Member Seminar
Speaker: Juven Wang
Title: Cobordism and Deformation Class of the Standard Model and Beyond: Proton Stability and Neutrino Mass
Abstract: ‘t Hooft anomalies of quantum field theories (QFTs) with an invertible global symmetry G (including spacetime and internal symmetries) in a d-dim spacetime are known to be classified by a d+1-dim cobordism group TPd+1(G), whose group generator is a d+1-dim cobordism invariant written as a d+1-dim invertible topological field theory. Deformation class of QFT is recently proposed to be specified by its symmetry G and a d+1-dim invertible topological field theory. Seemly different QFTs of the same deformation class can be deformed to each other via quantum phase transitions. We ask which deformation class controls the 4d ungauged or gauged (SU(3)×SU(2)×U(1))/Zq Standard Model (SM) for q=1,2,3,6 with a continuous or discrete (B−L) symmetry and with also a compatible discrete baryon plus lepton Z_{2Nf} B+L symmetry. (The Z_{2Nf} B+L is discrete due to the ABJ anomaly under the BPST instanton.) We explore a systematic classification of candidate perturbative local and nonperturbative global anomalies of the 4d SM, including all these gauge and gravitational backgrounds, via a cobordism theory, which controls the SM’s deformation class. While many Grand Unified Theories violating the discrete B+L symmetry suffer from the proton decay, the SM and some versions of Ultra Unification (constrained by Z_{16} class global anomaly that replaces sterile neutrinos with new exotic gapped/gapless topological or conformal sectors) can have a stable proton. Dictated by a Z_2 class global mixed gauge-gravitational anomaly, there can be a gapless deconfined quantum critical region between Georgi-Glashow and Pati-Salam models — the Standard Model and beyond occur as neighbor phases. We will also comment on a new mechanism to give the neutrino mass via topological field theories and topological defects. Work based on arXiv:2112.14765, arXiv:2204.08393, arXiv:2202.13498 and references therein.