Abstract: A central challenge in quantum many-body physics is to estimate the properties of natural quantum states, such as the quantum ground states and Gibbs states. Quantum Hamiltonian complexity offers a computational perspective on this challenge and classifies these natural quantum states using the language of quantum complexity classes. This talk will provide a gentle introduction to the field and highlight its success in pinning down the hardness of a wide variety of quantum states. In particular, we will consider the gapped ground states and Gibbs states on low dimensional lattices, which are believed to exhibit ‘low complexity’ due to the widely studied area law behaviour. Here, we will see the crucial role of complexity-theoretic methods in progress on the ‘area law conjecture’ and in the development of efficient algorithms to classically simulate quantum many-body systems.
Unreasonable effectiveness of the quantum complexity view on quantum many-body physics
12/15/2021 5:35 pm - 6:35 pm