Adventures in Perturbation Theory

2022-01-25 09:00 - 10:00

Abstract: Recent years have seen tremendous advances in our understanding of perturbative quantum field theory—fueled largely by discoveries (and eventual explanations and exploitation) of shocking simplicity in the mathematical form of the predictions made for experiment. Among the most important frontiers in this progress is the understanding of loop amplitudes—their mathematical form, underlying geometric structure, and how best to manifest the physical properties of finite observables in general quantum field theories. This work is motivated in part by the desire to simplify the difficult work of doing Feynman integrals. I review some of the examples of this progress, and describe some ongoing efforts to recast perturbation theory in terms that expose as much simplicity (and as much physics) as possible.