Abstract: I will begin by introducing an emerging paradigm of cellular organization – the dynamic compartmentalization of biochemical pathways and molecules by phase separation into distinct and multi-phase condensates. Motivated by this, I will discuss two largely orthogonal problems, united by the theme of phase separation in multi-component and chemically active fluid mixtures.
1. I will propose a theoretical model based on Random-Matrix Theory, validated by phase-field simulations, to characterizes the rich emergent dynamics, compositions, and steady-state properties that underlie multi-phase coexistence in fluid mixtures with many randomly interacting components.
2. Motivated by puzzles in gene-regulation and nuclear organization, I will propose a role for how liquid-like nuclear condensates can be organized and regulated by the active process of RNA synthesis (transcription) and RNA-protein coacervation. Here, I will describe theory and simulations based on a Landau formalism and recent experimental results from collaborators.