• On Curvature Propagation and ‘Breakdown’ of the Einstein Equations on U(1) Symmetric Spacetimes

    strong>Abstract: The analysis of global structure of the Einstein equations for general relativity, in the context of the initial value problem, is a difficult and intricate mathematical subject. Any additional structure in their formulation is welcome, in order to alleviate the problem.  It is expected that the initial value problem of the Einstein equations on spacetimes admitting a translational, […]

  • Taming the Landscape

    Abstract: In this talk I will introduce a generalized notion of finiteness that provides a structural principle for the set of effective theories that can be consistently coupled to quantum gravity. More concretely, I will propose a ‘tameness conjecture’ that states that all scalar field spaces and coupling functions that appear in such an effective theory must be definable in an o-minimal structure. The fascinating field […]

  • Prague dimension of random graphs

    Abstract: The Prague dimension of graphs was introduced by Nesetril, Pultr and Rodl in the 1970s: as a combinatorial measure of complexity, it is closely related to clique edges coverings and partitions. Proving a conjecture of Furedi and Kantor, we show that the Prague dimension of the binomial random graph is typically of order n/(log […]

  • Multipartitioning topological phases and quantum entanglement

    Virtual

    Speaker: Shinsei Ryu (Princeton University) Title: Multipartitioning topological phases and quantum entanglement Abstract: We discuss multipartitions of the gapped ground states of (2+1)-dimensional topological liquids into three (or more) spatial regions that are adjacent to each other and meet at points. By considering the reduced density matrix obtained by tracing over a subset of the regions, we […]

  • Quantum cohomology as a deformation of symplectic cohomology

    Abstract: Let X be a compact symplectic manifold, and D a normal crossings symplectic divisor in X. We give a criterion under which the quantum cohomology of X is the cohomology of a natural deformation of the symplectic cochain complex of X \ D. The criterion can be thought of in terms of the Kodaira dimension of X […]

  • Scale separated AdS vacua?

    Abstract: In this talk I will review massive type IIA flux compactifications that seem to give rise to infinite families of supersymmetric 4d AdS vacua. These vacua provide an interesting testing ground for the swampland program. After reviewing potential shortcomings of this setup, I will discuss recent progress on overcoming them and getting a better understanding of these […]

  • Resistance curvature – a new discrete curvature on graphs

    Abstract: The last few decades have seen a surge of interest in building towards a theory of discrete curvature that attempts to translate the key properties of curvature in differential geometry to the setting of discrete objects and spaces. In the case of graphs there have been several successful proposals, for instance by Lin-Lu-Yau, Forman […]

  • The Hitchin connection for parabolic G-bundles

    Speaker: Richard Wentworth, University of Maryland Title: The Hitchin connection for parabolic G-bundles Abstract: For a simple and simply connected complex group G, I will discuss some elements of the proof of the existence of a flat projective connection on the bundle of nonabelian theta functions on the moduli space of semistable parabolic G-bundles over families of […]