Thresholds

11/15/2023 3:30 pm - 4:30 pm
CMSA Room G10
Address: CMSA, 20 Garden Street, Cambridge, MA 02138 USA

Probability Seminar

Speaker: Jinyoung Park (NYU)

Title: Thresholds

Abstract: For a finite set X, a family F of subsets of X is said to be increasing if any set A that contains B in F is also in F. The p-biased product measure of F increases as p increases from 0 to 1, and often exhibits a drastic change around a specific value, which is called a “threshold.” Thresholds of increasing families have been of great historical interest and a central focus of the study of random discrete structures (e.g. random graphs and hypergraphs), with estimation of thresholds for specific properties the subject of some of the most challenging work in the area. In 2006, Jeff Kahn and Gil Kalai conjectured that a natural (and often easy to calculate) lower bound q(F) (which we refer to as the “expectation-threshold”) for the threshold is in fact never far from its actual value. A positive answer to this conjecture enables one to narrow down the location of thresholds for any increasing properties in a tiny window. In particular, this easily implies several previously very difficult results in probabilistic combinatorics such as thresholds for perfect hypergraph matchings (Johansson–Kahn–Vu) and bounded-degree spanning trees (Montgomery). I will present recent progress on this topic. Based on joint work with Keith Frankston, Jeff Kahn, Bhargav Narayanan, and Huy Tuan Pham.