11/3/2021 Quantum Matter in Mathematics and Physics

2021-11-03 14:00 - 15:30

Title: Non-Invertible Duality Defects in 3+1 Dimensions

Abstract:  For any quantum system invariant under gauging a higher-form global symmetry, we construct a non-invertible topological defect by gauging in only half of spacetime. This generalizes the Kramers-Wannier duality line in 1+1 dimensions to higher spacetime dimensions. We focus on the case of a one-form symmetry in 3+1 dimensions and determine the fusion rule. From modular invariance and a direct analysis of one-form symmetry-protected topological phases, we show that the existence of certain kinds of duality defects is intrinsically incompatible with a trivially gapped phase. By further assuming time-reversal symmetry, we find that the presence of certain duality defects implies that the low-energy phase has to be gapless unless the one-form symmetry is spontaneously broken. We give an explicit realization of this duality defect in the free Maxwell theory where the duality defect is realized by a Chern-Simons coupling between the gauge fields from the two sides.