Extinction and coexistence for reaction-diffusion systems on metric graphs

05/26/2022 9:00 am - 10:00 am

Abstract: In spatial population genetics, it is important to understand the probability of extinction in multi-species interactions such as growing bacterial colonies, cancer tumor evolution and human migration. This is because extinction probabilities are instrumental in determining the probability of coexistence and the genealogies of populations. A key challenge is the complication due to spatial effect and different sources of stochasticity. In this talk, I will discuss about methods to compute the probability of extinction and other long-time behaviors for stochastic reaction-diffusion equations on metric graphs that flexibly parametrizes the underlying space. Based on recent joint work with Adrian Gonzalez-Casanova and Yifan (Johnny) Yang.