11/23/21 Combinatorics, Physics, and Probability Seminar

Speaker: Lutz Warnke (UC San Diego)

Title: Prague dimension of random graphs

Abstract: The Prague dimension of graphs was introduced by Nesetril, Pultr and Rodl in the 1970s: as a combinatorial measure of complexity, it is closely related to clique edges coverings and partitions. Proving a conjecture of Furedi and Kantor, we show that the Prague dimension of the binomial random graph is typically of order n/(log n) for constant edge-probabilities. The main new proof ingredient is a Pippenger-Spencer type edge-coloring result for random hypergraphs with large uniformities, i.e., edges of size O(log n).

Related Posts