Abstract: Langlands duality began as a deep and still mysterious conjecture in number theory, before branching into a similarly deep and mysterious conjecture of Beilinson and Drinfeld concerning the algebraic geometry of Riemann surfaces. In this guise it was given a physical explanation in the framework of 4-dimensional super symmetric quantum field theory by Kapustin and Witten. However to this day the Hilbert space attached to 3-manifolds, and hence the precise form of Langlands duality for them, remains a mystery.
In this talk I will propose that so-called “skein modules” of 3-manifolds give natural candidates for these Hilbert spaces at generic twisting parameter Psi , and I will explain a Langlands duality in this setting, which we have conjectured with Ben-Zvi, Gunningham and Safronov.
Intriguingly, the precise formulation of such a conjecture in the classical limit Psi=0 is still an open question, beyond the scope of the talk.