Loading Events

« All Events

  • This event has passed.

How Far Can Transformers Reason? The Globality Barrier and Inductive Scratchpad

October 23, 2024 @ 2:00 pm - 3:00 pm

New Technologies in Mathematics Seminar

Speaker: Aryo Lotfi (EPFL)

Title: How Far Can Transformers Reason? The Globality Barrier and Inductive Scratchpad

Abstract: Can Transformers predict new syllogisms by composing established ones? More generally, what type of targets can be learned by such models from scratch? Recent works show that Transformers can be Turing-complete in terms of expressivity, but this does not address the learnability objective. This paper puts forward the notion of ‘globality degree’ of a target distribution to capture when weak learning is efficiently achievable by regular Transformers, where the latter measures the least number of tokens required in addition to the tokens histogram to correlate nontrivially with the target. As shown experimentally and theoretically under additional assumptions, distributions with high globality cannot be learned efficiently. In particular, syllogisms cannot be composed on long chains. Furthermore, we show that (i) an agnostic scratchpad cannot help to break the globality barrier, (ii) an educated scratchpad can help if it breaks the globality at each step, however not all such scratchpads can generalize to out-of-distribution (OOD) samples, (iii) a notion of ‘inductive scratchpad’, that composes the prior information more efficiently, can both break the globality barrier and improve the OOD generalization. In particular, some inductive scratchpads can achieve length generalizations of up to 6x for some arithmetic tasks depending on the input formatting.

Details

Date:
October 23, 2024
Time:
2:00 pm - 3:00 pm
Event Category:

Venue

CMSA Room G10
CMSA, 20 Garden Street
Cambridge, MA 02138 United States
+ Google Map
Phone:
6174967132