The complex Monge-Ampere equation in K\”ahler geometry

10/29/2021 9:30 am - 10:30 am

Speaker: Freid Tong

Title: The complex Monge-Ampere equation in Kahler geometry

Abstract: The complex Monge-Ampere equations occupies an central role in K\”ahler geometry, beginning with Yau’s famous solutions of the Calabi conjecture. Later developments has led to many interesting geometric applications and opening of new fields. In this talk, I will introduce the complex Monge-Ampere equation and discuss the interplay between their analysis and geometry, with a particular focus on the a priori C^0 estimates and their various applications. In the end, I will also try to discuss some recent work with B. Guo and D.H. Phong on a new approach for proving sharp C^0 estimates for complex Monge-Ampere equations, this new approach avoids the machinery of pluripotential theory that was previously necessary and has the advantage of generalizing to a large class of fully nonlinear equations.