac{K - K^{-1}}{q - q^{-1}}.$$

The coproduct and counit are defined by

$$\Delta e = e \otimes K + 1 \otimes e, \quad \Delta f = f \otimes 1 + K^{-1} \otimes f, \quad \Delta K = K \otimes K,$$

$$\varepsilon(e) = 0, \quad \varepsilon(f) = 0, \quad \varepsilon(K) = 1.$$
Let \(q \in \mathbb{C}, \ q \neq 0, \pm 1 \). The quantum group \(U_q(sl_2) \) is generated by \(e, f, K^{\pm 1} \) with relations

\[
KeK^{-1} = q^2 e, \ KfK^{-1} = q^{-2} f, \ ef - fe = \frac{K - K^{-1}}{q - q^{-1}}.
\]

The coproduct and counit are defined by

\[
\Delta e = e \otimes K + 1 \otimes e, \ \Delta f = f \otimes 1 + K^{-1} \otimes f, \ \Delta K = K \otimes K,
\]

\[
\varepsilon(e) = 0, \ \varepsilon(f) = 0, \ \varepsilon(K) = 1.
\]

The antipode can then be found from the Hopf algebra axioms:

\[
\mu \circ (S \otimes 1) \circ \Delta(e) = \varepsilon(e) \ \Rightarrow \ S(e) = -eK^{-1}.
\]
Let \(q \in \mathbb{C}, \ q \neq 0, \pm 1 \). The quantum group \(U_q(\mathfrak{sl}_2) \) is generated by \(e, f, K^{\pm 1} \) with relations

\[
KeK^{-1} = q^2 e, \ KfK^{-1} = q^{-2} f, \ ef - fe = \frac{K - K^{-1}}{q - q^{-1}}.
\]

The coproduct and counit are defined by

\[
\Delta e = e \otimes K + 1 \otimes e, \ \Delta f = f \otimes 1 + K^{-1} \otimes f, \ \Delta K = K \otimes K,
\]

\[
\varepsilon(e) = 0, \ \varepsilon(f) = 0, \ \varepsilon(K) = 1.
\]

The antipode can then be found from the Hopf algebra axioms:

\[
\mu \circ (S \otimes 1) \circ \Delta(e) = \varepsilon(e) \Rightarrow S(e) = -eK^{-1}.
\]

Similarly one obtains \(S(f) = -Kf \), \(S(K) = K^{-1} \).
Quantum SL_2

Let $q \in \mathbb{C}$, $q \neq 0, \pm 1$. The quantum group $U_q(\mathfrak{sl}_2)$ is generated by $e, f, K^{\pm 1}$ with relations

$$KeK^{-1} = q^2e, \quad KfK^{-1} = q^{-2}f, \quad ef - fe = \frac{K - K^{-1}}{q - q^{-1}}.$$

The coproduct and counit are defined by

$$\Delta e = e \otimes K + 1 \otimes e, \quad \Delta f = f \otimes 1 + K^{-1} \otimes f, \quad \Delta K = K \otimes K,$$

$$\varepsilon(e) = 0, \quad \varepsilon(f) = 0, \quad \varepsilon(K) = 1.$$

The antipode can then be found from the Hopf algebra axioms:

$$\mu \circ (S \otimes 1) \circ \Delta(e) = \varepsilon(e) \Rightarrow S(e) = -eK^{-1}.$$

Similarly one obtains $S(f) = -Kf$, $S(K) = K^{-1}$.

This is a deformation of $U(\mathfrak{sl}_2)$ because if one sets $K = q^h$ and sends $q \to 1$, one recovers the \mathfrak{sl}_2 relations.

This example shows that $S^2 \neq \text{id}$ in general: we have $S^2(x) = KxK^{-1}$.
Assume that q is not a root of unity.
Representations of $U_q(\mathfrak{sl}_2)$

Assume that q is not a root of unity. Then the representation theory of $U_q(\mathfrak{sl}_2)$ is very similar to the representation theory of \mathfrak{sl}_2.

Proposition

Finite dimensional representations of $U_q(\mathfrak{sl}_2)$ are semisimple. So it remains to classify the irreducible f.d. representations V.

We say that V is of type I if the eigenvalues of K on V are integer powers of q.

E.g., the character $\chi: U_q(\mathfrak{sl}_2) \to \mathbb{C}$ given by $\chi(e) = \chi(f) = 0$, $\chi(K) = -1$ is not of type I.

However, if V is not of type I then it has the form $V = V + \otimes \chi$ where $V +$ is of type I.

Thus it suffices to classify irreducibles of type I.

Proposition

There is exactly one type I irreducible representation V_n of $U_q(\mathfrak{sl}_2)$ of each positive dimension $n + 1$, with generator v with $ev = 0$, $Kv = q^n v$ and basis $\{f_j v, 0 \leq j \leq n\}$ such that $Kf_j v = q^{n - 2j} f_j v$, $ef_j v = \left[j\right] q^{n - j + 1} q^{f_j v - 1}$, where $\left[k\right] q := q^k - q^{-k}$.

Assume that q is not a root of unity. Then the representation theory of $U_q(\mathfrak{sl}_2)$ is very similar to the representation theory of \mathfrak{sl}_2.

Proposition

Finite dimensional representations of $U_q(\mathfrak{sl}_2)$ are semisimple.

So it remains to classify the irreducible f.d. representations V.
Representations of $U_q(\mathfrak{sl}_2)$

Assume that q is not a root of unity. Then the representation theory of $U_q(\mathfrak{sl}_2)$ is very similar to the representation theory of \mathfrak{sl}_2.

Proposition

Finite dimensional representations of $U_q(\mathfrak{sl}_2)$ are semisimple.

So it remains to classify the irreducible f.d. representations V. We say that V is of type I if the eigenvalues of K on V are integer powers of q.
Representations of $U_q(\mathfrak{sl}_2)$

Assume that q is not a root of unity. Then the representation theory of $U_q(\mathfrak{sl}_2)$ is very similar to the representation theory of \mathfrak{sl}_2.

Proposition

Finite dimensional representations of $U_q(\mathfrak{sl}_2)$ are semisimple.

So it remains to classify the irreducible f.d. representations V. We say that V is of **type I** if the eigenvalues of K on V are integer powers of q. E.g., the character $\chi : U_q(\mathfrak{sl}_2) \to \mathbb{C}$ given by $\chi(e) = \chi(f) = 0, \chi(K) = -1$ is not of type I.
Representations of $U_q(\mathfrak{sl}_2)$

Assume that q is not a root of unity. Then the representation theory of $U_q(\mathfrak{sl}_2)$ is very similar to the representation theory of \mathfrak{sl}_2.

Proposition

Finite dimensional representations of $U_q(\mathfrak{sl}_2)$ are semisimple.

So it remains to classify the irreducible f.d. representations V. We say that V is of type I if the eigenvalues of K on V are integer powers of q. E.g., the character $\chi : U_q(\mathfrak{sl}_2) \to \mathbb{C}$ given by $\chi(e) = \chi(f) = 0, \chi(K) = -1$ is not of type I. However, if V is not of type I then it has the form $V = V_+ \otimes \chi$ where V_+ is of type I.
Representations of $U_q(\mathfrak{sl}_2)$

Assume that q is not a root of unity. Then the representation theory of $U_q(\mathfrak{sl}_2)$ is very similar to the representation theory of \mathfrak{sl}_2.

Proposition

Finite dimensional representations of $U_q(\mathfrak{sl}_2)$ are semisimple.

So it remains to classify the irreducible f.d. representations V. We say that V is of type I if the eigenvalues of K on V are integer powers of q. E.g., the character $\chi : U_q(\mathfrak{sl}_2) \to \mathbb{C}$ given by $\chi(e) = \chi(f) = 0, \chi(K) = -1$ is not of type I. However, if V is not of type I then it has the form $V = V_+ \otimes \chi$ where V_+ is of type I. Thus it suffices to classify irreducibles of type I.

60
Assume that q is not a root of unity. Then the representation theory of $U_q(\mathfrak{sl}_2)$ is very similar to the representation theory of \mathfrak{sl}_2.

Proposition

Finite dimensional representations of $U_q(\mathfrak{sl}_2)$ are semisimple.

So it remains to classify the irreducible f.d. representations V. We say that V is of type I if the eigenvalues of K on V are integer powers of q. E.g., the character $\chi : U_q(\mathfrak{sl}_2) \to \mathbb{C}$ given by $\chi(e) = \chi(f) = 0, \chi(K) = -1$ is not of type I. However, if V is not of type I then it has the form $V = V_+ \otimes \chi$ where V_+ is of type I. Thus it suffices to classify irreducibles of type I.

Proposition

There is exactly one type I irreducible representation V_n of $U_q(\mathfrak{sl}_2)$ of each positive dimension $n + 1$, \[
\begin{align*}
[K, f_j v] &= q^{n-2j} f_j v, \\
[e f_j v] &= \begin{cases} \[j] q \[n-j+1] f_{j-1} v & \text{if } j > 0, \\
0 & \text{if } j = 0. \end{cases}
\end{align*}
\]
Assume that \(q \) is not a root of unity. Then the representation theory of \(U_q(\mathfrak{sl}_2) \) is very similar to the representation theory of \(\mathfrak{sl}_2 \).

Proposition

Finite dimensional representations of \(U_q(\mathfrak{sl}_2) \) are semisimple.

So it remains to classify the irreducible f.d. representations \(V \). We say that \(V \) is of type I if the eigenvalues of \(K \) on \(V \) are integer powers of \(q \). E.g., the character \(\chi : U_q(\mathfrak{sl}_2) \to \mathbb{C} \) given by \(\chi(e) = \chi(f) = 0, \chi(K) = -1 \) is not of type I. However, if \(V \) is not of type I then it has the form \(V = V_+ \otimes \chi \) where \(V_+ \) is of type I. Thus it suffices to classify irreducibles of type I.

Proposition

*There is exactly one type I irreducible representation \(V_n \) of \(U_q(\mathfrak{sl}_2) \) of each positive dimension \(n + 1 \), with generator \(v \) with \(ev = 0 \), \(Kv = q^n v \) and basis \(\{ f^j v, 0 \leq j \leq n \} \)
Representations of $U_q(\mathfrak{sl}_2)$

Assume that q is not a root of unity. Then the representation theory of $U_q(\mathfrak{sl}_2)$ is very similar to the representation theory of \mathfrak{sl}_2.

Proposition

Finite dimensional representations of $U_q(\mathfrak{sl}_2)$ are semisimple.

So it remains to classify the irreducible f.d. representations V. We say that V is of type I if the eigenvalues of K on V are integer powers of q. E.g., the character $\chi : U_q(\mathfrak{sl}_2) \rightarrow \mathbb{C}$ given by $\chi(e) = \chi(f) = 0, \chi(K) = -1$ is not of type I. However, if V is not of type I then it has the form $V = V_+ \otimes \chi$ where V_+ is of type I. Thus it suffices to classify irreducibles of type I.

Proposition

There is exactly one type I irreducible representation V_n of $U_q(\mathfrak{sl}_2)$ of each positive dimension $n + 1$, with generator v with $ev = 0$, $Kv = q^n v$ and basis $\{ f^j v, 0 \leq j \leq n \}$ such that $Kf^j v = q^{n-2j} f^j v$, $ef^j v = [j]_q [n-j+1]_q f^{j-1} v$, where $[k]_q := \frac{q^k - q^{-k}}{q - q^{-1}}$.

63
For a group and a Lie algebra the representation categories $\text{Rep } G$ and $\text{Rep } g$ are endowed with tensor products:

\[\pi_V \otimes W : (g) = \pi_V(g) \otimes \pi_W(g) \quad \forall g \in G. \]

The formula for the tensor product of representations of a Hopf algebra A is a straightforward generalization:

\[\pi_V \otimes W : (x) = (\pi_V \otimes \pi_W)(\Delta(x)) = \pi_V(x(1)) \otimes \pi_W(x(2)) \quad \forall x \in A. \]

So one can regard the category $C = \text{Rep } A$ of representations of A as a category equipped with a tensor product bifunctor $\otimes : C \times C \to C$:

\[(X, Y) \mapsto X \otimes Y. \]
Tensor products of representations of Hopf algebras

For a group and a Lie algebra the representation categories $\text{Rep } G$ and $\text{Rep } g$ are endowed with tensor products:

$$\pi_V : G \to \text{Aut } V, \quad \pi_W : G \to \text{Aut } W \quad \Rightarrow$$

$$\pi_{V \otimes W}(g) = \pi_V(g) \otimes \pi_W(g) \quad \forall g \in G.$$
Tensor products of representations of Hopf algebras

For a group and a Lie algebra the representation categories $\text{Rep } G$ and $\text{Rep } g$ are endowed with tensor products:

$$\pi_V : G \to \text{Aut } V, \quad \pi_W : G \to \text{Aut } W \Rightarrow$$

$$\pi_{V \otimes W}(g) = \pi_V(g) \otimes \pi_W(g) \quad \forall g \in G.$$

$$\pi_V : g \to \text{Aut } V, \quad \pi_W : g \to \text{Aut } W \Rightarrow$$

$$\pi_{V \otimes W}(x) = \pi_V(x) \otimes 1 + 1 \otimes \pi_W(x) \quad \forall x \in g.$$
For a group and a Lie algebra the representation categories $\text{Rep } G$ and $\text{Rep } g$ are endowed with tensor products:

$\pi_V : G \to \text{Aut } V, \pi_W : G \to \text{Aut } W \Rightarrow$

$\pi_V \otimes_W (g) = \pi_V (g) \otimes \pi_W (g) \quad \forall g \in G.$

$\pi_V : g \to \text{Aut } V, \pi_W : g \to \text{Aut } W \Rightarrow$

$\pi_V \otimes_W (x) = \pi_V (x) \otimes 1 + 1 \otimes \pi_W (x) \quad \forall x \in g.$

The formula for the tensor product of representations of a Hopf algebra A is a straightforward generalization:

\[
\pi_V \otimes_W (x) = \pi_V (x) \otimes 1 + 1 \otimes \pi_W (x) \quad \forall x \in g.
\]
For a group and a Lie algebra the representation categories $\text{Rep } G$ and $\text{Rep } \mathfrak{g}$ are endowed with tensor products:

$$\pi_V : G \to \text{Aut } V, \quad \pi_W : G \to \text{Aut } W \quad \Rightarrow$$

$$\pi_V \otimes \pi_W (g) = \pi_V (g) \otimes \pi_W (g) \quad \forall g \in G.$$

$$\pi_V : \mathfrak{g} \to \text{Aut } V, \quad \pi_W : \mathfrak{g} \to \text{Aut } W \quad \Rightarrow$$

$$\pi_V \otimes \pi_W (x) = \pi_V (x) \otimes 1 + 1 \otimes \pi_W (x) \quad \forall x \in \mathfrak{g}.$$

The formula for the tensor product of representations of a Hopf algebra A is a straightforward generalization:

$$\pi_V \otimes \pi_W (x) = (\pi_V \otimes \pi_W) (\Delta (x)) = \pi_V (x_1) \otimes \pi_W (x_2) \quad \forall x \in A.$$
For a group and a Lie algebra the representation categories $\text{Rep } G$ and $\text{Rep } g$ are endowed with tensor products:

\[\pi_V : G \to \text{Aut } V, \quad \pi_W : G \to \text{Aut } W \Rightarrow \]
\[\pi_V \otimes \pi_W (g) = \pi_V (g) \otimes \pi_W (g) \quad \forall g \in G.\]

\[\pi_V : g \to \text{Aut } V, \quad \pi_W : g \to \text{Aut } W \Rightarrow \]
\[\pi_V \otimes \pi_W (x) = \pi_V (x) \otimes 1 + 1 \otimes \pi_W (x) \quad \forall x \in g.\]

The formula for the tensor product of representations of a Hopf algebra A is a straightforward generalization:

\[\pi_V \otimes \pi_W (x) = (\pi_V \otimes \pi_W)(\Delta (x)) = \pi_V (x_{(1)}) \otimes \pi_W (x_{(2)}) \quad \forall x \in A.\]

So one can regard the category $C = \text{Rep } A$ of representations of A as a category equipped with a tensor product bifunctor

\[\otimes : C \times C \to C : (X, Y) \mapsto X \otimes Y.\]
This product also has a **unit** (the trivial 1-dimensional representation):
This product also has a unit (the trivial 1-dimensional representation):

$$1 = \mathbb{C} : \pi_1(a) = \varepsilon(a), \quad 1 \otimes X \cong X \otimes 1 \cong X \quad \forall X \in \mathcal{C}.$$
This product also has a unit (the trivial 1-dimensional representation):

\[1 = \mathbb{C} : \pi_1(a) = \varepsilon(a), \quad 1 \otimes X \cong X \otimes 1 \cong X \quad \forall X \in \mathcal{C}. \]

Finally, the tensor product is associative on isomorphism classes:
This product also has a unit (the trivial 1-dimensional representation):

\[1 = \mathbb{C} : \pi_1(a) = \varepsilon(a), \quad 1 \otimes X \cong X \otimes 1 \cong X \quad \forall X \in \mathcal{C}. \]

Finally, the tensor product is associative on isomorphism classes:

\[(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z). \]
This product also has a unit (the trivial 1-dimensional representation):

\[1 = \mathbb{C} : \pi_1(a) = \varepsilon(a), \quad 1 \otimes X \cong X \otimes 1 \cong X \quad \forall X \in \mathcal{C}. \]

Finally, the tensor product is associative on isomorphism classes:

\[(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z).\]

Thus \(\mathcal{C} \) is a category with a unital tensor product associative up to an isomorphism.
This product also has a unit (the trivial 1-dimensional representation):

\[1 = \mathbb{C} : \pi_1(a) = \varepsilon(a), \quad 1 \otimes X \cong X \otimes 1 \cong X \quad \forall X \in \mathcal{C}. \]

Finally, the tensor product is associative on isomorphism classes:

\[(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z). \]

Thus \(\mathcal{C} \) is a category with a unital tensor product associative up to an isomorphism.

However, this notion is not very useful; about such categories one can say very little, if anything at all.
This product also has a **unit** (the trivial 1-dimensional representation):

\[1 = \mathbb{C} : \pi_1(a) = \varepsilon(a), \quad 1 \otimes X \cong X \otimes 1 \cong X \quad \forall X \in \mathcal{C}. \]

Finally, the tensor product is **associative on isomorphism classes**:

\[(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z). \]

Thus \(\mathcal{C} \) is a category with a unital tensor product associative up to an isomorphism.

However, this notion is not very useful; about such categories one can say very little, if anything at all. On the other hand, in natural examples a lot more structure is present, which is just a little bit less obvious.
This product also has a **unit** (the trivial 1-dimensional representation):

\[1 = C : \pi_1(a) = \varepsilon(a), \quad 1 \otimes X \cong X \otimes 1 \cong X \quad \forall X \in C. \]

Finally, the tensor product is **associative on isomorphism classes**:

\[(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z).\]

Thus \(C \) is a category with a unital tensor product associative up to an isomorphism.

However, this notion is not very useful; about such categories one can say very little, if anything at all. On the other hand, in natural examples a lot more structure is present, which is just a little bit less obvious.

More precisely, a **much better notion** is obtained if, according to the **general yoga of category theory**, we don’t just say simply that \((X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)\), but make this isomorphism a part of the data and impose coherence conditions on this data.
This product also has a unit (the trivial 1-dimensional representation):

$$1 = \mathbb{C} : \pi_1(a) = \varepsilon(a), \quad 1 \otimes X \cong X \otimes 1 \cong X \quad \forall X \in \mathcal{C}.$$

Finally, the tensor product is associative on isomorphism classes:

$$(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z).$$

Thus \mathcal{C} is a category with a unital tensor product associative up to an isomorphism.

However, this notion is not very useful; about such categories one can say very little, if anything at all. On the other hand, in natural examples a lot more structure is present, which is just a little bit less obvious.

More precisely, a much better notion is obtained if, according to the general yoga of category theory, we don’t just say simply that $(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)$, but make this isomorphism a part of the data and impose coherence conditions on this data. This leads to the notion of a monoidal category.
Monoidal categories

Namely, we should equip C with an associativity isomorphism
Namely, we should equip C with an **associativity isomorphism**

$$\alpha_{XYZ} : (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)$$
Monoidal categories

Namely, we should equip \mathcal{C} with an **associativity isomorphism**

$$\alpha_{XYZ} : (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)$$

functorial in $X, Y, Z,$
Namely, we should equip \mathcal{C} with an **associativity isomorphism**

$$\alpha_{XYZ} : (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)$$

functorial in X, Y, Z, which satisfies the **pentagon identity**
Namely, we should equip \mathcal{C} with an associativity isomorphism

$$\alpha_{XYZ} : (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)$$

functorial in X, Y, Z, which satisfies the pentagon identity

$$X(Y(ZT))$$

$$\xrightarrow{\alpha_{XY}(ZT)}$$

$$((XY)Z)T$$

$$\xrightarrow{(X(YZ))T}$$

$$X((YZ)T)$$

where the arrows are induced by α and we have omitted the \otimes signs for brevity.
Namely, we should equip \mathcal{C} with an associativity isomorphism

$$\alpha_{XYZ}: (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)$$

functorial in X, Y, Z, which satisfies the pentagon identity

$$X(Y(ZT)) \quad \xrightarrow{\alpha} \quad (XY)(ZT) \quad \xrightarrow{\alpha} \quad X((YZ)T) \quad \xrightarrow{\alpha} \quad ((XY)Z)T \quad \xrightarrow{\alpha} \quad (X(YZ))T$$

where the arrows are induced by α and we have omitted the \otimes signs for brevity. The relation is that the diagram commutes.
We should also require the existence of a unit object 1.
We should also require the existence of a unit object $\mathbf{1}$ with an isomorphism

$$\iota : \mathbf{1} \otimes \mathbf{1} \cong \mathbf{1}$$
Monoidal categories, ctd.

We should also require the existence of a unit object 1 with an isomorphism

$$\iota : 1 \otimes 1 \cong 1$$

such that the functors $1 \otimes -$ and $- \otimes 1$ are autoequivalences of C.

\text{Definition} A category C with such structures and properties is called a monoidal category.
We should also require the existence of a unit object 1 with an isomorphism

$$\iota : 1 \otimes 1 \cong 1$$

such that the functors $1 \otimes -$ and $- \otimes 1$ are autoequivalences of C.

Definition

A category C with such structures and properties is called a **monoidal category**.
Monoidal categories, ctd.

We should also require the existence of a **unit object** $\mathbf{1}$ with an isomorphism

$$\iota : \mathbf{1} \otimes \mathbf{1} \cong \mathbf{1}$$

such that the functors $1 \otimes -$ and $\otimes 1$ are autoequivalences of \mathcal{C}.

Definition

A category \mathcal{C} with such structures and properties is called a **monoidal category**.

We see that for a Hopf algebra A, the category $\text{Rep} A$ is a monoidal category, with $\alpha_X Y Z$ being the natural isomorphism $(X \otimes Y) \otimes Z \rightarrow X \otimes (Y \otimes Z)$, sending $(x \otimes y) \otimes z$ to $x \otimes (y \otimes z)$.
Monoidal categories, ctd.

We should also require the existence of a unit object 1 with an isomorphism

$$\iota : 1 \otimes 1 \cong 1$$

such that the functors $1 \otimes -$ and $- \otimes 1$ are autoequivalences of C.

Definition

A category C with such structures and properties is called a monoidal category.

We see that for a Hopf algebra A, the category $\text{Rep}\, A$ is a monoidal category, with α_{XYZ} being the natural isomorphism

$$(X \otimes Y) \otimes Z \rightarrow X \otimes (Y \otimes Z), \text{ sending } (x \otimes y) \otimes z \text{ to } x \otimes (y \otimes z).$$

In a similar way, comodules over A (i.e., spaces V with a linear map $\rho : V \rightarrow A \otimes V$ defining an action of the algebra A^* on V) form a monoidal category $\text{Comod}\, A$.
We should also require the existence of a unit object $\mathbf{1}$ with an isomorphism

$$\iota : \mathbf{1} \otimes \mathbf{1} \cong \mathbf{1}$$

such that the functors $\mathbf{1} \otimes -$ and $- \otimes \mathbf{1}$ are autoequivalences of C.

Definition

A category C with such structures and properties is called a monoidal category.

We see that for a Hopf algebra A, the category $\text{Rep}A$ is a monoidal category, with α_{XYZ} being the natural isomorphism

$$(X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z),$$

sending $(x \otimes y) \otimes z$ to $x \otimes (y \otimes z)$. In a similar way, comodules over A (i.e., spaces V with a linear map $\rho : V \to A \otimes V$ defining an action of the algebra A^* on V) form a monoidal category $\text{Comod}A$. In fact, if $\dim A < \infty$ then $\text{Comod}A = \text{Rep}A^*$.
Monoidal categories, ctd.

We should also require the existence of a unit object 1 with an isomorphism

$$\iota : 1 \otimes 1 \cong 1$$

such that the functors $1 \otimes$ and $\otimes 1$ are autoequivalences of C.

Definition

A category C with such structures and properties is called a monoidal category.

We see that for a Hopf algebra A, the category $\text{Rep}A$ is a monoidal category, with α_{XYZ} being the natural isomorphism $(X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$, sending $(x \otimes y) \otimes z$ to $x \otimes (y \otimes z)$.

In a similar way, comodules over A (i.e., spaces V with a linear map $\rho : V \to A \otimes V$ defining an action of the algebra A^* on V) form a monoidal category $\text{Comod}A$. In fact, if $\dim A < \infty$ then $\text{Comod}A = \text{Rep} A^*$. Also, if G is an algebraic group then an algebraic representation of G is the same thing as a finite dimensional $\mathcal{O}(G)$-comodule.
Duality in monoidal categories

Let us now discuss duality for representations of Hopf algebras, which generalizes duality for group and Lie algebra representations.
Let us now discuss duality for representations of Hopf algebras, which generalizes duality for group and Lie algebra representations. The dual representations \(X^* \), \(^*X \in \text{Rep} A \) for \(X \in \text{Rep} A \) are both the dual vector space to \(X \) with the actions defined as follows:

\[
\begin{align*}
\pi_{X^*}(a) &= \pi_X(S(a)) \\
\pi_{{}^*X}(a) &= \pi_X(S^{-1}(a))
\end{align*}
\]

For the pair \(X^*, {}^*X \) there is the evaluation morphism \(X^* \otimes X \to 1 \) (the usual pairing). For finite dimensional representations there is also the coevaluation morphism \(1 \to X \otimes X^* \). And a pair of functorial isomorphisms \(({}^*X)^* = X, \quad {}^*(X^*) = X \).
Let us now discuss duality for representations of Hopf algebras, which generalizes duality for group and Lie algebra representations. The dual representations X^*, $^*X \in \text{Rep } A$ for $X \in \text{Rep } A$ are both the dual vector space to X with the actions defined as follows:

$$\pi_{X^*}(a) = \pi_X(S(a))^* \text{ - left dual, } \pi_{^*X}(a) = \pi_X(S^{-1}(a))^* \text{ - right dual.}$$
Let us now discuss duality for representations of Hopf algebras, which generalizes duality for group and Lie algebra representations. The dual representations $X^*, \ X \in \operatorname{Rep} A$ for $X \in \operatorname{Rep} A$ are both the dual vector space to X with the actions defined as follows:

$$\pi_{X^*}(a) = \pi_X(S(a))^* \quad \text{left dual,} \quad \pi^*_{X}(a) = \pi_X(S^{-1}(a))^* \quad \text{right dual.}$$

For the pair X, X^* there is the evaluation morphism

$$X^* \otimes X \rightarrow 1$$

(the usual pairing).
Let us now discuss duality for representations of Hopf algebras, which generalizes duality for group and Lie algebra representations. The dual representations $X^*, ^*X \in \text{Rep } A$ for $X \in \text{Rep } A$ are both the dual vector space to X with the actions defined as follows:

$$\pi_{X^*}(a) = \pi_X(S(a))^* \text{ - left dual, } \pi_{^*X}(a) = \pi_X(S^{-1}(a))^* \text{ - right dual.}$$

For the pair X, X^* there is the evaluation morphism

$$X^* \otimes X \to 1$$

(the usual pairing). For finite dimensional representations there is also the coevaluation morphism
Let us now discuss duality for representations of Hopf algebras, which generalizes duality for group and Lie algebra representations. The dual representations $X^*, \ast X \in \text{Rep} A$ for $X \in \text{Rep} A$ are both the dual vector space to X with the actions defined as follows:

$$\pi_{X^*}(a) = \pi_X(S(a))^* \quad \text{left dual,} \quad \pi_{\ast X}(a) = \pi_X(S^{-1}(a))^* \quad \text{right dual.}$$

For the pair X, X^* there is the evaluation morphism

$$X^* \otimes X \to 1$$

(the usual pairing). For finite dimensional representations there is also the coevaluation morphism

$$1 \to X \otimes X^*.$$
Duality in monoidal categories

Let us now discuss duality for representations of Hopf algebras, which generalizes duality for group and Lie algebra representations. The dual representations $X^*, \pi X \in \text{Rep} \ A$ for $X \in \text{Rep} \ A$ are both the dual vector space to X with the actions defined as follows:

$$
\pi_X^*(a) = \pi_X(S(a))^* \quad \text{- left dual}, \quad \pi^*X(a) = \pi_X(S^{-1}(a))^* \quad \text{- right dual}.
$$

For the pair X, X^* there is the evaluation morphism

$$
X^* \otimes X \rightarrow 1
$$

(the usual pairing). For finite dimensional representations there is also the coevaluation morphism

$$
1 \rightarrow X \otimes X^*.
$$

and a pair of functorial isomorphisms
Duality in monoidal categories

Let us now discuss duality for representations of Hopf algebras, which generalizes duality for group and Lie algebra representations. The dual representations $X^*, \ast X \in \text{Rep } A$ for $X \in \text{Rep } A$ are both the dual vector space to X with the actions defined as follows:

\[\pi_{X^*}(a) = \pi_X(S(a))^* \text{ - left dual, } \pi_{\ast X}(a) = \pi_X(S^{-1}(a))^* \text{ - right dual.}\]

For the pair X, X^* there is the evaluation morphism

\[X^* \otimes X \rightarrow 1\]

(the usual pairing). For finite dimensional representations there is also the coevaluation morphism

\[1 \rightarrow X \otimes X^*.\]

and a pair of functorial isomorphisms

\[(\ast X)^* = X, \quad *(X^*) = X.\]
Let’s axiomatize this in the setting of monoidal categories.
Duality in monoidal categories, ctd.

Let's axiomatize this in the setting of monoidal categories.

Definition

An object Y of a monoidal category \mathcal{C} is a **left dual** to X, denoted $Y = X^*$, if there exist **evaluation and coevaluation morphisms**
Duality in monoidal categories, ctd.

Let's axiomatize this in the setting of monoidal categories.

Definition

An object Y of a monoidal category C is a **left dual** to X, denoted $Y = X^*$, if there exist **evaluation** and **coevaluation** morphisms

$$
ev : Y \otimes X \to 1, \quad \coev : 1 \to X \otimes Y,$$

such that the following morphisms are the identities:

$$X \coev \otimes 1 \Rightarrow (X \otimes Y) \otimes X \alpha_{XYX} \Rightarrow X \otimes (Y \otimes X),$$

$$Y \otimes \coev \Rightarrow Y \otimes (X \otimes Y) \alpha^{-1}_{1YX} \Rightarrow (Y \otimes X) \otimes Y \ev \otimes 1 \Rightarrow Y.$$

If Y is a left dual to X then we have a functorial isomorphism

$$\text{Hom}(Z, Y) \cong \text{Hom}(Z \otimes X, 1).$$

By the Yoneda lemma, this implies that the left dual, if exists, is unique up to a unique isomorphism.
Duality in monoidal categories, ctd.

Let’s axiomatize this in the setting of monoidal categories.

Definition

An object Y of a monoidal category \mathcal{C} is a left dual to X, denoted $Y = X^*$, if there exist evaluation and coevaluation morphisms

$$\text{ev} : Y \otimes X \rightarrow 1, \quad \text{coev} : 1 \rightarrow X \otimes Y,$$

such that the following morphisms are the identities:
Let’s axiomatize this in the setting of monoidal categories.

Definition

An object Y of a monoidal category C is a left dual to X, denoted $Y = X^*$, if there exist evaluation and coevaluation morphisms

$$
ev : Y \otimes X \to 1, \coev : 1 \to X \otimes Y,$$

such that the following morphisms are the identities:

$$X \xrightarrow{\coev \otimes 1} (X \otimes Y) \otimes X \xrightarrow{\alpha_{XYX}} X \otimes (Y \otimes X) \xrightarrow{1 \otimes \ev} X,$$

$$Y \xrightarrow{1 \otimes \coev} Y \otimes (X \otimes Y) \xrightarrow{\alpha^{-1}_{YXY}} (Y \otimes X) \otimes Y \xrightarrow{\ev \otimes 1} Y.$$
Let’s axiomatize this in the setting of monoidal categories.

Definition

An object Y of a monoidal category \mathcal{C} is a left dual to X, denoted $Y = X^*$, if there exist evaluation and coevaluation morphisms

$$
ev : Y \otimes X \to 1, \quad \coev : 1 \to X \otimes Y,$$

such that the following morphisms are the identities:

$$X \xrightarrow{\coev \otimes 1} (X \otimes Y) \otimes X \xrightarrow{\alpha_{XYX}} X \otimes (Y \otimes X) \xrightarrow{1 \otimes \ev} X,$$

$$Y \xrightarrow{1 \otimes \coev} Y \otimes (X \otimes Y) \xrightarrow{\alpha_{YXY}^{-1}} (Y \otimes X) \otimes Y \xrightarrow{\ev \otimes 1} Y.$$

If Y is a left dual to X then we have a functorial isomorphism

$$\text{Hom}(Z, Y) \cong \text{Hom}(Z \otimes X, 1).$$
Let's axiomatize this in the setting of monoidal categories.

Definition
An object Y of a monoidal category C is a **left dual** to X, denoted $Y = X^*$, if there exist **evaluation** and **coevaluation** morphisms

$$
ev : \ Y \otimes X \to \mathbf{1}, \; \coev : \mathbf{1} \to X \otimes Y,$$

such that the following morphisms are the identities:

$$\begin{align*}
X & \xrightarrow{\coev \otimes \mathbf{1}} (X \otimes Y) \otimes X \xrightarrow{\alpha_{XYY}} X \otimes (Y \otimes X) \xrightarrow{\mathbf{1} \otimes ev} X, \\
Y & \xrightarrow{\mathbf{1} \otimes \coev} Y \otimes (X \otimes Y) \xrightarrow{\alpha_{YXY}^{-1}} (Y \otimes X) \otimes Y \xrightarrow{ev \otimes \mathbf{1}} Y.
\end{align*}$$

If Y is a left dual to X then we have a functorial isomorphism $\text{Hom}(Z, Y) \cong \text{Hom}(Z \otimes X, \mathbf{1})$. By the Yoneda lemma, this implies that the left dual, if exists, is unique up to a unique isomorphism.
Definition

An object $Z = {}^*X$ is the **right dual** to X if $X \cong Z^*$.

As the left dual, the right dual is unique up to a unique isomorphism if it exists.

Definition

An object X is **rigid** if it has both the left and the right dual.

A category C is **rigid** if all its objects are rigid.

Thus, if A is a Hopf algebra then the category $\text{Rep}_f A$ of finite dimensional representations of A is a rigid monoidal category.
An object $Z = ^*X$ is the right dual to X if $X \cong Z^*$.

As the left dual, the right dual is unique up to a unique isomorphism if exists.
Duality in monoidal categories, ctd.

Definition

An object $Z = \ast X$ is the **right dual** to X if $X \cong Z^\ast$.

As the left dual, the right dual is **unique up to a unique isomorphism** if exists.

Definition

An object X is **rigid** if it has both the left and the right dual.
Definition

An object $Z = \ast X$ is the right dual to X if $X \cong Z^*$. As the left dual, the right dual is unique up to a unique isomorphism if exists.

Definition

An object X is rigid if it has both the left and the right dual. A category C is rigid if all its objects are rigid.
Definition

An object $Z = \ast X$ is the right dual to X if $X \cong Z^\ast$.

As the left dual, the right dual is unique up to a unique isomorphism if exists.

Definition

An object X is rigid if it has both the left and the right dual. A category C is rigid if all its objects are rigid.

Thus, if A is a Hopf algebra then the category $\text{Rep}_f A$ of finite dimensional representations of A is a rigid monoidal category.
Examples of rigid monoidal categories

Example

Let G be a finite group, $A = \mathcal{O}(G)$, then $\text{Rep}_f A$ is spanned by 1-dimensional representations parametrized by $g \in G$.

The tensor product is defined by $g \otimes h = gh$, and $g^* = g^{-1}$. Thus $\text{Rep}_f A$ is a rigid monoidal category. We denote it by $\text{Vec}(G)$ (G-graded vector spaces).

This category makes sense for any group G (not necessarily finite).

Example

The previous example has the following twisted version. Let $\alpha_{g, h, k}: (g \otimes h) \otimes k \to g \otimes (h \otimes k) = ghk$, i.e. α satisfies the pentagon identity $\Leftrightarrow \alpha$ is a 3-cocycle of the group G. Then α satisfies the pentagon identity $\Leftrightarrow \alpha$ is a 3-cocycle of the group G. If so then this equips $C = \text{Vec}(G)$ with another structure of a rigid monoidal category (with the same tensor product functor but different associativity isomorphism). We will denote this category $\text{Vec}(G, \alpha)$.

113
Examples of rigid monoidal categories

Example

Let G be a finite group, $A = \mathcal{O}(G)$, then $\text{Rep}_f A$ is spanned by 1-dimensional representations parametrized by $g \in G$. The tensor product is defined by $g \otimes h = gh$, and $g^* = *g = g^{-1}$.

Thus $\text{Rep}_f A$ is a rigid monoidal category. We denote it by $\text{Vec}(G)$ (G-graded vector spaces).

This category makes sense for any group G (not necessarily finite).

Example

The previous example has the following twisted version. Let $\alpha_{g, h, k} : (g \otimes h) \otimes k \to ghk$, i.e. α satisfies the pentagon identity $\Leftrightarrow \alpha$ is a 3-cocycle of the group G.

Then α satisfies the pentagon identity $\Leftrightarrow \alpha$ is a 3-cocycle of the group G.

If so then this equips $C = \text{Vec}(G)$ with another structure of a rigid monoidal category (with the same tensor product functor but different associativity isomorphism).

We will denote this category $\text{Vec}(G, \alpha)$.

114
Examples of rigid monoidal categories

Example

Let G be a finite group, $A = \mathcal{O}(G)$, then $\text{Rep}_f A$ is spanned by 1-dimensional representations parametrized by $g \in G$. The tensor product is defined by $g \otimes h = gh$, and $g^* = ^*g = g^{-1}$. Thus $\text{Rep}_f A$ is a rigid monoidal category.
Example

Let G be a finite group, $A = \mathcal{O}(G)$, then $\text{Rep}_f A$ is spanned by 1-dimensional representations parametrized by $g \in G$. The tensor product is defined by $g \otimes h = gh$, and $g^* = {}^* g = g^{-1}$. Thus $\text{Rep}_f A$ is a rigid monoidal category. We denote it by $\text{Vec}(G)$ (G-graded vector spaces).
Examples of rigid monoidal categories

Example

Let G be a finite group, $A = \mathcal{O}(G)$, then $\text{Rep}_f A$ is spanned by 1-dimensional representations parametrized by $g \in G$. The tensor product is defined by $g \otimes h = gh$, and $g^* = {}^*g = g^{-1}$. Thus $\text{Rep}_f A$ is a rigid monoidal category. We denote it by $\text{Vec}(G)$ (G-graded vector spaces). This category makes sense for any group G (not necessarily finite).
Examples of rigid monoidal categories

Example

Let G be a finite group, $A = \mathcal{O}(G)$, then $\text{Rep}_f A$ is spanned by 1-dimensional representations parametrized by $g \in G$. The tensor product is defined by $g \otimes h = gh$, and $g^* = ^*g = g^{-1}$. Thus $\text{Rep}_f A$ is a rigid monoidal category. We denote it by $\text{Vec}(G)$ (G-graded vector spaces). This category makes sense for any group G (not necessarily finite).

Example

The previous example has the following twisted version.
Examples of rigid monoidal categories

Example

Let G be a finite group, $A = \mathcal{O}(G)$, then $\text{Rep}_f A$ is spanned by 1-dimensional representations parametrized by $g \in G$. The tensor product is defined by $g \otimes h = gh$, and $g^* = *g = g^{-1}$. Thus $\text{Rep}_f A$ is a rigid monoidal category. We denote it by $\text{Vec}(G)$ (G-graded vector spaces). This category makes sense for any group G (not necessarily finite).

Example

The previous example has the following twisted version. Let

$\alpha_{g,h,k} : (g \otimes h) \otimes k = ghk \rightarrow g \otimes (h \otimes k) = ghk$, i.e. $\alpha_{g,h,k} \in \mathbb{C}^*$.
Examples of rigid monoidal categories

Example

Let G be a finite group, $A = \mathcal{O}(G)$, then $\text{Rep}_f A$ is spanned by 1-dimensional representations parametrized by $g \in G$. The tensor product is defined by $g \otimes h = gh$, and $g^* = {}^*g = g^{-1}$. Thus $\text{Rep}_f A$ is a rigid monoidal category. We denote it by $\text{Vec}(G)$ (G-graded vector spaces). This category makes sense for any group G (not necessarily finite).

Example

The previous example has the following twisted version. Let $\alpha_{g,h,k} : (g \otimes h) \otimes k = ghk \rightarrow g \otimes (h \otimes k) = ghk$, i.e. $\alpha_{g,h,k} \in \mathbb{C}^*$. Then α satisfies the pentagon identity $\Leftrightarrow \alpha$ is a 3-cocycle of the group G.

120
Examples of rigid monoidal categories

Example

Let G be a finite group, $A = \mathcal{O}(G)$, then $\text{Rep}_f A$ is spanned by 1-dimensional representations parametrized by $g \in G$. The tensor product is defined by $g \otimes h = gh$, and $g^* = {}^*g = g^{-1}$. Thus $\text{Rep}_f A$ is a rigid monoidal category. We denote it by $\text{Vec}(G)$ (G-graded vector spaces). This category makes sense for any group G (not necessarily finite).

Example

The previous example has the following twisted version. Let $\alpha_{g,h,k} : (g \otimes h) \otimes k = ghk \to g \otimes (h \otimes k) = ghk$, i.e. $\alpha_{g,h,k} \in \mathbb{C}^*$. Then α satisfies the pentagon identity $\iff \alpha$ is a 3-cocycle of the group G. If so then this equips $\mathcal{C} = \text{Vec}(G)$ with another structure of a rigid monoidal category (with the same tensor product functor but different associativity isomorphism).
Examples of rigid monoidal categories

Example

Let G be a finite group, $A = \mathcal{O}(G)$, then $\text{Rep}_f A$ is spanned by 1-dimensional representations parametrized by $g \in G$. The tensor product is defined by $g \otimes h = gh$, and $g^* = \ast g = g^{-1}$. Thus $\text{Rep}_f A$ is a rigid monoidal category. We denote it by $\text{Vec}(G)$ (G-graded vector spaces). This category makes sense for any group G (not necessarily finite).

Example

The previous example has the following twisted version. Let $\alpha_{g,h,k} : (g \otimes h) \otimes k = ghk \to g \otimes (h \otimes k) = ghk$, i.e. $\alpha_{g,h,k} \in \mathbb{C}^*$. Then α satisfies the pentagon identity $\Leftrightarrow \alpha$ is a 3-cocycle of the group G. If so then this equips $\mathcal{C} = \text{Vec}(G)$ with another structure of a rigid monoidal category (with the same tensor product functor but different associativity isomorphism). We will denote this category $\text{Vec}(G, \alpha)$.
Let \mathcal{C}, \mathcal{D} be monoidal categories.
Let \(C, D \) be monoidal categories.

Definition

A functor \(F : C \to D \) is a **monoidal functor** if \(F(1_C) \cong 1_D \) and \(F \) is equipped with a functorial (in \(X, Y \)) isomorphism \(J_{X,Y} : F(X) \otimes F(Y) \xrightarrow{\sim} F(X \otimes Y) \).
Monoidal functors

Let \(\mathcal{C}, \mathcal{D} \) be monoidal categories.

Definition

A functor \(F : \mathcal{C} \to \mathcal{D} \) is a **monoidal functor** if \(F(1_{\mathcal{C}}) \cong 1_{\mathcal{D}} \) and \(F \) is equipped with a functorial (in \(X, Y \)) isomorphism

\[J_{X,Y} : F(X) \otimes F(Y) \xrightarrow{\sim} F(X \otimes Y) \]

which makes the diagram

\[
\begin{array}{ccc}
(F(X) \otimes F(Y)) \otimes F(Z) & \xrightarrow{\alpha_{\mathcal{D}}} & F(X) \otimes (F(Y) \otimes F(Z)) \\
\downarrow J_{X,Y} \otimes id_Z & & \downarrow id_X \otimes J_{Y,Z} \\
F(X \otimes Y) \otimes F(Z) & \downarrow J_{X \otimes Y,Z} & F(X) \otimes F(Y \otimes Z) \\
\downarrow & & \downarrow J_{X,Y \otimes Z} \\
F((X \otimes Y) \otimes Z) & \xrightarrow{F(\alpha_{\mathcal{C}})} & F(X \otimes (Y \otimes Z))
\end{array}
\]

commutative.
Let \mathcal{C}, \mathcal{D} be monoidal categories.

Definition

A functor $F : \mathcal{C} \to \mathcal{D}$ is a **monoidal functor** if $F(1_\mathcal{C}) \cong 1_\mathcal{D}$ and F is equipped with a functorial (in X, Y) isomorphism $J_{X,Y} : F(X) \otimes F(Y) \sim F(X \otimes Y)$ which makes the diagram commutative. A monoidal functor is an **equivalence of monoidal categories** if it is an equivalence of categories.
The notion of monoidal equivalence is useful because monoidal categories that are monoidally equivalent are “the same for all practical purposes”.

Example

If \(\alpha, \beta \) are two 3-cocycles on \(G \) then the identity functor \(F = \text{Id} : \text{Vec}(G, \alpha) \to \text{Vec}(G, \beta), g \mapsto g \) is monoidal with \(J_g, h \in C^* : g \otimes h \to g \otimes h \iff dJ = \alpha/\beta \), where \(d \) is the differential in the standard complex of \(G \) with coefficients in \(C^* \).

In particular, \(F \) admits a monoidal structure if and only if the cohomology classes of \(\alpha \) and \(\beta \) are the same.

This shows that \(\text{Vec}(G, \alpha) \) is equivalent to \(\text{Vec}(G, \beta) \) iff \(\alpha \) is trivial in \(H_3(G, C^*) \).
The notion of monoidal equivalence is useful because monoidal categories that are monoidally equivalent are “the same for all practical purposes”.

Example

If α, β are two 3-cocycles on G then the identity functor

$$F = \text{Id} : \text{Vec}(G, \alpha) \rightarrow \text{Vec}(G, \beta), \quad g \mapsto g$$
The notion of monoidal equivalence is useful because monoidal categories that are monoidally equivalent are “the same for all practical purposes”.

Example

If \(\alpha, \beta \) are two 3-cocycles on \(G \) then the identity functor

\[
F = \text{Id} : \text{Vec}(G, \alpha) \to \text{Vec}(G, \beta), \quad g \mapsto g
\]

is monoidal with \(J_{g,h} \in \mathbb{C}^* : g \otimes h \to g \otimes h \) iff \(dJ = \alpha/\beta \), where \(d \) is the differential in the standard complex of \(G \) with coefficients in \(\mathbb{C}^* \).
The notion of monoidal equivalence is useful because monoidal categories that are monoidally equivalent are “the same for all practical purposes”.

Example

If α, β are two 3-cocycles on G then the identity functor

$$F = \text{Id} : \text{Vec}(G, \alpha) \to \text{Vec}(G, \beta), \quad g \mapsto g$$

is monoidal with $J_{g,h} \in \mathbb{C}^* : g \otimes h \to g \otimes h$ iff $dJ = \alpha/\beta$, where d is the differential in the standard complex of G with coefficients in \mathbb{C}^*. In particular, F admits a monoidal structure if and only if the cohomology classes of α and β are the same.
The notion of monoidal equivalence is useful because monoidal categories that are monoidally equivalent are “the same for all practical purposes”.

Example

If \(\alpha, \beta \) are two 3-cocycles on \(G \) then the identity functor

\[
F = \text{Id} : \text{Vec}(G, \alpha) \to \text{Vec}(G, \beta), \quad g \mapsto g
\]

is monoidal with \(J_{g,h} \in \mathbb{C}^* : g \otimes h \to g \otimes h \) iff \(dJ = \alpha/\beta \), where \(d \) is the differential in the standard complex of \(G \) with coefficients in \(\mathbb{C}^* \). In particular, \(F \) admits a monoidal structure if and only if the cohomology classes of \(\alpha \) and \(\beta \) are the same. This shows that

\(\text{Vec}(G, \alpha) \) is equivalent to \(\text{Vec}(G) \) iff \(\alpha \) is trivial in \(H^3(G, \mathbb{C}^*) \).
The universal R-matrix of $U_q(\mathfrak{sl}_2)$

If A is a Hopf algebra and $X, Y \in \text{Rep} H$ then $X \otimes Y \not\cong Y \otimes X$ in general, as $\Delta \neq \Delta^\text{op}$ (e.g. $g \otimes h \not\cong h \otimes g$ for $g, h \in \text{Vec}(G)$).
The universal R-matrix of $U_q(\mathfrak{sl}_2)$

If A is a Hopf algebra and $X, Y \in \text{Rep } H$ then $X \otimes Y \not\cong Y \otimes X$ in general, as $\Delta \neq \Delta^\text{op}$ (e.g. $g \otimes h \not\cong h \otimes g$ for $g, h \in \text{Vec}(G)$). However, sometimes $\Delta \neq \Delta^\text{op}$ but still $X \otimes Y \cong Y \otimes X$.
The universal R-matrix of $U_q(\mathfrak{sl}_2)$

If A is a Hopf algebra and $X, Y \in \text{Rep} H$ then $X \otimes Y \not\cong Y \otimes X$ in general, as $\Delta \not\equiv \Delta^{\text{op}}$ (e.g. $g \otimes h \not\equiv h \otimes g$ for $g, h \in \text{Vec}(G)$). However, sometimes $\Delta \not\equiv \Delta^{\text{op}}$ but still $X \otimes Y \cong Y \otimes X$.

Example

For $A = U_q(\mathfrak{sl}_2)$ where $q^n \neq 1$ define the universal R-matrix

$$R = q^{\frac{h \otimes h}{2}} \sum_{k=0}^{\infty} q^{\frac{k(k-1)}{2}} \frac{(q - q^{-1})^k}{[k]_q!} e^k \otimes f^k,$$

where $[k]_q! = \prod_{i=1}^k [i]_q$.
The universal R-matrix of $U_q(\mathfrak{sl}_2)$

If A is a Hopf algebra and $X, Y \in \text{Rep } H$ then $X \otimes Y \not\cong Y \otimes X$ in general, as $\Delta \neq \Delta^{\text{op}}$ (e.g. $g \otimes h \not\cong h \otimes g$ for $g, h \in \text{Vec}(G)$). However, sometimes $\Delta \neq \Delta^{\text{op}}$ but still $X \otimes Y \cong Y \otimes X$.

Example

For $A = U_q(\mathfrak{sl}_2)$ where $q^n \neq 1$ define the universal R-matrix

$$R = q^{\frac{h \otimes h}{2}} \sum_{k=0}^{\infty} q^{\frac{k(k-1)}{2}} \frac{(q - q^{-1})^k}{[k]_q!} e^k \otimes f^k,$$

where $[k]_q! = [1]_q \ldots [k]_q$.

135
The universal R-matrix of $U_q(\mathfrak{sl}_2)$

If A is a Hopf algebra and $X, Y \in \text{Rep} \, H$ then $X \otimes Y \ncong Y \otimes X$ in general, as $\Delta \neq \Delta^{\text{op}}$ (e.g. $g \otimes h \ncong h \otimes g$ for $g, h \in \text{Vec}(G)$). However, sometimes $\Delta \neq \Delta^{\text{op}}$ but still $X \otimes Y \cong Y \otimes X$.

Example

For $A = U_q(\mathfrak{sl}_2)$ where $q^n \neq 1$ define the universal R-matrix

$$R = q^{\frac{h \otimes h}{2}} \sum_{k=0}^{\infty} q^{\frac{k(k-1)}{2}} \frac{(q - q^{-1})^k}{[k]_q!} e^k \otimes f^k,$$

where $[k]_q = [1]_q \cdots [k]_q$.

This is an infinite series, but it makes sense as an operator on $X \otimes Y$ for any finite dimensional type I representations X, Y, because the sum terminates.
The universal R-matrix of $U_q(\mathfrak{sl}_2)$

If A is a Hopf algebra and $X, Y \in \text{Rep} \, H$ then $X \otimes Y \not\cong Y \otimes X$ in general, as $\Delta \neq \Delta^{\text{op}}$ (e.g. $g \otimes h \not\cong h \otimes g$ for $g, h \in \text{Vec}(G)$). However, sometimes $\Delta \neq \Delta^{\text{op}}$ but still $X \otimes Y \cong Y \otimes X$.

Example

For $A = U_q(\mathfrak{sl}_2)$ where $q^n \neq 1$ define the universal R-matrix

$$R = q^{\frac{h \otimes h}{2}} \sum_{k=0}^{\infty} q^{\frac{k(k-1)}{2}} \frac{(q - q^{-1})^k}{[k]_q!} e^k \otimes f^k,$$

where $[k]_q! = [1]_q \ldots [k]_q$.

This is an infinite series, but it makes sense as an operator on $X \otimes Y$ for any finite dimensional type I representations X, Y, because the sum terminates. Here $q^{\frac{h \otimes h}{2}} (x \otimes y) = q^{\frac{\lambda \mu}{2}} x \otimes y$ if x, y have weights λ, μ, i.e., $Kx = q^{\lambda} x, Ky = q^{\mu} y$.
The universal R-matrix of $U_q(\mathfrak{sl}_2)$

If A is a Hopf algebra and $X, Y \in \text{Rep} \, H$ then $X \otimes Y \not\cong Y \otimes X$ in general, as $\Delta \not\equiv \Delta^{\text{op}}$ (e.g. $g \otimes h \not\equiv h \otimes g$ for $g, h \in \text{Vec}(G)$). However, sometimes $\Delta \not\equiv \Delta^{\text{op}}$ but still $X \otimes Y \cong Y \otimes X$.

Example

For $A = U_q(\mathfrak{sl}_2)$ where $q^n \neq 1$ define the universal R-matrix

$$R = q^{\frac{h \otimes h}{2}} \sum_{k=0}^{\infty} q^{\frac{k(k-1)}{2}} \frac{(q - q^{-1})^k}{[k]_q!} e^k \otimes f^k,$$

where $[k]_q! = [1]_q \ldots [k]_q$. This is an infinite series, but it makes sense as an operator on $X \otimes Y$ for any finite dimensional type I representations X, Y, because the sum terminates. Here $q^{\frac{h \otimes h}{2}} (x \otimes y) = q^{\frac{\lambda \mu}{2}} x \otimes y$ if x, y have weights λ, μ, i.e., $Kx = q^{\lambda} x, Ky = q^{\mu} y$.

Theorem (Drinfeld)

The operator $c = P \circ R$ defines an isomorphism of representations $c : X \otimes Y \to Y \otimes X$.

138
The universal R-matrix of $U_q(\mathfrak{sl}_2)$

If A is a Hopf algebra and $X, Y \in \text{Rep} H$ then $X \otimes Y \not\cong Y \otimes X$ in general, as $\Delta \neq \Delta^\text{op}$ (e.g. $g \otimes h \not\cong h \otimes g$ for $g, h \in \text{Vec}(G)$). However, sometimes $\Delta \neq \Delta^\text{op}$ but still $X \otimes Y \cong Y \otimes X$.

Example

For $A = U_q(\mathfrak{sl}_2)$ where $q^n \neq 1$ define the universal R-matrix

$$R = q^{\frac{h \otimes h}{2}} \sum_{k=0}^{\infty} q^{\frac{k(k-1)}{2}} \frac{(q - q^{-1})^k}{[k]_q!} e^k \otimes f^k,$$

where $[k]_q! = [1]_q \cdots [k]_q$.

This is an infinite series, but it makes sense as an operator on $X \otimes Y$ for any finite dimensional type I representations X, Y, because the sum terminates. Here $q^{\frac{h \otimes h}{2}} (x \otimes y) = q^{\frac{\lambda \mu}{2}} x \otimes y$ if x, y have weights λ, μ, i.e., $Kx = q^\lambda x, Ky = q^\mu y$.

Theorem (Drinfeld)

The operator $c = P \circ R$ defines an isomorphism of representations $c : X \otimes Y \to Y \otimes X$. In other words, we have $R \Delta(a) = \Delta^\text{op}(a) R$ on $X \otimes Y$ for $a \in U_q(\mathfrak{sl}_2)$.

139
The universal R-matrix of $U_q(\mathfrak{sl}_2)$

If A is a Hopf algebra and $X, Y \in \text{Rep} H$ then $X \otimes Y \not\cong Y \otimes X$ in general, as $\Delta \neq \Delta^{\text{op}}$ (e.g. $g \otimes h \not\cong h \otimes g$ for $g, h \in \text{Vec}(G)$). However, sometimes $\Delta \neq \Delta^{\text{op}}$ but still $X \otimes Y \cong Y \otimes X$.

Example

For $A = U_q(\mathfrak{sl}_2)$ where $q^n \neq 1$ define the universal R-matrix

$$R = q^{\frac{h \otimes h}{2}} \sum_{k=0}^{\infty} q^{\frac{k(k-1)}{2}} \frac{(q - q^{-1})^k}{[k]_q!} e^k \otimes f^k,$$

where $[k]_q! = [1]_q \cdots [k]_q$. This is an infinite series, but it makes sense as an operator on $X \otimes Y$ for any finite dimensional type I representations X, Y, because the sum terminates. Here $q^{\frac{h \otimes h}{2}} (x \otimes y) = q^{\frac{\lambda + \mu}{2}} x \otimes y$ if x, y have weights λ, μ, i.e., $Kx = q^\lambda x, Ky = q^\mu y$.

Theorem (Drinfeld)

The operator $c = P \circ R$ defines an isomorphism of representations $c : X \otimes Y \rightarrow Y \otimes X$. In other words, we have $R \Delta(a) = \Delta^{\text{op}}(a)R$ on $X \otimes Y$ for $a \in U_q(\mathfrak{sl}_2)$.
A prototypical example of a monoidal category where $X \otimes Y \cong Y \otimes X$ is the Drinfeld center of a monoidal category C.

Definition

The Drinfeld center $Z(C)$ of C is the category of pairs (Y, ϕ) where $Y \in C$ and $\phi: Y \otimes ? \to ? \otimes Y$ is a functorial isomorphism given by $\phi_X: Y \otimes X \cong - \to X \otimes Y \forall X \in C$, satisfying the following commutative diagram:

\[
\begin{array}{ccc}
Y \otimes (X_1 \otimes X_2) & \xrightarrow{\phi_{X_1} \otimes \id} & (X_1 \otimes X_2) \otimes Y \\
\downarrow{\alpha^{X_1}} & & \downarrow{\phi_{X_1} \otimes \id} \\
X_1 \otimes (Y \otimes X_2) & \xrightarrow{\id \otimes \phi_{X_2}} & X_1 \otimes (Y \otimes X_2)
\end{array}
\]

Morphisms of such pairs are morphisms in C which preserve ϕ.

141
The Drinfeld center

A prototypical example of a monoidal category where $X \otimes Y \cong Y \otimes X$ is the Drinfeld center of a monoidal category C.

Definition

The Drinfeld center $Z(C)$ of C is the category of pairs (Y, φ) where $Y \in C$ and $\varphi : Y \otimes ? \rightarrow ? \otimes Y$ is a functorial isomorphism given by $\varphi_X : Y \otimes X \xrightarrow{\sim} X \otimes Y \ \forall X \in C$, satisfying the following commutative diagram:
A prototypical example of a monoidal category where \(X \otimes Y \cong Y \otimes X \) is the Drinfeld center of a monoidal category \(C \).

Definition

The Drinfeld center \(\mathcal{Z}(C) \) of \(C \) is the category of pairs \((Y, \varphi)\) where \(Y \in C \) and \(\varphi : Y \otimes ? \rightarrow ? \otimes Y \) is a functorial isomorphism given by \(\varphi_X : Y \otimes X \xrightarrow{\sim} X \otimes Y \ \forall X \in C \), satisfying the following commutative diagram:

\[
\begin{array}{ccc}
Y \otimes (X_1 \otimes X_2) & \xrightarrow{\varphi_{X_1} \otimes X_2} & (X_1 \otimes X_2) \otimes Y \\
\downarrow \alpha_{YX_1X_2}^{-1} & & \uparrow \alpha_{X_1X_2Y}^{-1} \\
(Y \otimes X_1) \otimes X_2 & & X_1 \otimes (X_2 \otimes Y) \\
\downarrow \varphi_{X_1} \otimes \text{id} & & \uparrow \text{id} \otimes \varphi_{X_2} \\
(X_1 \otimes Y) \otimes X_2 & \xrightarrow{\alpha_{X_1YX_2}} & X_1 \otimes (Y \otimes X_2)
\end{array}
\]
A prototypical example of a monoidal category where \(X \otimes Y \cong Y \otimes X \) is the Drinfeld center of a monoidal category \(C \).

Definition

The Drinfeld center \(\mathcal{Z}(C) \) of \(C \) is the category of pairs \((Y, \varphi) \) where \(Y \in C \) and \(\varphi : Y \otimes _ \to _ \otimes Y \) is a functorial isomorphism given by \(\varphi_X : Y \otimes X \xrightarrow{\sim} X \otimes Y \ \forall X \in C \), satisfying the following commutative diagram:

\[
\begin{array}{ccc}
Y \otimes (X_1 \otimes X_2) & \xrightarrow{\varphi_{X_1 \otimes X_2}} & (X_1 \otimes X_2) \otimes Y \\
\downarrow \alpha_{YX_1X_2}^{-1} & & \uparrow \alpha_{X_1X_2Y}^{-1} \\
(Y \otimes X_1) \otimes X_2 & & X_1 \otimes (X_2 \otimes Y) \\
\downarrow \varphi_{X_1} \otimes \text{id} & & \uparrow \text{id} \otimes \varphi_{X_2} \\
(X_1 \otimes Y) \otimes X_2 & \xrightarrow{\alpha_{X_1YX_2}} & X_1 \otimes (Y \otimes X_2)
\end{array}
\]

Morphisms of such pairs are morphisms in \(C \) which preserve \(\varphi \).
The Drinfeld center, ctd.

The Drinfeld center $\mathcal{Z}(C)$ has a natural monoidal structure defined by $(Y, \varphi) \otimes (Z, \psi) = (Y \otimes Z, \eta)$,
The Drinfeld center, ctd.

The Drinfeld center $\mathcal{Z}(C)$ has a natural **monoidal structure** defined by $(Y, \varphi) \otimes (Z, \psi) = (Y \otimes Z, \eta)$, where (suppressing α)

$$
\eta_X = (\phi_X \otimes \text{id}_Z) \circ (\text{id}_Y \otimes \psi_X) : Y \otimes Z \otimes X \to Y \otimes X \otimes Z \to X \otimes Y \otimes Z.
$$
The Drinfeld center, ctd.

The Drinfeld center $\mathcal{Z}(C)$ has a natural **monoidal structure** defined by $(Y, \varphi) \otimes (Z, \psi) = (Y \otimes Z, \eta)$, where (suppressing α)

$$\eta_X = (\phi_X \otimes \text{id}_Z) \circ (\text{id}_Y \otimes \psi_X) : Y \otimes Z \otimes X \to Y \otimes X \otimes Z \to X \otimes Y \otimes Z.$$

Note also that we have a monoidal **forgetful functor** $\mathcal{Z}(C) \to C$, $(Y, \varphi) \mapsto Y$.

Recall that $B_n = \pi_1(C_n \setminus \text{diagonals}) = \langle s_1, \ldots, s_{n-1} \mid s_i s_j = s_j s_i \text{ if } |i - j| \geq 2, s_i s_i+1 s_i = s_i+1 s_i s_i+1 \rangle$.
The Drinfeld center \(\mathcal{Z}(C) \) has a natural monoidal structure defined by \((Y, \varphi) \otimes (Z, \psi) = (Y \otimes Z, \eta)\), where (suppressing \(\alpha \))

\[
\eta_X = (\phi_X \otimes \text{id}_Z) \circ (\text{id}_Y \otimes \psi_X) : Y \otimes Z \otimes X \rightarrow Y \otimes X \otimes Z \rightarrow X \otimes Y \otimes Z.
\]

Note also that we have a monoidal forgetful functor \(\mathcal{Z}(C) \rightarrow C \), \((Y, \varphi) \mapsto Y\). Moreover, if \(Y, Z \in \mathcal{Z}(C) \) then there are two ways\(Y \otimes Z \xrightarrow{c_{YZ}, c_{ZY}^{-1}} Z \otimes Y \) to identify \(Y \otimes Z \) and \(Z \otimes Y \), \(c_{YZ} = \varphi_Z \), \(c_{ZY} = \psi_Y \).
The Drinfeld center $\mathcal{Z}(C)$ has a natural monoidal structure defined by $(Y, \varphi) \otimes (Z, \psi) = (Y \otimes Z, \eta)$, where (suppressing α)

$$\eta_X = (\phi_X \otimes \text{id}_Z) \circ (\text{id}_Y \otimes \psi_X) : Y \otimes Z \otimes X \to Y \otimes X \otimes Z \to X \otimes Y \otimes Z.$$

Note also that we have a monoidal forgetful functor $\mathcal{Z}(C) \to C$, $(Y, \varphi) \mapsto Y$. Moreover, if $Y, Z \in \mathcal{Z}(C)$ then there are two ways

$$Y \otimes Z \xrightarrow{c_{YZ}, c_{ZY}^{-1}} Z \otimes Y$$

to identify $Y \otimes Z$ and $Z \otimes Y$, $c_{YZ} = \varphi_Z$, $c_{ZY} = \psi_Y$. This gives an action of the braid group B_n on $V \otimes^n$ for $V \in \mathcal{Z}(C)$.

Proposition

There is an action of B_n on $V \otimes^n$ defined by

$$\rho: B_n \to \text{Aut}(V \otimes^n), \quad \rho(s_i) = c_{i, i+1}.$$

Recall that $B_n = \pi_1(C_n \setminus \text{diagonals}) = \langle s_1, \ldots, s_{n-1} | s_i s_j = s_j s_i \text{ if } |i - j| \geq 2, s_i s_i + 1 s_i = s_i s_i + 1 s_i s_i \rangle$.

149
The Drinfeld center, ctd.

The Drinfeld center $\mathcal{Z}(C)$ has a natural monoidal structure defined by $(Y, \varphi) \otimes (Z, \psi) = (Y \otimes Z, \eta)$, where (suppressing α)

$$\eta_X = (\varphi_X \otimes \text{id}_Z) \circ (\text{id}_Y \otimes \psi_X) : Y \otimes Z \otimes X \rightarrow Y \otimes X \otimes Z \rightarrow X \otimes Y \otimes Z.$$

Note also that we have a monoidal forgetful functor $Z(C) \rightarrow C$, $(Y, \varphi) \mapsto Y$. Moreover, if $Y, Z \in \mathcal{Z}(C)$ then there are two ways $Y \otimes Z \xrightarrow{c_{YZ}, c_{ZY}^{-1}} Z \otimes Y$ to identify $Y \otimes Z$ and $Z \otimes Y$, $c_{YZ} = \varphi_Z$, $c_{ZY} = \psi_Y$. This gives an action of the braid group B_n on $V \otimes^n$ for $V \in \mathcal{Z}(C)$. Recall that $B_n = \pi_1(\mathbb{C}^n \setminus \text{diagonals}/S_n) =$
The Drinfeld center $\mathcal{Z}(C)$ has a natural **monoidal structure** defined by $(Y, \varphi) \otimes (Z, \psi) = (Y \otimes Z, \eta)$, where (suppressing α)

\[\eta_X = (\phi_X \otimes \text{id}_Z) \circ (\text{id}_Y \otimes \psi_X) : Y \otimes Z \otimes X \to Y \otimes X \otimes Z \to X \otimes Y \otimes Z. \]

Note also that we have a monoidal **forgetful functor** $\mathcal{Z}(C) \to C$, $(Y, \varphi) \mapsto Y$. Moreover, if $Y, Z \in \mathcal{Z}(C)$ then there are two ways $Y \otimes Z \xrightarrow{c_{YZ}, c_{ZY}^{-1}} Z \otimes Y$ to identify $Y \otimes Z$ and $Z \otimes Y$, $c_{YZ} = \varphi_Z$, $c_{ZY} = \psi_Y$. This gives an action of the braid group B_n on $V \otimes^n$ for $V \in \mathcal{Z}(C)$. Recall that $B_n = \pi_1(\mathbb{C}^n \backslash \text{diagonals}/S_n) = \langle s_1, \ldots, s_{n-1} | s_is_j = s_js_i \text{ if } |i - j| \geq 2, \ s_is_{i+1}s_i = s_{i+1}s_is_{i+1} \rangle$
The Drinfeld center, ctd.

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ has a natural monoidal structure defined by $(Y, \varphi) \otimes (Z, \psi) = (Y \otimes Z, \eta)$, where (suppressing α)

$$
\eta_X = (\phi_X \otimes \text{id}_Z) \circ (\text{id}_Y \otimes \psi_X) : Y \otimes Z \otimes X \to Y \otimes X \otimes Z \to X \otimes Y \otimes Z.
$$

Note also that we have a monoidal forgetful functor $\mathcal{Z}(\mathcal{C}) \to \mathcal{C}$, $(Y, \varphi) \mapsto Y$. Moreover, if $Y, Z \in \mathcal{Z}(\mathcal{C})$ then there are two ways $Y \otimes Z \overset{c_{YZ}, \ c_{ZY}^{-1}}{\longrightarrow} Z \otimes Y$ to identify $Y \otimes Z$ and $Z \otimes Y$, $c_{YZ} = \varphi_Z$, $c_{ZY} = \psi_Y$. This gives an action of the braid group B_n on $V^\otimes n$ for $V \in \mathcal{Z}(\mathcal{C})$. Recall that $B_n = \pi_1(\mathbb{C}^n \setminus \text{diagonals}/S_n) =$

$$
\langle s_1, \ldots, s_{n-1} \mid s_is_j = s_js_i \text{ if } |i - j| \geq 2, \ s_is_{i+1}s_i = s_{i+1}s_is_{i+1} \rangle
$$

Proposition

There is an action of B_n on $V^\otimes n$ is defined by
The Drinfeld center, ctd.

The Drinfeld center $\mathcal{Z}(C)$ has a natural monoidal structure defined by $(Y, \varphi) \otimes (Z, \psi) = (Y \otimes Z, \eta)$, where (suppressing α)

$$\eta_X = (\phi_X \otimes \text{id}_Z) \circ (\text{id}_Y \otimes \psi_X) : Y \otimes Z \otimes X \to Y \otimes X \otimes Z \to X \otimes Y \otimes Z.$$

Note also that we have a monoidal forgetful functor $\mathcal{Z}(C) \to C$, $(Y, \varphi) \mapsto Y$. Moreover, if $Y, Z \in \mathcal{Z}(C)$ then there are two ways $Y \otimes Z \xrightarrow{c_{YZ}, c_{ZY}^{-1}} Z \otimes Y$ to identify $Y \otimes Z$ and $Z \otimes Y$, $c_{YZ} = \varphi_Z$, $c_{ZY} = \psi_Y$. This gives an action of the braid group B_n on $V^\otimes n$ for $V \in \mathcal{Z}(C)$. Recall that $B_n = \pi_1(\mathbb{C}^n \setminus \text{diagonals}/S_n) = \langle s_1, ..., s_{n-1} \mid s_is_j = s_js_i \text{ if } |i - j| \geq 2, s_is_{i+1}s_i = s_{i+1}s_is_{i+1} \rangle$

Proposition

There is an action of B_n on $V^\otimes n$ is defined by

$$\rho : B_n \to \text{Aut}(V^\otimes n), \quad \rho(s_i) = c_{i,i+1} = (c_V, V)_{i,i+1}$$
Proof.

This follows from the hexagon relations for $X, Y, Z \in \mathcal{Z}(\mathcal{C})$:

$$X \otimes Y \otimes Z \rightarrow Y \otimes X \otimes Z$$

$$\downarrow$$

$$Y \otimes Z \otimes X$$
The Drinfeld center, ctd.

Proof.

This follows from the hexagon relations for $X, Y, Z \in Z(\mathcal{C})$:

\[
\begin{align*}
X \otimes Y \otimes Z & \rightarrow Y \otimes X \otimes Z \\
& \downarrow \\
Y \otimes Z \otimes X &
\end{align*}
\quad
\begin{align*}
X \otimes Y \otimes Z & \rightarrow X \otimes Z \otimes Y \\
& \downarrow \\
Z \otimes X \otimes Y &
\end{align*}
\]

where we suppress α and the maps are given by c. \qed
Proof.

This follows from the hexagon relations for $X, Y, Z \in \mathcal{Z}(C)$:

\[
\begin{align*}
X \otimes Y \otimes Z & \rightarrow Y \otimes X \otimes Z \quad X \otimes Y \otimes Z \rightarrow X \otimes Z \otimes Y \\
& \quad \downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
& \quad Y \otimes Z \otimes X \quad \quad \quad Z \otimes X \otimes Y
\end{align*}
\]

where we suppress α and the maps are given by c. \qed

They are called “hexagon relations” because they would have been hexagons had we not suppressed α.
Proof.

This follows from the hexagon relations for \(X, Y, Z \in \mathcal{Z}(\mathcal{C}) \):

\[
\begin{align*}
X \otimes Y \otimes Z & \rightarrow Y \otimes X \otimes Z \\
\downarrow & \\
Y \otimes Z \otimes X
\end{align*}
\begin{align*}
X \otimes Y \otimes Z & \rightarrow Z \otimes X \otimes Y \\
\downarrow & \\
X \otimes Z \otimes Y
\end{align*}
\]

where we suppress \(\alpha \) and the maps are given by \(c \).

They are call “hexagon relations” because they would have been hexagons had we not suppressed \(\alpha \).

This motivates the definition of a braided monoidal category.
Braided monoidal categories

Definition

A **braided monoidal category** is a monoidal category endowed with a functorial isomorphism \(c : \otimes \rightarrow \otimes^{\text{op}} \), \(c_{X,Y} : X \otimes Y \rightarrow Y \otimes X \) which satisfies the hexagon relations.

Thus we obtain

Theorem

The Drinfeld center \(Z(C) \) of a monoidal category \(C \) is a braided monoidal category. Moreover, every braided monoidal category \(C \) is a braided subcategory of its Drinfeld center using the inclusion \(\iota : C \rightarrow Z(C) \) given by \(X \mapsto (X, c_X) \). In this sense the Drinfeld center is a prototypical example of a braided category.

Theorem

The category of finite dimensional (type I) representations of \(\mathcal{U}_q(\mathfrak{sl}_2) \) is a braided monoidal category, with \(c = P \circ R \).
A **braided monoidal category** is a monoidal category endowed with a functorial isomorphism $c : \otimes \to \otimes^{\text{op}}$, $c_{X,Y} : X \otimes Y \to Y \otimes X$ which satisfies the **hexagon relations**.

Theorem

The Drinfeld center $Z(C)$ is a braided monoidal category. Moreover, every braided monoidal category C is a braided subcategory of its Drinfeld center using the inclusion $\iota : C \to Z(C)$ given by $X \mapsto (X, c_X)$. In this sense the Drinfeld center is a prototypical example of a braided category.

Theorem

The category of finite dimensional (type I) representations of $U_q(sl_2)$ is a braided monoidal category, with $c = P \circ R$.

Braided monoidal categories
A braided monoidal category is a monoidal category endowed with a functorial isomorphism $c : \otimes \to \otimes^{\text{op}}$, $c_{X,Y} : X \otimes Y \to Y \otimes X$ which satisfies the hexagon relations.

Thus we obtain

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ is a braided monoidal category.
Braided monoidal categories

Definition

A **braided monoidal category** is a monoidal category endowed with a functorial isomorphism \(c : \otimes \to \otimes^{\text{op}} \), \(c_X, Y : X \otimes Y \to Y \otimes X \) which satisfies the **hexagon relations**.

Thus we obtain

Theorem

The **Drinfeld center** \(\mathcal{Z}(C) \) is a braided monoidal category.

Moreover, every braided monoidal category \(C \) is a braided subcategory of its Drinfeld center using the inclusion \(\iota : C \to \mathcal{Z}(C) \) given by \(X \mapsto (X, c_X) \). In this sense the Drinfeld center is a prototypical example of a braided category.

Theorem

The category of finite dimensional (type I) representations of \(U_q(\mathfrak{sl}_2) \) is a braided monoidal category, with \(c = P \circ R \).
Note that as a consequence \mathcal{R} satisfies the **Quantum Yang-Baxter equation**

$$\mathcal{R}^{12}\mathcal{R}^{13}\mathcal{R}^{23} = \mathcal{R}^{23}\mathcal{R}^{13}\mathcal{R}^{12}$$

(this follows from the relation $s_1 s_2 s_1 = s_2 s_1 s_2$).

Remark. A braided category is called symmetric if $c_{XY}c_{YX} = id_X \otimes Y$ for all X, Y. For example, the categories $\text{Rep}\, G$ and $\text{Rep}\, g$ are symmetric. However, $\text{Z}(\mathbb{C})$ is usually not symmetric, and $\text{Rep}\, U_q(\mathfrak{sl}_2)$ isn't either. We'll explain that the theorem on $U_q(\mathfrak{sl}_2)$, and in fact the construction of \mathcal{R}, are consequences of the theorem about the Drinfeld center. To this end, let us compute the Drinfeld center of the category $\text{Rep}\, A$ of representations of a Hopf algebra A. 162
Braided monoidal categories ctd.

Note that as a consequence \mathcal{R} satisfies the Quantum Yang-Baxter equation

$$\mathcal{R}^{12}\mathcal{R}^{13}\mathcal{R}^{23} = \mathcal{R}^{23}\mathcal{R}^{13}\mathcal{R}^{12}$$

(this follows from the relation $s_1s_2s_1 = s_2s_1s_2$).

Remark

A braided category is called symmetric if $c_{XY}c_{YX} = \text{id}_{X \otimes Y}$ for all X, Y.
Braided monoidal categories ctd.

Note that as a consequence \mathcal{R} satisfies the Quantum Yang-Baxter equation

$$\mathcal{R}^{12}\mathcal{R}^{13}\mathcal{R}^{23} = \mathcal{R}^{23}\mathcal{R}^{13}\mathcal{R}^{12}$$

(this follows from the relation $s_1s_2s_1 = s_2s_1s_2$).

Remark

A braided category is called **symmetric** if $c_{XY}c_{YX} = \text{id}_{X\otimes Y}$ for all X, Y. For example, the categories $\text{Rep } G$ and $\text{Rep } g$ are symmetric.
Note that as a consequence \mathcal{R} satisfies the Quantum Yang-Baxter equation

$$\mathcal{R}^{12}\mathcal{R}^{13}\mathcal{R}^{23} = \mathcal{R}^{23}\mathcal{R}^{13}\mathcal{R}^{12}$$

(this follows from the relation $s_1s_2s_1 = s_2s_1s_2$).

Remark

A braided category is called **symmetric** if $c_{XY}c_{YX} = \text{id}_{X \otimes Y}$ for all X, Y. For example, the categories $\text{Rep } G$ and $\text{Rep } g$ are symmetric. However, $Z(C)$ is usually **not** symmetric, and $\text{Rep}_f U_q(\mathfrak{sl}_2)$ isn’t either.

We’ll explain that the theorem on $U_q(\mathfrak{sl}_2)$, and in fact the construction of \mathcal{R}, are consequences of the theorem about the Drinfeld center.
Braided monoidal categories ctd.

Note that as a consequence \mathcal{R} satisfies the Quantum Yang-Baxter equation

$$\mathcal{R}^{12}\mathcal{R}^{13}\mathcal{R}^{23} = \mathcal{R}^{23}\mathcal{R}^{13}\mathcal{R}^{12}$$

(this follows from the relation $s_1s_2s_1 = s_2s_1s_2$).

Remark

A braided category is called **symmetric** if $c_{XY}c_{YX} = \text{id}_{X \otimes Y}$ for all X, Y. For example, the categories $\text{Rep } G$ and $\text{Rep } \mathfrak{g}$ are symmetric. However, $\mathcal{Z}(\mathcal{C})$ is usually not symmetric, and $\text{Rep}_f U_q(sl_2)$ isn’t either.

We’ll explain that the theorem on $U_q(sl_2)$, and in fact the construction of \mathcal{R}, are consequences of the theorem about the Drinfeld center. To this end, let us compute the Drinfeld center of the category $\text{Rep } A$ of representations of a Hopf algebra A.
Let \(Y \in \mathcal{Z} (\text{Rep } A) \).
Let $Y \in Z(\text{Rep } A)$. Then the map
\[
\varphi_A : \text{Ind}_C^A Y = Y \otimes A \to A \otimes Y
\]
defines a comodule structure
\[
\tau = \varphi_A|_Y : Y \to A \otimes Y.
\]
Let $Y \in \mathcal{Z} (\text{Rep} A)$. Then the map
\[\varphi_A : \text{Ind}_C^A Y = Y \otimes A \rightarrow A \otimes Y \]
defines a comodule structure $\tau = \varphi_A|_Y : Y \rightarrow A \otimes Y$. The compatibility condition between this comodule structure and the A-module structure on Y is

\[\tau(ay) = a_1 y_1 S(a_2) \otimes y_2 a_3. \]
Yetter-Drinfeld modules

Let $Y \in \mathcal{Z}(\text{Rep} \ A)$. Then the map

$\varphi_A : \text{Ind}_\mathbb{C}^A Y = Y \otimes A \to A \otimes Y$ defines a comodule structure

$\tau = \varphi_A|_Y : Y \to A \otimes Y$. The compatibility condition between this comodule structure and the A-module structure on Y is

$$\tau(ay) = a_1 y(1) S(a_2) \otimes y(2) a_3.$$

where $y \in Y$, $\tau(y) = y(1) \otimes y(2)$.
Let $Y \in \mathcal{Z}(\text{Rep } A)$. Then the map
\[\varphi_A : \text{Ind}_C^A Y = Y \otimes A \to A \otimes Y \] defines a comodule structure
\[\tau = \varphi_A|_Y : Y \to A \otimes Y. \] The compatibility condition between this comodule structure and the A-module structure on Y is
\[\tau(ay) = a(1)y(1)S(a(2)) \otimes y(2)a(3). \]

where $y \in Y$, $\tau(y) = y(1) \otimes y(2)$ and
\[a \in A, \ (1 \otimes \Delta) \circ \Delta(a) = a(1) \otimes a(2) \otimes a(3). \]
Let $Y \in \mathcal{Z}(\text{Rep} \ A)$. Then the map
\[\varphi_A : \text{Ind}^A_C Y = Y \otimes A \to A \otimes Y \]
defines a comodule structure
\[\tau = \varphi_A|_Y : Y \to A \otimes Y. \]
The compatibility condition between this comodule structure and the A-module structure on Y is
\[\tau(ay) = a_{(1)} y_{(1)} S(a_{(2)}) \otimes y_{(2)} a_{(3)}. \]

where $y \in Y$, $\tau(y) = y_{(1)} \otimes y_{(2)}$ and
\[a \in A, \ (1 \otimes \Delta) \circ \Delta(a) = a_{(1)} \otimes a_{(2)} \otimes a_{(3)}. \]

Definition

A **Yetter-Drinfeld module over A** is an A-module Y which is also an A-comodule with $\tau : Y \to A \otimes Y$ satisfying the above compatibility condition.
Yetter-Drinfeld modules

Let $Y \in \mathcal{Z}(\text{Rep} \ A)$. Then the map
\[\varphi_A : \text{Ind}_C^A Y = Y \otimes A \to A \otimes Y \]
defines a comodule structure
\[\tau = \varphi_A|_Y : Y \to A \otimes Y. \]
The compatibility condition between this comodule structure and the A-module structure on Y is
\[\tau(ay) = a_{(1)}y_{(1)}S(a_{(2)}) \otimes y_{(2)}a_{(3)}. \]
where $y \in Y$, $\tau(y) = y_{(1)} \otimes y_{(2)}$ and
\[a \in A, \ (1 \otimes \Delta) \circ \Delta(a) = a_{(1)} \otimes a_{(2)} \otimes a_{(3)}. \]

\textbf{Definition}

A Yetter-Drinfeld module over A is an A-module Y which is also an A-comodule with $\tau : Y \to A \otimes Y$ satisfying the above compatibility condition. The category of such modules is denoted $\mathcal{YD}(A)$.
Yetter-Drinfeld modules

Let $Y \in \mathcal{Z}(\text{Rep} \ A)$. Then the map
$\varphi_A : \text{Ind}^A_C Y = Y \otimes A \to A \otimes Y$ defines a comodule structure
$\tau = \varphi_A|_Y : Y \to A \otimes Y$. The compatibility condition between this comodule structure and the A-module structure on Y is

$$\tau(ay) = a(1)y(1)S(a(2)) \otimes y(2)a(3).$$

where $y \in Y$, $\tau(y) = y(1) \otimes y(2)$ and

$$a \in A, \ (1 \otimes \Delta) \circ \Delta(a) = a(1) \otimes a(2) \otimes a(3).$$

Definition

A Yetter-Drinfeld module over A is an A-module Y which is also an A-comodule with $\tau : Y \to A \otimes Y$ satisfying the above compatibility condition. The category of such modules is denoted $\text{YD}(A)$.

Proposition

One has $\mathcal{Z}(\text{Rep} \ A) \cong \text{YD}(A)$.
Let $Y \in \mathcal{Z}(\text{Rep} A)$. Then the map

$$\varphi_A : \text{Ind}^A_C Y = Y \otimes A \to A \otimes Y$$

defines a comodule structure $\tau = \varphi_A|_Y : Y \to A \otimes Y$. The compatibility condition between this comodule structure and the A-module structure on Y is

$$\tau(ay) = a(1)y(1)S(a(2)) \otimes y(2)a(3).$$

where $y \in Y$, $\tau(y) = y(1) \otimes y(2)$ and

$$a \in A, \ (1 \otimes \Delta) \circ \Delta(a) = a(1) \otimes a(2) \otimes a(3).$$

Definition

A Yetter-Drinfeld module over A is an A-module Y which is also an A-comodule with $\tau : Y \to A \otimes Y$ satisfying the above compatibility condition. The category of such modules is denoted $\text{YD}(A)$.

Proposition

One has $\mathcal{Z}(\text{Rep} A) \cong \text{YD}(A)$.
If A is finite dimensional, an A-comodule is the same as an A^*-module,
If A is finite dimensional, an A-comodule is the same as an A^\ast-module, so the category $YD(A)$ can be realized as the category of modules over some algebra generated by A and A^\ast with some commutation relation between them.
Quantum double

If A is finite dimensional, an A-comodule is the same as an A^*-module, so the category $\mathcal{YD}(A)$ can be realized as the category of modules over some algebra generated by A and A^* with some commutation relation between them. Thus we get

Proposition

For a finite dimensional A there exists a Hopf algebra $D(A)$ isomorphic as a vector space to $A \otimes A^*$.
If \(A \) is finite dimensional, an \(A \)-comodule is the same as an \(A^* \)-module, so the category \(\text{YD}(A) \) can be realized as the category of modules over some algebra generated by \(A \) and \(A^* \) with some commutation relation between them. Thus we get

Proposition

For \(A \) finite dimensional \(\exists \) a Hopf algebra \(D(A) \) isomorphic as a vector space to \(A \otimes A^* \) such that there is a monoidal equivalence

\[
\text{YD}(A) \cong \text{Rep } D(A).
\]
If A is finite dimensional, an A-comodule is the same as an A^*-module, so the category $YD(A)$ can be realized as the category of modules over some algebra generated by A and A^* with some commutation relation between them. Thus we get

Proposition

For a finite dimensional A there exists a Hopf algebra $D(A)$ isomorphic as a vector space to $A \otimes A^*$ such that there is a monoidal equivalence

$$YD(A) \cong \text{Rep } D(A).$$

The Hopf algebra $D(A)$ is called the (Drinfeld) quantum double of A.
If A is finite dimensional, an A-comodule is the same as an A^*-module, so the category $YD(A)$ can be realized as the category of modules over some algebra generated by A and A^* with some commutation relation between them. Thus we get

Proposition

For a finite dimensional A there exists a Hopf algebra $D(A)$ isomorphic as a vector space to $A \otimes A^*$ such that there is a monoidal equivalence

$$YD(A) \cong \text{Rep } D(A).$$

The Hopf algebra $D(A)$ is called the (Drinfeld) quantum double of A. The algebras A and A^{op} (with opposite coproduct) are Hopf subalgebras of $D(A)$, and the commutation relations between them have the form

$$ba = (a_{(1)}, b_{(1)})(a_{(3)}, b_{(3)})a_{(2)}S^{-1}(b_{(2)}),$$

$a \in A, b \in A^*$.
It is natural to ask how to express the braided structure of $YD(A)$ in terms of $D(A)$.
It is natural to ask how to express the braided structure of $\text{YD}(A)$ in terms of $D(A)$. This is addressed by the following theorem.

Theorem (Drinfeld)
The braiding of $\text{Rep} D(A) = \text{YD}(A)$ is given by the formula $c = P \circ R$, where $R \in A \otimes A^\ast \subset D(A) \otimes D(A)$ is given by the universal R-matrix $R = \sum a_i \otimes a_i^\ast$, where a_i is basis of A and a_i^\ast the dual basis of A^\ast.

In particular, R satisfies the quantum Yang-Baxter equation $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12} \in D(A)^3$.

Moreover, the commutation relation between A and A^\ast is uniquely determined by this equation.
Quantum double, ctd.

It is natural to ask how to express the braided structure of $YD(A)$ in terms of $D(A)$. This is addressed by the following theorem.

Theorem (Drinfeld)

The braiding of $\text{Rep} \ D(A) = YD(A)$ is given by the formula $c = P \circ R$

In particular, R satisfies the quantum Yang-Baxter equation $R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12} \in D(A)^3$. Moreover, the commutation relation between A and A^* is uniquely determined by this equation.
Quantum double, ctd.

It is natural to ask how to express the braided structure of $\text{YD}(A)$ in terms of $D(A)$. This is addressed by the following theorem.

Theorem (Drinfeld)

The braiding of $\text{Rep } D(A) = \text{YD}(A)$ is given by the formula $c = P \circ \mathcal{R}$ where $\mathcal{R} \in A \otimes A^{*\text{op}} \subset D(A) \otimes D(A)$ is given by the universal R-matrix

$$\mathcal{R} = \sum_i a_i \otimes a_i^*,$$

where a_i is a basis of A and a_i^* the dual basis of A^*. In particular, \mathcal{R} satisfies the quantum Yang-Baxter equation $\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23} = \mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} \in D(A)^3$. Moreover, the commutation relation between A and A^* is uniquely determined by this equation.
Quantum double, ctd.

It is natural to ask how to express the braided structure of \(YD(A) \) in terms of \(D(A) \). This is addressed by the following theorem.

Theorem (Drinfeld)

The braiding of \(\text{Rep} \ D(A) = YD(A) \) is given by the formula
\[
c = P \circ \mathcal{R}
\]
where \(\mathcal{R} \in A \otimes A^{*\text{op}} \subset D(A) \otimes D(A) \) is given by the universal \(R \)-matrix
\[
\mathcal{R} = \sum_{i} a_i \otimes a_i^*,
\]
where \(a_i \) is basis of \(A \) and \(a_i^* \) the dual basis of \(A^* \).
It is natural to ask how to express the braided structure of $YD(A)$ in terms of $D(A)$. This is addressed by the following theorem.

Theorem (Drinfeld)

The braiding of $\text{Rep } D(A) = YD(A)$ is given by the formula

$$c = P \circ R$$

where $R \in A \otimes A^{\text{op}} \subset D(A) \otimes D(A)$ is given by the universal R-matrix

$$R = \sum_i a_i \otimes a_i^*,$$

where a_i is basis of A and a_i^* the dual basis of A^*. In particular, R satisfies the quantum Yang-Baxter equation

$$R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12} \in D(A)^3.$$
Quantum double, ctd.

It is natural to ask how to express the braided structure of $YD(A)$ in terms of $D(A)$. This is addressed by the following theorem.

Theorem (Drinfeld)

The braiding of $\text{Rep} \ D(A) = YD(A)$ is given by the formula $c = P \circ R$ where $R \in A \otimes A^{\text{op}} \subset D(A) \otimes D(A)$ is given by the universal R-matrix

$$R = \sum_i a_i \otimes a_i^*,$$

where a_i is basis of A and a_i^* the dual basis of A^*. In particular, R satisfies the quantum Yang-Baxter equation

$$R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12} \in D(A)^3.$$

Moreover, the commutation relation between A and A^* is uniquely determined by this equation.
Example

Let $A = \mathbb{C}G$ where G is a finite group.
Example

Let $A = \mathbb{C}G$ where G is a finite group. Then $D(A) = \mathbb{C}G \ltimes \mathcal{O}(G)$, where G acts on itself by conjugation (i.e., the commutation relation for the double gives the conjugation action).
Example

Let $A = \mathbb{C}G$ where G is a finite group. Then $D(A) = \mathbb{C}G \ltimes \mathcal{O}(G)$, where G acts on itself by conjugation (i.e., the commutation relation for the double gives the conjugation action). We have

$$\mathcal{R} = \sum_{g \in G} g \otimes \delta_g,$$
Examples

Example

Let $A = \mathbb{C}G$ where G is a finite group. Then $D(A) = \mathbb{C}G \ltimes \mathcal{O}(G)$, where G acts on itself by conjugation (i.e., the commutation relation for the double gives the conjugation action). We have $R = \sum_{g \in G} g \otimes \delta_g$, where $\delta_g(h) = \delta_{gh}$, $g, h \in G$.

Example

Let ℓ be an odd positive integer, q a primitive root of unity of order ℓ.

Example

Let $A = \mathbb{C}G$ where G is a finite group. Then $D(A) = \mathbb{C}G \rtimes \mathcal{O}(G)$, where G acts on itself by conjugation (i.e., the commutation relation for the double gives the conjugation action). We have $\mathcal{R} = \sum_{g \in G} g \otimes \delta_g$, where $\delta_g(h) = \delta_{gh}$, $g, h \in G$.

Example

Let ℓ be an odd positive integer, q a primitive root of unity of order ℓ. Let A be the Taft Hopf algebra (of dimension ℓ^2), generated by $e, K^{\pm 1}$ with the relations $Ke = q^2eK$, $e^{\ell} = 0$, $K^{\ell} = 1$.
Example

Let $A = \mathbb{C}G$ where G is a finite group. Then $D(A) = \mathbb{C}G \rtimes \mathcal{O}(G)$, where G acts on itself by conjugation (i.e., the commutation relation for the double gives the conjugation action). We have $\mathcal{R} = \sum_{g \in G} g \otimes \delta_g$, where $\delta_g(h) = \delta_{gh}$, $g, h \in G$.

Example

Let ℓ be an odd positive integer, q a primitive root of unity of order ℓ. Let A be the Taft Hopf algebra (of dimension ℓ^2), generated by $e, K^{\pm 1}$ with the relations $Ke = q^2 eK$, $e^\ell = 0$, $K^\ell = 1$, and coproduct defined by $\Delta(e) = e \otimes K + 1 \otimes e$, $\Delta(K) = K \otimes K$.
Example

Let $A = \mathbb{C}G$ where G is a finite group. Then $D(A) = \mathbb{C}G \ltimes \mathcal{O}(G)$, where G acts on itself by conjugation (i.e., the commutation relation for the double gives the conjugation action). We have $\mathcal{R} = \sum_{g \in G} g \otimes \delta_g$, where $\delta_g(h) = \delta_{gh}$, $g, h \in G$.

Example

Let ℓ be an odd positive integer, q a primitive root of unity of order ℓ. Let A be the Taft Hopf algebra (of dimension ℓ^2), generated by $e, K^{\pm 1}$ with the relations $Ke = q^2 eK$, $e^\ell = 0$, $K^\ell = 1$, and coproduct defined by $\Delta(e) = e \otimes K + 1 \otimes e$, $\Delta(K) = K \otimes K$. Then $D(A)$ is the Hopf algebra of the form $D_0 \otimes \mathbb{C}[\mathbb{Z}/\ell]$, where
Examples

Example
Let \(A = \mathbb{C}G \) where \(G \) is a finite group. Then \(D(A) = \mathbb{C}G \rtimes O(G) \), where \(G \) acts on itself by conjugation (i.e., the commutation relation for the double gives the conjugation action). We have \(\mathcal{R} = \sum_{g \in G} g \otimes \delta_g \), where \(\delta_g(h) = \delta_{gh} \), \(g, h \in G \).

Example
Let \(\ell \) be an odd positive integer, \(q \) a primitive root of unity of order \(\ell \). Let \(A \) be the Taft Hopf algebra (of dimension \(\ell^2 \)), generated by \(e, K^{\pm 1} \) with the relations \(Ke = q^2 eK \), \(e^\ell = 0 \), \(K^\ell = 1 \), and coproduct defined by \(\Delta(e) = e \otimes K + 1 \otimes e \), \(\Delta(K) = K \otimes K \). Then \(D(A) \) is the Hopf algebra of the form \(D_0 \otimes \mathbb{C}[\mathbb{Z}/\ell] \), where \(D_0 \) is a Hopf algebra of dimension \(\ell^3 \) generated by \(e, f, K^{\pm 1} \) with relations as above and \(Kf = q^{-2} fK \), \(ef - fe = \frac{K - K^{-1}}{q - q^{-1}} \).
Example

Let $A = \mathbb{C}G$ where G is a finite group. Then $D(A) = \mathbb{C}G \rtimes O(G)$, where G acts on itself by conjugation (i.e., the commutation relation for the double gives the conjugation action). We have

$$R = \sum_{g \in G} g \otimes \delta_g,$$

where $\delta_g(h) = \delta_{gh}$, $g, h \in G$.

Example

Let ℓ be an odd positive integer, q a primitive root of unity of order ℓ. Let A be the Taft Hopf algebra (of dimension ℓ^2), generated by $e, K^{\pm 1}$ with the relations $Ke = q^2 eK$, $e^\ell = 0$, $K^\ell = 1$, and coproduct defined by $\Delta(e) = e \otimes K + 1 \otimes e$, $\Delta(K) = K \otimes K$. Then $D(A)$ is the Hopf algebra of the form $D_0 \otimes \mathbb{C}[\mathbb{Z}/\ell]$, where D_0 is a Hopf algebra of dimension ℓ^3 generated by $e, f, K^{\pm 1}$ with relations as above and $Kf = q^{-2} fK$, $ef - fe = \frac{K - K^{-1}}{q - q^{-1}}$ and coproduct given by the above formulas and $\Delta(f) = f \otimes 1 + K^{-1} \otimes f$.
Note that D_0 is nothing but the quotient of $U_q(sl_2)$ by the relations $E^\ell = F^\ell = K^\ell - 1 = 0$.
Note that D_0 is nothing but the quotient of $U_q(\mathfrak{sl}_2)$ by the relations $E^\ell = F^\ell = K^\ell - 1 = 0$. It is called the small quantum group and was introduced by G. Lusztig (for any simple Lie algebra), and is denoted by $u_q(\mathfrak{sl}_2)$.
Note that D_0 is nothing but the quotient of $U_q(sl_2)$ by the relations $E^\ell = F^\ell = K^\ell - 1 = 0$. It is called the small quantum group and was introduced by G. Lusztig (for any simple Lie algebra), and is denoted by $u_q(sl_2)$. Note that by virtue of the construction D_0 has a universal R-matrix, which can be computed to be

$$R = q^{h \otimes h} \sum_{k=0}^{\ell} q^k (k - 1) 2 e^k \otimes f^k,$$
Note that D_0 is nothing but the quotient of $U_q(\mathfrak{sl}_2)$ by the relations $E^\ell = F^\ell = K^\ell - 1 = 0$. It is called the small quantum group and was introduced by G. Lusztig (for any simple Lie algebra), and is denoted by $u_q(\mathfrak{sl}_2)$. Note that by virtue of the construction D_0 has a universal R-matrix, which can be computed to be

$$R = q^{\frac{h \otimes h}{2}} \sum_{k=0}^{\ell-1} q^{k(k-1)/2} \frac{(q - q^{-1})^k}{[k]_q!} e^k \otimes f^k,$$

where $[k]_q = \frac{q^k - 1}{q - 1}$.
Note that D_0 is nothing but the quotient of $U_q(\mathfrak{sl}_2)$ by the relations $E^\ell = F^\ell = K^\ell - 1 = 0$. It is called the small quantum group and was introduced by G. Lusztig (for any simple Lie algebra), and is denoted by $u_q(\mathfrak{sl}_2)$. Note that by virtue of the construction D_0 has a universal R-matrix, which can be computed to be

$$\mathcal{R} = q^{\frac{h \otimes h}{2}} \sum_{k=0}^{\ell-1} q^{\frac{k(k-1)}{2}} \frac{(q - q^{-1})^k}{[k]q!} e^k \otimes f^k,$$

i.e., it is just the truncation of the formula for $U_q(\mathfrak{sl}_2)$ for general q.

Note that D_0 is nothing but the quotient of $U_q(\mathfrak{sl}_2)$ by the relations $E^\ell = F^\ell = K^\ell - 1 = 0$. It is called the small quantum group and was introduced by G. Lusztig (for any simple Lie algebra), and is denoted by $u_q(\mathfrak{sl}_2)$. Note that by virtue of the construction D_0 has a universal R-matrix, which can be computed to be

$$\mathcal{R} = q^{\frac{h \otimes h}{2}} \sum_{k=0}^{\ell-1} q^{\frac{k(k-1)}{2}} \frac{(q - q^{-1})^k}{[k]_q!} e^k \otimes f^k,$$

i.e., it is just the truncation of the formula for $U_q(\mathfrak{sl}_2)$ for general q. In fact, the punchline is that $U_q(\mathfrak{sl}_2)$ for general q can also be constructed by an infinite dimensional version of the quantum double construction, which naturally produces both the commutation relation between e and f and the R-matrix!
Quantum groups attached to any simple Lie algebra can be constructed similarly.

Given a Cartan matrix \((a_{ij})\) with symmetrizing numbers \(d_i \in \mathbb{Z}^+\) (i.e., \(d_i a_{ij}\) is symmetric), we start with the Hopf algebra \(U_{q}(b)\) (quantum Borel) generated by \(e_i, K_{\pm 1}^i\) with relations

\[
K^i e_j = q^{d_i a_{ij}} e_j K^i, \\
[K^i, K^j] = 0
\]

with coproduct defined by
\[
\Delta(K^i) = K^i \otimes K^i, \\
\Delta(e_i) = e_i \otimes K^i + 1 \otimes e_i
\]

and also quantum Serre relations, which are the most constraining relations you can impose preserving the Hopf algebra structure without killing any of the \(e_i\).

Then the quantum group \(U_{q}(g)\) is the quantum double of \(U_{q}(b)\) (understood appropriately) modded out by the “redundant copy of the maximal torus” created by the quantum double construction.

This algebra has additional generators \(f_i\) also satisfying quantum Serre relations and
\[
\Delta(f_i) = f_i \otimes 1 + K^{-1} \otimes f_i
\]

with commutation relations
\[
[e_i, f_j] = \delta_{ij} K^i - K^{-1} q^{d_i - d_j} K^i.
\]
Higher rank quantum groups

Quantum groups attached to any simple Lie algebra can be constructed similarly. Given a Cartan matrix \((a_{ij})\) with symmetrizing numbers \(d_i \in \mathbb{Z}_+\) (i.e., \(d_i a_{ij}\) is symmetric), we start with the Hopf algebra \(U_q(b_+)\) (quantum Borel) generated by \(e_i, K_i^{\pm 1}\) with relations
Quantum groups attached to any simple Lie algebra can be constructed similarly. Given a Cartan matrix \((a_{ij})\) with symmetrizing numbers \(d_i \in \mathbb{Z}_+\) (i.e., \(d_ia_{ij}\) is symmetric), we start with the Hopf algebra \(U_q(b_+)\) (quantum Borel) generated by \(e_i, K_i^{\pm1}\) with relations

\[
K_i e_j = q^{d_ia_{ij}} e_j K_i, \quad [K_i, K_j] = 0,
\]

and also quantum Serre relations, which are the most constraining relations you can impose preserving the Hopf algebra structure without killing any of the \(e_i\). Then the quantum group \(U_q(g)\) is the quantum double of \(U_q(b_+)\) (understood appropriately) modded out by the "redundant copy of the maximal torus" created by the quantum double construction. This algebra has additional generators \(f_i\) also satisfying quantum Serre relations and \(\Delta(f_i) = f_i \otimes 1 + K_i^{-1} \otimes f_i\) with commutation relations \([e_i, f_j] = \delta_{ij} K_i - K_i^{-1} q^{d_ia_{ij}} - q^{-d_ia_{ij}}\).
Quantum groups attached to any simple Lie algebra can be constructed similarly. Given a Cartan matrix \((a_{ij})\) with symmetrizing numbers \(d_i \in \mathbb{Z}_+\) (i.e., \(d_ia_{ij}\) is symmetric), we start with the Hopf algebra \(U_q(b_+)\) (quantum Borel) generated by \(e_i, K_i^{\pm 1}\) with relations

\[
K_i e_j = q^{d_i a_{ij}} e_j K_i, \quad [K_i, K_j] = 0,
\]

with coproduct defined by \(\Delta(K_i) = K_i \otimes K_i\), \(\Delta(e_i) = e_i \otimes K_i + 1 \otimes e_i\).
Quantum groups attached to any simple Lie algebra can be constructed similarly. Given a Cartan matrix \((a_{ij})\) with symmetrizing numbers \(d_i \in \mathbb{Z}_+\) (i.e., \(d_i a_{ij}\) is symmetric), we start with the Hopf algebra \(U_q(b_+)\) (quantum Borel) generated by \(e_i, K_i^{\pm 1}\) with relations

\[
K_i e_j = q^{d_i a_{ij}} e_j K_i, \quad [K_i, K_j] = 0,
\]

with coproduct defined by \(\Delta(K_i) = K_i \otimes K_i\), \(\Delta(e_i) = e_i \otimes K_i + 1 \otimes e_i\) and also quantum Serre relations, which are the most constraining relations you can impose preserving the Hopf algebra structure without killing any of the \(e_i\).
Quantum groups attached to any simple Lie algebra can be constructed similarly. Given a Cartan matrix \((a_{ij})\) with symmetrizing numbers \(d_i \in \mathbb{Z}_+\) (i.e., \(d_i a_{ij}\) is symmetric), we start with the Hopf algebra \(U_q(b_+)(\text{quantum Borel})\) generated by \(e_i, K_i^{\pm 1}\) with relations

\[
K_i e_j = q^{d_i a_{ij}} e_j K_i, \quad [K_i, K_j] = 0,
\]

with coproduct defined by \(\Delta(K_i) = K_i \otimes K_i\), \(\Delta(e_i) = e_i \otimes K_i + 1 \otimes e_i\) and also quantum Serre relations, which are the most constraining relations you can impose preserving the Hopf algebra structure without killing any of the \(e_i\). Then the quantum group \(U_q(g)\) is the quantum double of \(U_q(b_+)\) (understood appropriately) modded out by the “redundant copy of the maximal torus” created by the quantum double construction.
Quantum groups attached to any simple Lie algebra can be constructed similarly. Given a Cartan matrix \((a_{ij})\) with symmetrizing numbers \(d_i \in \mathbb{Z}_+\) (i.e., \(d_ia_{ij}\) is symmetric), we start with the Hopf algebra \(U_q(b_+)\) (quantum Borel) generated by \(e_i, K_i^{\pm1}\) with relations

\[
K_i e_j = q^{d_ia_{ij}} e_j K_i, \quad [K_i, K_j] = 0,
\]

with coproduct defined by \(\Delta(K_i) = K_i \otimes K_i\), \(\Delta(e_i) = e_i \otimes K_i + 1 \otimes e_i\) and also quantum Serre relations, which are the most constraining relations you can impose preserving the Hopf algebra structure without killing any of the \(e_i\). Then the quantum group \(U_q(g)\) is the quantum double of \(U_q(b_+)\) (understood appropriately) modded out by the “redundant copy of the maximal torus” created by the quantum double construction. This algebra has additional generators \(f_i\) also satisfying quantum Serre relations and \(\Delta(f_i) = f_i \otimes 1 + K_i^{-1} \otimes f_i\)
Quantum groups attached to any simple Lie algebra can be constructed similarly. Given a Cartan matrix \((a_{ij})\) with symmetrizing numbers \(d_i \in \mathbb{Z}_+\) (i.e., \(d_i a_{ij}\) is symmetric), we start with the Hopf algebra \(U_q(b_+)(\text{quantum Borel})\) generated by \(e_i, K_i^{\pm 1}\) with relations

\[
K_i e_j = q^{d_i a_{ij}} e_j K_i, \quad [K_i, K_j] = 0,
\]

with coproduct defined by \(\Delta(K_i) = K_i \otimes K_i\), \(\Delta(e_i) = e_i \otimes K_i + 1 \otimes e_i\) and also quantum Serre relations, which are the most constraining relations you can impose preserving the Hopf algebra structure without killing any of the \(e_i\). Then the quantum group \(U_q(g)\) is the quantum double of \(U_q(b_+)\) (understood appropriately) modded out by the “redundant copy of the maximal torus” created by the quantum double construction. This algebra has additional generators \(f_i\) also satisfying quantum Serre relations and \(\Delta(f_i) = f_i \otimes 1 + K_i^{-1} \otimes f_i\) with commutation relations \([e_i, f_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{q^{d_i} - q^{-d_i}}\).
These commutation relations, as well as the R-matrix (which is now much more complicated) are produced automatically by the double construction. In fact, this works more generally, for any symmetrizable Kac-Moody algebra.

Example

In conclusion let us point out a connection to the Jones polynomial.
These commutation relations, as well as the R-matrix (which is now much more complicated) are produced automatically by the double construction. In fact, this works more generally, for any symmetrizable Kac-Moody algebra.

Example

In conclusion let us point out a connection to the Jones polynomial. It is well known that any knot \mathcal{K} can be obtained by closing up a braid b.
These commutation relations, as well as the R-matrix (which is now much more complicated) are produced automatically by the double construction. In fact, this works more generally, for any symmetrizable Kac-Moody algebra.

Example

In conclusion let us point out a connection to the Jones polynomial. It is well known that any knot \mathcal{K} can be obtained by closing up a braid b. On the other hand, as we have learned, b acts as an operator on the space $V \otimes^n$, where $V = V_1$ is the 2-dimensional representation of the quantum \mathfrak{sl}_2.

Theorem

The trace of $b \cdot \mathcal{K}$ in $V \otimes^n$ (called the quantum trace of b) is the Jones polynomial of \mathcal{K} (up to normalization). For V_i for $i > 1$ one gets the colored Jones polynomial, and for other Lie algebras – more complex invariants of knots called the Reshetikhin-Turaev invariants.
These commutation relations, as well as the R-matrix (which is now much more complicated) are produced automatically by the double construction. In fact, this works more generally, for any symmetrizable Kac-Moody algebra.

Example

In conclusion let us point out a connection to the Jones polynomial. It is well known that any knot \mathcal{K} can be obtained by closing up a braid b. On the other hand, as we have learned, b acts as an operator on the space $V^\otimes n$, where $V = V_1$ is the 2-dimensional representation of the quantum \mathfrak{sl}_2.

Theorem

The trace of $b \cdot K$ in $V^\otimes n$ (called the quantum trace of b) is the Jones polynomial of \mathcal{K} (up to normalization).
These commutation relations, as well as the R-matrix (which is now much more complicated) are produced automatically by the double construction. In fact, this works more generally, for any symmetrizable Kac-Moody algebra.

Example

In conclusion let us point out a connection to the Jones polynomial. It is well known that any knot \mathcal{K} can be obtained by closing up a braid b. On the other hand, as we have learned, b acts as an operator on the space $V \otimes^n$, where $V = V_1$ is the 2-dimensional representation of the quantum \mathfrak{sl}_2.

Theorem

The trace of $b \cdot K$ in $V \otimes^n$ (called the quantum trace of b) is the Jones polynomial of \mathcal{K} (up to normalization).

For V_i for $i > 1$ one gets the colored Jones polynomial, and for other Lie algebras – more complex invariants of knots called the Reshetikhin-Turaev invariants.
Thank you!