Abstract: We consider the Cauchy problem for the Einstein equations for cosmological spacetimes, i.e. spacetimes with compact spatial hypersurfaces. Various classes of those dynamical spacetimes have been constructed and analyzed using CMC foliations or equivalently the CMC-Einstein flow. We will briefly review the Andersson-Moncrief stability result of negative Einstein metrics under the vacuum Einstein flow and then present various recent generalizations to the nonvacuum case. We will emphasize what difficulties arise in those generalizations, how they can be handled depending on the matter model at hand, and what implications we can draw from these results for cosmology. We then turn to a scenario where the CMC Einstein flow leads to a large data result in 2+1-dimensions.
The Einstein-flow on manifolds of negative curvature
03/10/2022 1:00 pm - 2:00 pm