Pavel Etingof (MIT)
Title: Quantum Groups
Abstract: The theory of quantum groups developed in mid 1980s from attempts to construct and understand solutions of the quantum Yang-Baxter equation, an important equation arising in quantum field theory and statistical mechanics. Since then, it has grown into a vast subject with profound connections to many areas of mathematics, such as representation theory, the Langlands program, low-dimensional topology, category theory, enumerative geometry, quantum computation, algebraic combinatorics, conformal field theory, integrable systems, integrable probability, and others. I will review some of the main ideas and examples of quantum groups and try to briefly describe some of the applications.