**Colloquium**

**Speaker:** Luca Iliesiu, Stanford

**Title:** Black hole microstate counting from the gravitational path integral

**Abstract: **Reproducing the integer count of black hole micro-states from the gravitational path integral is an important problem in quantum gravity. In the first part of the talk, I will show that, by using supersymmetric localization, the gravitational path integral for 1/16-BPS black holes in supergravity can reproduce the index obtained in the string theory construction of such black holes. A more refined argument then shows that not only the black hole index but also the total number of black hole microstates within an energy window above extremality that is polynomially suppressed in the charges also matches this string theory index. In the second part of the talk, I will present a second perspective on this state count and show how the BPS Hilbert space can be obtained by directly preparing states using the gravitational path integral. While such a preparation naively gives rise to a Hilbert space of BPS states whose dimension is much larger than expected, I will explain how non-perturbative corrections in the overlap of such states are again responsible for reproducing the correct dimension of the Hilbert space.