• The Einstein-flow on manifolds of negative curvature

    Abstract: We consider the Cauchy problem for the Einstein equations for cosmological spacetimes, i.e. spacetimes with compact spatial hypersurfaces. Various classes of those dynamical spacetimes have been constructed and analyzed using CMC foliations or equivalently the CMC-Einstein flow. We will briefly review the Andersson-Moncrief stability result of negative Einstein metrics under the vacuum Einstein flow and […]

  • Virtual Teams in Gig Economy — An End-to-End Data Science Approach

    Abstract: The gig economy provides workers with the benefits of autonomy and flexibility, but it does so at the expense of work identity and co-worker bonds. Among the many reasons why gig workers leave their platforms, an unexplored aspect is the organization identity. In a series of studies, we develop a team formation and inter-team contest […]

  • Resonant side-jump thermal Hall effect of phonons coupled to dynamical defects

    Virtual

    https://youtu.be/nnczlM1xhy4 Abstract: We present computations of the thermal Hall coefficient of phonons scattering off defects with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is of the 'side-jump' type, which is proportional to the phonon lifetime. This contribution is at resonance […]

  • Moduli space of tropical curves, graph Laplacians and physics

    Abstract: I will first review the construction of the moduli space of tropical curves (or metric graphs), and its relation to graph complexes. The graph Laplacian may be interpreted as a tropical version of the classical Torelli map and its determinant is the Kirchhoff graph polynomial (also called 1st Symanzik), which is one of the two […]

  • 2-categorical 3d mirror symmetry

    Virtual

    Abstract: It is by now well-known that mirror symmetry may be expressed as an equivalence between categories associated to dual Kahler manifolds. Following a proposal of Teleman, we inaugurate a program to understand 3d mirror symmetry as an equivalence between 2-categories associated to dual holomorphic symplectic stacks. We consider here the abelian case, where our theorem […]

  • Birkhoff’s conjecture on integrable billiards and Kac’s problem “hearing the shape of a drum”

    Abstract: Billiards on an elliptical billiard table are completely integrable: phase space is foliated by invariant submanifolds for the billiard flow. Birkhoff conjectured that ellipses are the only plane domains with integrable billiards. Avila-deSimoi- Kaloshin proved the conjecture for ellipses of sufficiently small eccentricity. Kaloshin-Sorrentino proved local results for all eccentricities. On the quantum level, the analogous […]

  • Summing Over Bordisms In 2d TQFT

    Virtual

    Abstract: Some recent work in the quantum gravity literature has considered what happens when the amplitudes of a TQFT are summed over the bordisms between fixed in-going and out-going boundaries. We will comment on these constructions. The total amplitude, that takes into account all in-going and out-going boundaries can be presented in a curious factorized form. […]

  •  A Hike through the Swampland

    https://youtu.be/9Mq9Jvmo3ic Abstract: The Swampland program aims at uncovering the universal implications of quantum gravity at low-energy physics. I will review the basic ideas of the Swampland program, formal and phenomenological implications, and provide a survey of the techniques commonly used in Swampland research including tools from quantum information, holography, supersymmetry, and string theory.

  • On optimization and generalization in deep learning

    Abstract: Deep neural networks have achieved significant empirical success in many fields, including the fields of computer vision and natural language processing. Along with its empirical success, deep learning has been theoretically shown to be attractive in terms of its expressive power. However, the theory of expressive power does not ensure that we can efficiently find an optimal solution in […]

  • Moduli Space of Metric SUSY Graphs

    Virtual

    Member Seminar Speaker: Yingying Wu Title: Moduli Space of Metric SUSY Graphs Abstract: SUSY curves are algebraic curves with additional supersymmetric or supergeometric structures. In this talk, I will present the construction of dual graphs of SUSY curves with Neveu–Schwarz and Ramond punctures. Then, I will introduce the concept of the metrized SUSY graph and […]

  • 3/21/2022 – Swampland Seminar

    Open Mic Discussion Topic: Entropy bounds (species bound, Bekenstein bound, CKN bound, and the like)

  • Bulk-boundary correspondence for vacuum asymptotically Anti-de Sitter spacetimes

    Abstract: The AdS/CFT conjecture in physics posits the existence of a correspondence between gravitational theories in asymptotically Anti-de Sitter (aAdS) spacetimes and field theories on their conformal boundary. In this presentation, we prove rigorous mathematical statements toward this conjecture. In particular, we show there is a one-to-one correspondence between aAdS solutions of the Einstein-vacuum equations and a suitable space of data on […]