Hodge structures and the topology of algebraic varieties

Claire Voisin

CNRS, Institut de mathématiques de Jussieu

CMSA
Harvard, 30 September 2020
Plan of the talk

- Analysis and differential geometry \leadsto Hodge and Lefschetz decompositions.
- $+$ Algebra \leadsto Consequences on topology.
- The importance of polarizations (signs and Hodge-Riemann relations).
- **Missing**. Variations of Hodge structures.
Kähler and projective complex manifolds

Complex manifold = manifold equipped with an atlas
\[U_i \cong V_i \subset \mathbb{C}^n, \] with holomorphic change of coordinates maps.

- The tangent space at each point is endowed with a structure de \(\mathbb{C} \)-vector space, hence an operator \(I, I^2 = -Id \), of **almost complex structure** acting on \(T_{X,\mathbb{R}} \). Newlander-Nirenberg integrability condition.

- Notion of **Hermitian metric** on \(X \). In local holomorphic coordinates,
 \[h = \sum_{ij} h_{ij} dz_i \otimes d\bar{z}_j, \] with imaginary part \(\omega = \frac{1}{i} \sum_{ij} \omega_{ij} dz_i \wedge d\bar{z}_j, \)
 \(\omega_{ij} = \text{Im} h_{ij} \). This is a 2-form “of type (1, 1)”.

Definition. The Hermitian metric is Kähler if \(d\omega = 0 \). \([\omega] = \text{Kähler class} \).

- On \(\mathbb{CP}^N \): Fubini-Study Kähler metric. The Kähler class equals \(c_1(\mathcal{H}^*) \), where \(\mathcal{H} \) is the Hopf line bundle, hence is integral. Idem for \(X \subset \mathbb{CP}^N \) complex submanifold.

- **Kodaira embedding theorem.** A compact Kähler manifold is projective iff it admits a Kähler form with integral cohomology class.
Kähler and projective complex manifolds

Complex manifold = manifold equipped with an atlas $U_i \cong V_i \subset \mathbb{C}^n$, with holomorphic change of coordinates maps.

- The tangent space at each point is endowed with a structure of almost complex \mathbb{C}-vector space, hence an operator I, $I^2 = -Id$, of **almost complex structure** acting on $T_{X,\mathbb{R}}$. Newlander-Nirenberg integrability condition.

- Notion of **Hermitian metric** on X. In local holomorphic coordinates, $h = \sum_{ij} h_{ij} dz_i \otimes d\bar{z}_j$, with imaginary part $\omega = \frac{1}{i} \sum_{ij} \omega_{ij} dz_i \wedge d\bar{z}_j$, $\omega_{ij} = \text{Im} h_{ij}$. This is a 2-form “of type $(1, 1)$”.

Definition. The Hermitian metric is Kähler if $d\omega = 0$. $[\omega] = \text{Kähler class}$.

- On \mathbb{CP}^N: Fubini-Study Kähler metric. The Kähler class equals $c_1(\mathcal{H}^*)$, where \mathcal{H} is the Hopf line bundle, hence is integral. Idem for $X \subset \mathbb{CP}^N$ complex submanifold.

- **Kodaira embedding theorem.** A compact Kähler manifold is projective iff it admits a Kähler form with integral cohomology class.
The Frölicher spectral sequence

• X complex manifold, $z_1, \ldots, z_n =$ local holomorphic coordinates. Holomorphic vector bundle Ω_X generated over \mathcal{O}_X by dz_i. Transition matrices given by holomorphic Jacobian matrices.

• Holomorphic de Rham complex $\Omega^k_X := \bigwedge^k \Omega_X$, with exterior differential d.

Thm. (Holomorphic Poincaré lemma). *The complex*

$$
\mathcal{O}_X \xrightarrow{d} \Omega_X \xrightarrow{d} \ldots \xrightarrow{d} \Omega^n_X \rightarrow 0
$$

is exact in degrees > 0. This is a resolution of the constant sheaf \mathbb{C}.

Corollary. $H^k(X, \mathbb{C}) = \mathbb{H}^k(X, \Omega^\bullet_X)$.

• Filtration “bête” $F^p \Omega^\bullet_X := \Omega^{\bullet \geq p}_X \hookrightarrow$ Frölicher spectral sequence. $E_1^{p,q} \Rightarrow H^{p+q}(X, \mathbb{C})$.

• $E_1^{p,q} = H^q(X, \Omega^p_X), \ d_1 = d$.

• On the abutment: “Hodge” filtration

$F^p H^k(X, \mathbb{C}) := \text{Im}(\mathbb{H}^k(X, \Omega^{\bullet \geq p}_X) \rightarrow \mathbb{H}^k(X, \Omega^\bullet_X)), \ E_\infty^{p,q} = Gr^p_F H^k(X, \mathbb{C})$.
The Frölicher spectral sequence

- \(X \) complex manifold, \(z_1, \ldots, z_n = \) local holomorphic coordinates. Holomorphic vector bundle \(\Omega_X \) generated over \(\mathcal{O}_X \) by \(d z_i \). Transition matrices given by holomorphic Jacobian matrices.
- Holomorphic de Rham complex \(\Omega^k_X := \bigwedge^k \Omega_X \), with exterior differential \(d \).

Thm. (Holomorphic Poincaré lemma). The complex

\[
\mathcal{O}_X \xrightarrow{d} \Omega_X \xrightarrow{d} \ldots \xrightarrow{d} \Omega^n_X \to 0
\]

is exact in degrees \(> 0 \). This is a resolution of the constant sheaf \(\mathbb{C} \).

Corollary. \(H^k(X, \mathbb{C}) = H^k(X, \Omega_X^\bullet) \).

- Filtration “bête” \(F^p \Omega_X^\bullet := \Omega_X^{\geq p} \rightrightarrows \) Frölicher spectral sequence. \(E_1^{p,q} \Rightarrow H^{p+q}(X, \mathbb{C}) \).
- \(E_1^{p,q} = H^q(X, \Omega_X^p) \), \(d_1 = d \).
- On the abutment: “Hodge” filtration \(F^p H^k(X, \mathbb{C}) := \text{Im} (H^k(X, \Omega_X^{\geq p}) \to H^k(X, \Omega_X^\bullet)), E_\infty^{p,q} = Gr_F^p H^k(X, \mathbb{C}). \)
Quasiprojective manifolds and logarithmic de Rham complexes

• $j : U \hookrightarrow X$, $U = X \setminus Y$, with $Y \subset X$ closed analytic.

• (Hironaka) By successive blow-ups of X along smooth centers supported over Y, one can assume that Y is a normal crossing divisor: i.e. Y is locally defined by a single holomorphic equation of the form $f = z_1 \ldots z_k$ in adequate holomorphic coordinates.

• Define $\Omega^1_X(\log Y)$ as the holomorphic vector bundle generated over \mathcal{O}_X by $\frac{dz_1}{z_1}, \ldots, \frac{dz_k}{z_k}, dz_{k+1}, \ldots, dz_n$.

• $\Omega^k_X(\log Y) = \bigwedge^k \Omega^1_X(\log Y)$, $d : \Omega^k_X(\log Y) \to \Omega^{k+1}_X(\log Y)$.

• Their sections (= forms with logarithmic growth) are the forms with pole order 1 along Y, whose differential also has pole order 1 along Y.

Thm. The inclusion of the subcomplex $\Omega^\bullet_X(\log Y) \subset j_*\Omega^\bullet_U$ is a quasiisomorphism.

Corollary. $H^k(U, \mathbb{C}) = H^k(X, \Omega^\bullet_X(\log Y))$ and Frölicher spectral sequence.

• also $H^k(U, \mathbb{C}) = H^k(U, \Omega^\bullet_U)$ hence two Hodge filtrations on $H^k(U, \mathbb{C})$.
Quasiprojective manifolds and logarithmic de Rham complexes

- \(j : U \hookrightarrow X, U = X \setminus Y \), with \(Y \subset X \) closed analytic.

- (Hironaka) By successive blow-ups of \(X \) along smooth centers supported over \(Y \), one can assume that \(Y \) is a normal crossing divisor: i.e. \(Y \) is locally defined by a single holomorphic equation of the form \(f = z_1 \ldots z_k \) in adequate holomorphic coordinates.

- Define \(\Omega_X(\log Y) \) as the holomorphic vector bundle generated over \(\mathcal{O}_X \) by \(\frac{dz_1}{z_1}, \ldots, \frac{dz_k}{z_k}, dz_{k+1}, \ldots, dz_n \).

- \(\Omega^k_X(\log Y) = \bigwedge^k \Omega_X(\log Y), \) \(d : \Omega^k_X(\log Y) \to \Omega^{k+1}_X(\log Y) \).

- Their sections (= forms with logarithmic growth) are the forms with pole order 1 along \(Y \), whose differential also has pole order 1 along \(Y \).

Thm. The inclusion of the subcomplex \(\Omega^\bullet_X(\log Y) \subset j_\ast \Omega^\bullet_U \) is a quasiisomorphism.

Corollary. \(H^k(U, \mathbb{C}) = H^k(X, \Omega^\bullet_X(\log Y)) \) and Frölicher spectral sequence.

- also \(H^k(U, \mathbb{C}) = H^k(U, \Omega^\bullet_U) \) hence two Hodge filtrations on \(H^k(U, \mathbb{C}) \).
The Hodge decomposition theorem

- $X =$ compact oriented Riemannian manifold. $\sim L^2$-metric on forms.
 \[(\alpha, \beta)_{L^2} = \int_X \alpha \wedge * \beta.\]
- Formal adjoint $d^* = \pm * d*$. Laplacian $\Delta_d = d \circ d^* + d^* \circ d$.

Harmonic forms. $\Delta_d \alpha = 0$. X compact and α harmonic $\Rightarrow \alpha$ is closed.

Thm. (Hodge) *Each de Rham cohomology class contains a unique harmonic representative.*

- Forms of type (p, q) on $X =$cplx mfld: $\alpha = \sum_{|I|=p, |J|=q} \alpha_{IJ} dz_I \wedge d\bar{z}_J$.
 Any k-form writes uniquely as a sum $\sum_{p+q=k} \alpha^{p,q}$.

Thm. (Hodge) X Kähler $\Rightarrow \Delta_d \alpha^{p,q}$ is of type (p, q).

Corollary. α harmonic, $\alpha = \sum_{p,q} \alpha^{p,q} \Rightarrow$ each $\alpha^{p,q}$ is harmonic.

Thm. (Hodge) Let $H^{p,q}(X) := \{\text{classes of closed forms of type } (p, q)\}$. Then $H^{p,q}(X) \cong H^q(X, \Omega_X^p)$ and $H^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X)$.

- **Hodge symmetry.** $H^{p,q}(X) = H^{q,p}(X)$.

Cor. The Frölicher spectral sequence of X degenerates at E_1 ($E_1 = E_\infty$).

- Consequences in deformation theory. For example BTT theorem.
The Hodge decomposition theorem

- $X =$ compact oriented Riemannian manifold. $\rightsquigarrow L^2$-metric on forms.

 $$(\alpha, \beta)_{L^2} = \int_X \alpha \wedge \ast \beta.$$

- Formal adjoint $d^* = \pm \ast d\ast$. Laplacian $\Delta_d = d \circ d^* + d^* \circ d$.

Harmonic forms. $\Delta_d \alpha = 0$. X compact and α harmonic \Rightarrow α is closed.

Thm. (Hodge) *Each de Rham cohomology class contains a unique harmonic representative.*

- Forms of type (p, q) on $X =$cplx mfld: $\alpha = \sum_{|I| = p, |J| = q} \alpha_{IJ} dz_I \wedge \bar{dz}_J$.

 Any k-form writes uniquely as a sum $\sum_{p+q=k} \alpha^{p,q}$.

Thm. (Hodge) *X Kähler \Rightarrow $\Delta_d \alpha^{p,q}$ is of type (p, q).*

Corollary. α harmonic, $\alpha = \sum_{p,q} \alpha^{p,q} \Rightarrow$ each $\alpha^{p,q}$ is harmonic.

Thm. (Hodge) *Let $H^{p,q}(X) := \{\text{classes of closed forms of type } (p, q)\}$. Then $H^{p,q}(X) \cong H^q(X, \Omega_X^p)$ and $H^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X)$.*

- Hodge symmetry. $\overline{H^{p,q}(X)} = H^{q,p}(X)$.

Cor. *The Frölicher spectral sequence of X degenerates at E_1 ($E_1 = E_\infty$).*

- Consequences in deformation theory. For example BTT theorem.
The category of Hodge structures

Definition. (Hodge structure) A Hodge structure of weight $k = \text{ lattice } L$ + decomposition $L_\mathbb{C} = \bigoplus_{p+q=k} L^{p,q}$, with $L^{p,q} = L^{q,p}$.

- Hodge decomposition \Rightarrow Hodge filtration: $F^p L_\mathbb{C} := \bigoplus_{r \geq p} L^{r,k-r}$.

Conversely $L^{p,q} = F^p L_\mathbb{C} \cap \overline{F^q L_\mathbb{C}}$, $p + q = k$.

Condition on F^\bullet: $L_\mathbb{C} = F^p L_\mathbb{C} \oplus F^{k-p+1} L_\mathbb{C}$.

- **Variants.** (a) Rational coefficients.
(b) **Effective** Hodge structure: $L^{p,q} = 0$ if $p < 0$ or $q < 0$.

Definition. $(L, F^p L_\mathbb{C}), (L', F^p L'_\mathbb{C})$ Hodge structures of weights $k, k+2r$. A morphism of Hodge structures between them is $\phi : L \to L'$, s.t. $\phi_\mathbb{C}(L^{p,q}) \subset L'^{p+r,q+r}$.

Example $T = \mathbb{C}^n / \Gamma \simm \Gamma_\mathbb{C} \to \mathbb{C}^n$ with kernel $\Gamma^{1,0} \subset \Gamma_\mathbb{C}$ is an equivalence of categories (Complex tori) \leftrightarrow (effective weight 1 Hodge structures).

- Complex tori up to isogeny \leftrightarrow Weight 1 rational Hodge structures.

Fact. The category of rational Hodge structures is not semi-simple. There are morphisms of complex tori $T \to T'$ which do not split up to isogeny.
The category of Hodge structures

Definition. (Hodge structure) A Hodge structure of weight \(k \) is a lattice \(L \) in a decomposition \(L_\mathbb{C} = \bigoplus_{p+q=k} L^{p,q} \), with \(L^{p,q} = L^{q,p} \).

- Hodge decomposition \(\leadsto \) Hodge filtration: \(F^p L_\mathbb{C} := \bigoplus_{r \geq p} L^{r,k-r} \).

Conversely, \(L^{p,q} = F^p L_\mathbb{C} \cap \overline{F^q L_\mathbb{C}} \), \(p + q = k \).

Condition on \(F^* \): \(L_\mathbb{C} = F^p L_\mathbb{C} \oplus F^{k-p+1} L_\mathbb{C} \).

- **Variants.** (a) Rational coefficients.
 (b) **Effective** Hodge structure: \(L^{p,q} = 0 \) if \(p < 0 \) or \(q < 0 \).

Definition. \((L, F^p L_\mathbb{C}), (L', F^p L'_\mathbb{C})\) Hodge structures of weights \(k, k+2r \). A morphism of Hodge structures between them is \(\phi : L \to L' \), s.t. \(\phi_\mathbb{C}(L^{p,q}) \subset L'^{p+r,q+r} \).

Example \(T = \mathbb{C}^n / \Gamma \leadsto \Gamma_\mathbb{C} \to \mathbb{C}^n \) with kernel \(\Gamma^{1,0} \subset \Gamma_\mathbb{C} \) is an equivalence of categories (Complex tori) \(\iff \) (effective weight 1 Hodge structures).

- Complex tori up to isogeny \(\iff \) Weight 1 rational Hodge structures.

Fact. The category of **rational** Hodge structures is not semi-simple. There are morphisms of complex tori \(T \to T' \) which do not split up to isogeny.
Hodge structures from geometry; functoriality

Thm. *X compact Kähler. The cohomology* $H^k(X, \mathbb{Z})/\text{Tors}$ *carries an effective Hodge structure of weight* k.

- $\phi : X \to Y$ holomorphic map, with X, Y compact Kähler.
 $\phi^* : H^k(Y, \mathbb{Z})_{tf} \to H^k(X, \mathbb{Z})_{tf}$ is a morphism of Hodge structures.

Prop. *The Gysin morphism* $\phi_* : H^k(X, \mathbb{Z})_{tf} \to H^{k-2d}(Y, \mathbb{Z})_{tf}$,
$d = \dim X - \dim Y$, *is a morphism of Hodge structures.*

- **Explanation.**
 (a) Via Poincaré duality, ϕ_* is the transpose of ϕ^*.
 (b) weight k: Hodge structure on $L \leftrightarrow$ weight $-k$: Hodge structure on L^*: $L^*\to^{p,-q}$ is defined as the orthogonal of $\bigoplus_{(r,s)\neq(p,q)} L^{r,s}$.
 (c) the Hodge structure on $H^{2n-k}(X, \mathbb{Z})_{tf}$ is dual to the Hodge structure on $H^k(X, \mathbb{Z})_{tf}$ up to a shift of bidegree (for "type reasons":
 $\int_X \alpha^{p,q} \wedge \beta^{p',q'} = 0$ for $(p', q') \neq (n-p, n-q))$. \textbf{qed}

Construction. Hodge structure on L, resp. M of weights k, resp. k' \rightsquigarrow Weight $k + k'$ Hodge structure on $L \otimes M$:

$$(L_{\mathbb{C}} \otimes M_{\mathbb{C}})^{p,q} = \bigoplus_{r+r' = p, s+s' = q} L^{r,s} \otimes L'^{r',s'}.$$
Thm. X compact Kähler. The cohomology $H^k(X, \mathbb{Z})/\text{Tors}$ carries an effective Hodge structure of weight k.

- $\phi: X \to Y$ holomorphic map, with X, Y compact Kähler.
- $\phi^*: H^k(Y, \mathbb{Z})_{\text{tf}} \to H^k(X, \mathbb{Z})_{\text{tf}}$ is a morphism of Hodge structures.

Prop. The Gysin morphism $\phi_*: H^k(X, \mathbb{Z})_{\text{tf}} \to H^{k-2d}(Y, \mathbb{Z})_{\text{tf}}$, $d = \dim X - \dim Y$, is a morphism of Hodge structures.

- **Explanation.**
 1. Via Poincaré duality, ϕ_* is the transpose of ϕ^*.
 2. weight k Hodge structure on $L \leftrightarrow$ weight $-k$ Hodge structure on L^*: $L^{*,-p,-q}$ is defined as the orthogonal of $\bigoplus (r,s) \neq (p,q) L^r,s$.
 3. the Hodge structure on $H^{2n-k}(X, \mathbb{Z})_{\text{tf}}$ is dual to the Hodge structure on $H^k(X, \mathbb{Z})_{\text{tf}}$ up to a shift of bidegree (for “type reasons”:
 \[\int_X \alpha^{p,q} \wedge \beta^{p',q'} = 0 \text{ for } (p', q') \neq (n-p, n-q) \]). \text{ qed}

Construction. Hodge structure on L, resp. M of weights k, resp. k' \rightsquigarrow Weight $k + k'$ Hodge structure on $L \otimes M$:

$$ (L_{\mathbb{C}} \otimes M_{\mathbb{C}})^{p,q} = \bigoplus_{r+r'=p,s+s'=q} L^r,s \otimes L'^{r',s'}.$$

Thm. *X* compact Kähler. The cohomology $H^k(X, \mathbb{Z})/\text{Tors}$ carries an effective Hodge structure of weight k.

- $\phi : X \to Y$ holomorphic map, with X, Y compact Kähler.

 $\phi^* : H^k(Y, \mathbb{Z})_{\text{tf}} \to H^k(X, \mathbb{Z})_{\text{tf}}$ is a morphism of Hodge structures.

Prop. The Gysin morphism $\phi_* : H^k(X, \mathbb{Z})_{\text{tf}} \to H^{k-2d}(Y, \mathbb{Z})_{\text{tf}}$, $d = \dim X - \dim Y$, is a morphism of Hodge structures.

- **Explanation.** (a) Via Poincaré duality, ϕ_* is the transpose of ϕ^*.

 (b) weight k Hodge structure on $L \leftrightarrow$ weight $-k$ Hodge structure on L^*: $L^{*-p,-q}$ is defined as the orthogonal of $\bigoplus_{(r,s) \neq (p,q)} L^{r,s}$.

 (c) the Hodge structure on $H^{2n-k}(X, \mathbb{Z})_{\text{tf}}$ is dual to the Hodge structure on $H^k(X, \mathbb{Z})_{\text{tf}}$ up to a shift of bidegree (for “type reasons”:

 $\int_X \alpha^{p,q} \wedge \beta^{p',q'} = 0$ for $(p', q') \neq (n-p, n-q)$). \(\text{qed}\)

Construction. Hodge structure on L, resp. M of weights k, resp. k' \rightsquigarrow Weight $k + k'$ Hodge structure on $L \otimes M$:

$$(L_\mathbb{C} \otimes M_\mathbb{C})^{p,q} = \bigoplus_{r+r' = p, s+s' = q} L^{r,s} \otimes L'^{r',s'}.$$
Functoriality and Hodge classes

Definition. (Hodge classes) A Hodge class on a weight $2k$ Hodge structure L is an element of $L \cap L^{k,k}$.

Example. Hodge classes on $L^* \otimes M$, L of weight k, M of weight $k + 2r$, are the morphisms of Hodge structures $L \to M$.

Corollary. Hodge classes on a product $X \times Y$ of compact Kähler manifolds identify with the morphisms of Hodge structures $H^*(X,\mathbb{Z})_{tf} \to H^{*+2r}(Y,\mathbb{Z})_{tf}$.

Example. $Z \subset X$ closed analytic subset of codimension k has a class $[Z] \in H^{2k}(X,\mathbb{Z})$. If X is compact Kähler, this is a Hodge class.

Conjecture. (Hodge conjecture) X smooth complex projective. Rational Hodge classes on X are algebraic, i.e. generated by cycles classes.

Example. Künneeth components of the diagonal. $\delta_k \sim Id_{H^k(X,\mathbb{Z})}$.

- Known in degree 2 (Lefschetz (1, 1)-thm) and $2n - 2$ by hard Lefschetz.
- Wrong in the compact Kähler setting, even in a weaker form replacing cycle classes by Chern classes of coherent sheaves (Voisin).
Functoriality and Hodge classes

Definition. (Hodge classes) A Hodge class on a weight $2k$ Hodge structure L is an element of $L \cap L^{k,k}$.

Example. Hodge classes on $L^* \otimes M$, L of weight k, M of weight $k + 2r$, are the morphisms of Hodge structures $L \to M$.

Corollary. Hodge classes on a product $X \times Y$ of compact Kähler manifolds identify with the morphisms of Hodge structures $H^*(X, \mathbb{Z})_{tf} \to H^{*+2r}(Y, \mathbb{Z})_{tf}$.

Example. $Z \subset X$ closed analytic subset of codimension k has a class $[Z] \in H^{2k}(X, \mathbb{Z})$. If X is compact Kähler, this is a Hodge class.

Conjecture. (Hodge conjecture) X smooth complex projective. Rational Hodge classes on X are algebraic, i.e. generated by cycles classes.

Example. Künneth components of the diagonal. $\delta_k \leadsto Id_{H^k(X, \mathbb{Z})}$.

- Known in degree 2 (Lefschetz $(1, 1)$-thm) and $2n - 2$ by hard Lefschetz.
- Wrong in the compact Kähler setting, even in a weaker form replacing cycle classes by Chern classes of coherent sheaves (Voisin).
Mixed Hodge structures

Definition. A rational mixed Hodge structure = a \mathbb{Q}-vector space L with an increasing (weight) filtration $W_i L$ and a decreasing (Hodge) filtration $F^p L_{\mathbb{C}}$, such that: the induced filtration on $\text{Gr}^W_i L$ defines a Hodge structure of weight i.

Thm. (Deligne) The cohomology of quasiprojective complex varieties, or analytic-Zariski open in compact Kähler manifolds, or relative (co)homology of such pairs, carries functorial mixed Hodge structures.

- **Smooth case:** $U = X \setminus Y \hookrightarrow X$, Y=normal crossing divisor. Use $H^k(U, \mathbb{C}) = \mathbb{H}^k(X, \Omega^\bullet_X(\log Y))$. Filtration F on $\Omega^\bullet_X(\log Y)$ is the usual one ("bête"). Filtration W on $\Omega^\bullet_X(\log Y)$: up to a shift, this is given by $W_i \Omega^\bullet_X(\log Y) = \Omega^i_X(\log Y) \wedge \Omega^{\bullet-i}_X$.

- A posteriori, the induced W- filtration is defined on rational cohomology and related to the Leray filtration of j.

- **The s.s. for F degenerates at E_1, the s.s. for W degenerates at E_2.**

- In this case, the smallest weight part of $H^k(U, \mathbb{Q})$ is $\text{Im} (j^* : H^k(X, \mathbb{Q}) \to H^k(U, \mathbb{Q}))$ (weight k).
Mixed Hodge structures

Definition. A rational mixed Hodge structure = a \mathbb{Q}-vector space L with an increasing (weight) filtration $W_i L$ and a decreasing (Hodge) filtration $F^p L_{\mathbb{C}}$, such that: the induced filtration on $\text{Gr}_i^W L$ defines a Hodge structure of weight i.

Thm. (Deligne) The cohomology of quasiprojective complex varieties, or analytic-Zariski open in compact Kähler manifolds, or relative (co)homology of such pairs, carries functorial mixed Hodge structures.

- **Smooth case:** $U = X \setminus Y \hookrightarrow X$, $Y =$ normal crossing divisor. Use $H^k(U, \mathbb{C}) = \mathbb{H}^k(X, \Omega^\bullet_X(\log Y))$. Filtration F on $\Omega^\bullet_X(\log Y)$ is the usual one ("bête"). Filtration W on $\Omega^\bullet_X(\log Y)$: up to a shift, this is given by $W_i \Omega^\bullet_X(\log Y) = \Omega^i_X(\log Y) \wedge \Omega^{\bullet-i}_X$.

- A posteriori, the induced W- filtration is defined on rational cohomology and related to the Leray filtration of j.

- **The s.s. for F degenerates at E_1, the s.s. for W degenerates at E_2.**

- In this case, the smallest weight part of $H^k(U, \mathbb{Q})$ is $\text{Im} (j^* : H^k(X, \mathbb{Q}) \to H^k(U, \mathbb{Q}))$ (weight k).
Formal properties and application to the coniveau

- Morphisms of MHS: \(\phi : L \to L', \phi(W_iL) \subset W_iL', \phi_{\mathbb{C}}(F^pL_{\mathbb{C}}) \subset F^pL'_{\mathbb{C}}. \)

Thm. (Deligne) **Morphisms of mixed Hodge structures are strict for both filtrations** (i.e.: \(F^pL'_{\mathbb{C}} \cap \text{Im} \phi_{\mathbb{C}} = \phi_{\mathbb{C}}(F^pL_{\mathbb{C}}), W_iL' \cap \text{Im} \phi = \phi(W_iL). \))

Sketch of proof. Follows from an algebra lemma: There exists a functorial decomposition \(L_{\mathbb{C}} = \bigoplus_{p,q} L^{p,q} \) for mixed Hodge structures \((L, W, F)\), with \(F^pL_{\mathbb{C}} = \bigoplus_{r \geq p} L^{r,q}, W_i L_{\mathbb{C}} = \bigoplus_{p+q \leq i} L^{p,q}. \)

Let \(\alpha \in W_iL' \cap \text{Im} \phi. \) Write \(\alpha = \phi(\beta), \beta = \sum_{p,q} \beta^{p,q}. \) Then \(\phi(\beta^{p,q}) = 0 \) for \(p + q > i \) so \(\alpha = \phi(\beta') \) with \(\beta' = \sum_{p+q \leq i} \beta^{p,q} \in W_iL_{\mathbb{C}}. \) qed

Definition. A class \(\alpha \in H^k(X, \mathbb{Q}) \) is of coniveau \(\geq c \) if \(\alpha|_{X \setminus Y} = 0 \) with \(Y \) closed analytic of codim \(\geq c. \)

If \(X \) is smooth compact, \(j : Y \hookrightarrow X, \) equivalent condition: \(\alpha = j_*\beta \) in \(H_{2n-k}(X, \mathbb{Q}) \) for some \(\beta \in H_{2n-k}(Y, \mathbb{Q}). \)

Strictness \Rightarrow If \(X \) is smooth projective, \(j : Y \hookrightarrow X \) with desingularization \(\tilde{j} : \tilde{Y} \to X, \) then \(\text{Im} j_* = \text{Im} \tilde{j}_* \subset H_{2n-k}(X, \mathbb{Q}). \)

Corollary. (Deligne) **The set of cohomology classes of coniveau \(\geq c \) is a Hodge substructure of** \(H^k(X, \mathbb{Q}), \) **of Hodge coniveau \(\geq c. \)**
Morphisms of MHS: \(\phi : L \to L', \phi(W_iL) \subset W_iL', \phi_C(F^pL_C) \subset F^pL'_C. \)

Thm. (Deligne) Morphisms of mixed Hodge structures are strict for both filtrations (i.e.: \(F^pL'_C \cap \text{Im } \phi_C = \phi_C(F^pL_C), W_iL' \cap \text{Im } \phi = \phi(W_iL) \)).

Sketch of proof. Follows from an algebra lemma: There exists a functorial decomposition \(L_C = \bigoplus_{p,q} L^{p,q} \) for mixed Hodge structures \((L, W, F') \), with \(F^pL_C = \bigoplus_{r \geq p, q} L^{r,q}, W_iL_C = \bigoplus_{p+q \leq i} L^{p,q}. \)

Let \(\alpha \in W_iL' \cap \text{Im } \phi. \) Write \(\alpha = \phi(\beta), \beta = \sum \beta_{p,q}. \) Then \(\phi(\beta_{p,q}) = 0 \) for \(p + q > i \) so \(\alpha = \phi(\beta') \) with \(\beta' = \sum_{p+q \leq i} \beta_{p,q} \in W_iL_C. \) qed

Definition. A class \(\alpha \in H^k(X, \mathbb{Q}) \) is of coniveau \(\geq c \) if \(\alpha|_{X \setminus Y} = 0 \) with \(Y \) closed analytic of codim \(\geq c. \)

If \(X \) is smooth compact, \(j : Y \hookrightarrow X, \) equivalent condition: \(\alpha = j_*\beta \) in \(H_{2n-k}(X, \mathbb{Q}) \) for some \(\beta \in H_{2n-k}(Y, \mathbb{Q}). \)

Strictness \(\Rightarrow \) If \(X \) is smooth projective, \(j : Y \hookrightarrow X \) with desingularization \(\tilde{j} : \tilde{Y} \to X, \) then \(\text{Im } j_* = \text{Im } \tilde{j}_* \subset H_{2n-k}(X, \mathbb{Q}). \)

Corollary. (Deligne) The set of cohomology classes of coniveau \(\geq c \) is a Hodge substructure of \(H^k(X, \mathbb{Q}), \) of Hodge coniveau \(\geq c. \)
Thm. (Hard Lefschetz, proved by Hodge) *Let* \(X \) *be compact Kähler of dimension* \(n \), \(\omega \) *a Kähler form on* \(X \). *Then* \(\forall k \leq n \),
\[
\bigcup [\omega]^{n-k} := L^{n-k} : H^k(X, \mathbb{R}) \to H^{2n-k}(X, \mathbb{R})
\] is an isomorphism.

• Projective case: One can take \([\omega]\) rational. Then the Lefschetz isomorphism is an isomorphism of Hodge structures.

Coro. (Lefschetz decomp.) \(H^k(X, \mathbb{R}) = \bigoplus_{k-2r \geq 0} L^r H^{k-2r}(X, \mathbb{R})_{\text{prim}} \), where \(H^{k-2r}(X, \mathbb{R})_{\text{prim}} := \text{Ker} L^{n-k+2r+1} \subset H^{k-2r}(X, \mathbb{R}) \).

**• Lefschetz intersection pairing on* \(H^k \): \(\langle \alpha, \beta \rangle_{\text{Lef}} = \int_X L^{n-k} \alpha \cup \beta \).
\(h_{\text{Lef}}(\alpha, \beta) := i^k(\alpha, \overline{\beta})_{\text{Lef}} \).

easy: The Lefschetz decomposition is orthogonal for \((\ , \)_{\text{Lef}} \), and the Hodge decomposition is orthogonal for \(h_{\text{Lef}} \). (HR1).

Thm. 2nd H-R bilinear relations: \((-1)^{p+r} h_{\text{Lef} \mid L^r H^{p-r,q-r}(X, \mathbb{R})_{\text{prim}}} \) is positive definite Hermitian (up to a global sign depending on \(k \)). (HR2).

Corollary. Let \([\omega]\) be rational. On \(L^r H^{k-2r}(X, \mathbb{Q})_{\text{prim}} \), multiply \((\ , \)_{\text{Lef}}\) by \((-1)^r\): one gets a polarized Hodge structure on \(H^k(X, \mathbb{Q}) \).
Polarizations

Thm. (Hard Lefschetz, proved by Hodge) Let X be compact Kähler of dimension n, ω a Kähler form on X. Then $\forall k \leq n, \quad \cup [\omega]^{n-k} := L^{n-k} : H^k(X, \mathbb{R}) \to H^{2n-k}(X, \mathbb{R})$ is an isomorphism.

Projective case

One can take $[\omega]$ rational. Then the Lefschetz isomorphism is an isomorphism of Hodge structures.

Coro. (Lefschetz decomp.) $H^k(X, \mathbb{R}) = \bigoplus_{k-2r \geq 0} L^r H^{k-2r}(X, \mathbb{R})_{\text{prim}},$ where $H^{k-2r}(X, \mathbb{R})_{\text{prim}} := \text{Ker } L^{n-k+2r+1} \subset H^{k-2r}(X, \mathbb{R})$.

- Lefschetz intersection pairing on H^k: $(\alpha, \beta)_{\text{Lef}} = \int_X L^{n-k} \alpha \cup \beta.$
- $h_{\text{Lef}}(\alpha, \beta) := i^k(\alpha, \overline{\beta})_{\text{Lef}}$.
- **easy:** The Lefschetz decomposition is orthogonal for $(\cdot, \cdot)_{\text{Lef}},$ and the Hodge decomposition is orthogonal for h_{Lef}. (HR1).

Thm. 2nd H-R bilinear relations: $(-1)^{p+r} h_{\text{Lef}}|_{L^r H^{p-r, q-r}(X, \mathbb{R})_{\text{prim}}}$ is positive definite Hermitian (up to a global sign depending on k). (HR2).

Corollary. Let $[\omega]$ be rational. On $L^r H^{k-2r}(X, \mathbb{Q})_{\text{prim}},$ multiply $(\cdot, \cdot)_{\text{Lef}}$ by $(-1)^r$: one gets a polarized Hodge structure on $H^k(X, \mathbb{Q})$.
Polarizations, ctd

Thm. Let $H =$ rational polarized Hodge structure, $H' \subset H$ a Hodge substructure, then $H = H' \oplus H''$ for some Hodge substructure $H'' \subset H$. *(The category of polarized Hodge structures is semisimple).*

Proof. Choose a polarization (\cdot, \cdot) on H. First prove that $(\cdot, \cdot)|_{H'}$ is nondegenerate using HR2, then define $H'' = H' \perp$. H'' is a Hodge substructure by HR1. qed

- Polarizations on the cohomology of smooth projective varieties are almost motivic, but one needs the Lefschetz decomposition and the change of signs. To make them **motivic**, one needs:

 Lefschetz standard conjecture. X projective. There exists a codimension k closed algebraic subset $Z_{\text{Lef}} \subset X \times X$ such that $[Z_{\text{Lef}}]^* : H^{2n-k}(X, \mathbb{Q}) \to H^k(X, \mathbb{Q})$ is the inverse $(L^{n-k})^{-1}$ of the Lefschetz isomorphism.

- $([Z_{\text{Lef}}] \in H^{2k}(X \times X, \mathbb{Q}) = \text{cohomology class of } Z_{\text{Lef}}$.)

- Implied by the Hodge conjecture because $(L^{n-k})^{-1}$ is an iso of Hodge structures hence produces a Hodge class on $X \times X$.
Thm. Let H = rational polarized Hodge structure, $H' \subset H$ a Hodge substructure, then $H = H' \oplus H''$ for some Hodge substructure $H'' \subset H$. *(The category of polarized Hodge structures is semisimple).*

Proof. Choose a polarization $(,)$ on H. First prove that $(,)|_{H'}$ is nondegenerate using HR2, then define $H'' = H'|\perp$. H'' is a Hodge substructure by HR1. qed

- Polarizations on the cohomology of smooth projective varieties are almost motivic, but one needs the Lefschetz decomposition and the change of signs. To make them **motivic**, one needs:

Lefschetz standard conjecture. X projective. There exists a codimension k closed algebraic subset $Z_{\text{Lef}} \subset X \times X$ such that $[Z_{\text{Lef}}]^* : H^{2n-k}(X, \mathbb{Q}) \to H^k(X, \mathbb{Q})$ is the inverse $(L^{n-k})^{-1}$ of the Lefschetz isomorphism.

- $([Z_{\text{Lef}}] \in H^{2k}(X \times X, \mathbb{Q}) = \text{cohomology class of } Z_{\text{Lef}}$.)

- Implied by the Hodge conjecture because $(L^{n-k})^{-1}$ is an iso of Hodge structures hence produces a Hodge class on $X \times X$.
Hodge structures on cohomology algebras and applications to topology

- A cohomology algebra = graded, graded commutative, algebra of finite dimension over \(\mathbb{Q} \), with \(A^{2n} = \mathbb{Q} \) and Poincaré duality.

Definition. A Hodge structure on a cohomology algebra \(A^\ast \), = Hodge structure of weight \(k \) on \(A^k \), such that \(A^k \otimes A^l \rightarrow A^{k+l} \) is a morphism of Hodge structures.

Example. \(H^\ast(X, \mathbb{Q}) \) for \(X \) compact Kähler.

Thm. (Voisin) There exist compact Kähler manifolds (\(\dim \geq 4 \)) whose cohomology algebra is not isomorphic to \(H^\ast(X, \mathbb{Q}) \) for \(X \) complex projective.

Idea of proof. (1) Construct an \(X \) such that the structure of its cohomology algebra \(\Rightarrow \) the Hodge structure on \(H^1(X, \mathbb{Q}) \) (or \(H^2(X, \mathbb{Q}) \) for simply connected examples) has endomorphisms.

(2) Certain endomorphisms on weight 1 (or weight 2) HS prevent the existence of a polarization.

Case of \(\dim 2 \) (Kodaira), \(\dim 3 \) (Lin): Any compact Kähler \(X \) has small deformations which are projective.
Hodge structures on cohomology algebras and applications to topology

• A cohomology algebra = graded, graded commutative, algebra of finite dimension over \mathbb{Q}, with $A^{2n} = \mathbb{Q}$ and Poincaré duality.

Definition. A Hodge structure on a cohomology algebra A^*, = Hodge structure of weight k on A^k, such that $A^k \otimes A^l \rightarrow A^{k+l}$ is a morphism of Hodge structures.

Example. $H^*(X, \mathbb{Q})$ for X compact Kähler.

Thm. (Voisin) There exist compact Kähler manifolds (dim ≥ 4) whose cohomology algebra is not isomorphic to $H^*(X, \mathbb{Q})$ for X complex projective.

Idea of proof. (1) Construct an X such that the structure of its cohomology algebra \Rightarrow the Hodge structure on $H^1(X, \mathbb{Q})$ (or $H^2(X, \mathbb{Q})$ for simply connected examples) has endomorphisms.

(2) Certain endomorphisms on weight 1 (or weight 2) HS prevent the existence of a polarization.

Case of dim 2 (Kodaira), dim 3 (Lin): Any compact Kähler X has small deformations which are projective.
Thm. (Blanchard, Deligne) *If* $f : X \to Y$ *is smooth projective, the Leray spectral sequence of* f *with* \mathbb{Q}-*coefficients degenerates at* E_2.

Proof. Relative Lefschetz operator $L = c_1(\mathcal{L}) \cup$ acts on the whole spectral sequence, and induces Lefschetz decomposition

$$R^k f_* \mathbb{Q} = \bigoplus_r L^r (R^{k-2r} f_* \mathbb{Q})_{\text{prim}}.$$

Suffices to prove $d_2 \alpha = 0$ for $\alpha \in H^p(Y, R^q f_* \mathbb{Q}_{\text{prim}})$. But $L^{n-q+1} \alpha = 0 \Rightarrow L^{n-q+1} d_2 \alpha = 0$. But $d_2 \alpha \in H^{p+2}(Y, R^{q-1} f_* \mathbb{Q})$ and $L^{n-q+1} : R^{q-1} f_* \mathbb{Q} \cong R^{2n-q+1} f_* \mathbb{Q}$. **qed**

- **Monodromy.** Local system $R^k f_* \mathbb{Q} \rightsquigarrow$ monodromy representation $\rho : \pi_1(Y, 0) \to \text{Aut } H^k(X_0, \mathbb{Q})$. Thus $H^k(X_0, \mathbb{Q})^\rho = H^0(Y, R^k f_* \mathbb{Q}) = \text{Im } (H^k(X, \mathbb{Q}) \to H^k(X_0, \mathbb{Q}))$ by degeneracy at E_2.

Thm (Deligne) $X \subset \overline{X}$ smooth projective, $f : X \to Y$ as above with Y quasi-projective. Then $H^k(X_0, \mathbb{Q})^\rho = \text{Im } (H^k(\overline{X}, \mathbb{Q}) \to H^k(X_0, \mathbb{Q}))$. This is a Hodge substructure of $H^k(X_0, \mathbb{Q})$.

Proof. $H^k(X, \mathbb{Q}) \to H^k(X_0, \mathbb{Q})$ is a morphism of mixed Hodge structures. On the right, pure of weight k. On the left, the weight k part is $\text{Im } (H^k(\overline{X}, \mathbb{Q}) \to H^k(X, \mathbb{Q}))$. Then apply strictness. **qed**
Thm. (Blanchard, Deligne) *If* \(f : X \to Y \) *is smooth projective, the Leray spectral sequence of* \(f \) *with* \(\mathbb{Q} \)-*coefficients degenerates at* \(E_2 \).*

Proof. Relative Lefschetz operator \(L = c_1(L) \cup \) acts on the whole spectral sequence, and induces Lefschetz decomposition

\[
R^k f_* \mathbb{Q} = \bigoplus_r L^r (R^{k-2r} f_* \mathbb{Q})_{\text{prim}}.
\]

Suffices to prove \(d_2 \alpha = 0 \) for \(\alpha \in H^p(Y, R^q f_* \mathbb{Q}_{\text{prim}}) \). But \(L^{n-q+1} \alpha = 0 \Rightarrow L^{n-q+1} d_2 \alpha = 0 \). But \(d_2 \alpha \in H^{p+2}(Y, R^{q-1} f_* \mathbb{Q}) \) and \(L^{n-q+1} : R^{q-1} f_* \mathbb{Q} \cong R^{2n-q+1} f_* \mathbb{Q} \).

• Monodromy. Local system \(R^k f_* \mathbb{Q} \rightleftharpoons \) monodromy representation

\(\rho : \pi_1(Y, 0) \to \text{Aut} \, H^k(X_0, \mathbb{Q}) \). Thus \(H^k(X_0, \mathbb{Q})^\rho = H^0(Y, R^k f_* \mathbb{Q}) = \text{Im} (H^k(X, \mathbb{Q}) \to H^k(X_0, \mathbb{Q})) \) by degeneracy at \(E_2 \).

Thm (Deligne) \(X \subset \overline{X} \) smooth projective, \(f : X \to Y \) *as above with* \(Y \) *quasi-projective. Then* \(H^k(X_0, \mathbb{Q})^\rho = \text{Im} (H^k(\overline{X}, \mathbb{Q}) \to H^k(X_0, \mathbb{Q})) \). *This is a Hodge substructure of* \(H^k(X_0, \mathbb{Q}) \).

Proof. \(H^k(X, \mathbb{Q}) \to H^k(X_0, \mathbb{Q}) \) *is a morphism of mixed Hodge structures. On the right, pure of weight* \(k \). *On the left, the weight* \(k \) *part is* \(\text{Im} (H^k(\overline{X}, \mathbb{Q}) \to H^k(X, \mathbb{Q})) \). *Then apply strictness. qed*
The Hodge bundles

- Algebraic de Rham complex $\Omega^\bullet_{X/\mathbb{C}}$, relative version $\Omega^\bullet_{X/Y}$ for $f : X \to Y$ algebraic, smooth morphism.

Thm. (Serre-Grothendieck) *X* smooth quasiprojective over \mathbb{C}. Then $\mathbb{H}^k(X, \Omega^\bullet_{X/\mathbb{C}}) \cong H^k_B(X, \mathbb{C})$.

- So, for X projective, the Hodge filtration and Frölicher s.s. are algebraic.

- Relative version \Rightarrow If $f : X \to Y$ is algebraic, smooth projective, then the Hodge bundles $\mathcal{H}^k, F^p\mathcal{H}^k, \mathcal{H}^{p,q}$ are algebraic on Y.

- Katz-Oda construction: relative holomorphic de Rham complex $\Omega^\bullet_{X/Y}$. $R^k f_* \Omega^\bullet_{X/Y} \cong \mathcal{H}^k := H^k \otimes \mathcal{O}_Y$. Hodge filtration $F^p\mathcal{H}^k = R^k f_* \Omega^\bullet_{X/Y}^{\geq p}$ with fiber $F^p H^k(X_t)$.

- Let $L^2 \Omega^\bullet_X := f^* \Omega^2_Y \wedge \Omega^{\bullet-2}_X$.

- Exact sequence. $0 \to \Omega^{\bullet-1}_{X/Y} \otimes f^* \Omega_Y \to \Omega^\bullet_X/L^2 \Omega^\bullet_X \to \Omega^\bullet_{X/Y} \to 0$

Thm. (Katz-Oda) The Gauss-Manin connection $\nabla : \mathcal{H}^k \to \mathcal{H}^k \otimes \Omega_Y$ is the connecting map.

Corollary. The Gauss-Manin connection is algebraic.
The Hodge bundles

- Algebraic de Rham complex $\Omega^\bullet_{X/\mathbb{C}}$, relative version $\Omega^\bullet_{X/Y}$ for $f : X \to Y$ algebraic, smooth morphism.

Thm. (Serre-Grothendieck) *X smooth quasiprojective over \mathbb{C}. Then $H^k(X, \Omega^\bullet_{X/\mathbb{C}}) \cong H^k_B(X, \mathbb{C})$.*

- So, for X projective, the Hodge filtration and Frölicher s.s. are algebraic.

- Relative version \Rightarrow *If $f : X \to Y$ is algebraic, smooth projective, then the Hodge bundles $\mathcal{H}^k, F^p\mathcal{H}^k, \mathcal{H}^{p,q}$ are algebraic on Y.*

- Katz-Oda construction : relative holomorphic de Rham complex $\Omega^\bullet_{X/Y}$.

 $R^k f_* \Omega^\bullet_{X/Y} \cong \mathcal{H}^k := H^k \otimes \mathcal{O}_Y$. Hodge filtration $F^p\mathcal{H}^k = R^k f_* \Omega^\bullet_{X/Y}^{\geq p}$ with fiber $F^p H^k(X_t)$.

- Let $L^2 \Omega^\bullet_X := f^* \Omega^2_Y \wedge \Omega^\bullet_{X}^{-2}$.

- **Exact sequence.** $0 \to \Omega^\bullet_{X/Y} \otimes f^* \Omega_Y \to \Omega^\bullet_X / L^2 \Omega^\bullet_X \to \Omega^\bullet_{X/Y} \to 0$

Thm. (Katz-Oda) *The Gauss-Manin connection $\nabla : \mathcal{H}^k \to \mathcal{H}^k \otimes \Omega_Y$ is the connecting map.*

Corollary. The Gauss-Manin connection is algebraic.